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Going hog wild for coherent states!
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Motivation: Klauder, Annals of Physics, 1960

KLAUDER

Transforming to polar coordinates one readily determines that (5a) reduces
to

[ ew(=1aR) 3 W™ (W] dlal” (sb)

N’'=0

I
e

VY] =1
N’=0

This “resolution of the identity” is a very useful tool ...
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Credits and references

o Large-N limit is joint work with Bruce Driver and Todd Kemp,
Univ. Calif., San Diego

e Web site: www.nd.edu/~bhall/

e Expository paper on large-N limit: arXiv:1308.0615 [math.RT]
(printed copies available)

@ Shameless self-promotion: Textbook

Brian Hall
Quantum Theory for Mathematicians

Springer, Graduate Texts in Mathematics, 2013
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Compact-type Lie groups

Lie group K of “compact type,” i.e., compact groups, IR”, and
products

Examples: SO(3) for rigid body motion, or SU(2) = S3

View K as configuration space (position)

Phase space is cotangent bundle T*(K) (position and momentum)
Quantum Hilbert space is L?(K)
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Complexification

o Complexified group Kc O K

e Examples:
K =R" Ke=C"
K =SU(N) K¢ = SL(n;C)

o ldentify K¢ as phase space, as follows.

™K) = T(K) = Kc
. polar
metric decomp
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Heat kernel (or “complexifier”) coherent states on K

e Heat kernel p, on K, based at identity:

dp, 1
e A
dt 2 OKP
fmype = O

Holomorphic extension to K¢

Coherent states: For g € K¢, define

Xg(x) :Pw(ng)' g € K, xe K.

Not of Perelomov type

h plays role of “time” in heat equation
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Euclidean case

If K =R, heat kernel is Gaussian

@ Coherent states are usual Gaussian wave packets:

X.(x) = Cexp {_2177(2_)()2}

1 ibx
_ IS Y _ Ibx _ -
= Cexp{ 2_h(x a)}exp{ 'h}' z=a+ib

Packet centered at x = a = Re z, with expected momentum b =Im z

For general K, heat kernel is “most Gaussian” function
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Results: Resolution of identity

o Let v; be K-invariant heat kernel on K¢:

dl/t 1

Ve Zaew
dt 4okt
“m]/t = C;K
t—0

o If K =R and K¢ = C then v¢(x + iy) = (rrt)~1/2e~»*/2t

Theorem (H 1994)

We have a resolution of the identity as follows:

1= [ o)l vale) de

e If K =R, gives the resolution of identity of John Klauder (1960)
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Results: Segal-Bargmann representation

e For ¢ € L?(K), define Segal-Bargmann transform:

(Gy)(e) = (xgl¥)
/()7,gx1 (x) dx, g€ Kc

o Segal-Bargmann space: HL?(Kc,v+) (square-integrable
holomorphic functions)

Theorem (H 1994)

For each h > 0, the map Cy, is a unitary map of L2(K) onto
HL2(Kc, 1/7,)
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Results: Geometric quantization

Do geometric quantization with half-forms of T*(K) = K¢ using
complex polarization

Hilbert space turns out to be (isomorphic to) HL?(Kc, v+)

Geometric quantization somehow reproduces heat kernel!
Segal-Bargmann transform = BKS pairing map

References: H, 2002, C. Florentino, P. Matias, J. Mour3o, J Nunes,
2006
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Results: (1+1)-dimensional Yang—Mills theory

@ Spacetime cylinder S x R, structure group K
e Configuration space is A = t-valued connections over spatial circle

o Based gauge group: Gy = gauge transformations equal to e at
basepoint

A/Go = K (holonomy around spatial circle)

Goal: Project coherent states for A into gauge-invariant subspace
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Results: (1+1)-dimensional Yang—Mills theory

First approach: Wren, using group-integration method of Landsman
Second approach: Driver-H, using Segal-Bargmann transform for A

Gaussian coherent states for A project to heat kernel coherent
states for A/Gy = K

“Quantization commutes unitarily with reduction”
References: K. K. Wren 1998; Driver—Hall 1999
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Results: Coherent states on spheres

Configuration space S", phase space T*(S")

Project coherent states from L?(SO(n+ 1)) to L2(S")

Coherent states, resolution of identity, Segal-Bargmann representation
Kowalski—-Rembielinski polar decomposition method

Thiemann complexifier method

References: T. Thiemann 1996, M. Stenzel 1999,
Kowalski-Rembielifnski 2000 & 2001, Hall-Mitchell 2002
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Results: Coherent states on spheres

o Coherent states given in terms of heat kernel on S”
@ Resemble Gaussian wave packets:

t=n t=2r
X2 X2
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Ref: K Kowalski, J RembieliAski and J Zawadzki, J. Phys. A 2015
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Results: Coherent states on spheres

Large-radius limit gives back Gaussian

Results for particle on S? in magnetic field
Results for general compact symmetric spaces
Refs: Hall-Mitchell 2002 & 2012, Stenzel 1999
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Applications: quantum gravity

@ A. Ashtekar, J. Lewandowski, D. Marolf, J. Mour3o, T. Thiemann:
“Coherent state transform for spaces of connections” (1996)

@ H. Sahlmann, T. Thiemann, O. Winkler, “Gauge field theory coherent
states” (four papers in 2001)

@ Much additional work since then ...
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New direction: Large-N limit

o Popular idea: Gauge theory for U(N), let N — oo

e Master field: Expect path-integral for U(N) Yang-Mills to
concentrate in limit to a single connection called “master field" ['t
Hooft, 1974]

@ Gross and Taylor: “Two-dimensional QCD is a String Theory”
(1993)

e J. Maldacena: “The large-N Limit of superconformal field theories
and supergravity” (1999): 3,000 citations

@ Here: one specific aspect of large-N limit!
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Geometry of the unitary groups

U(N) = group of N x N unitary matrices (U*U = 1)
Lie algebra = u(N) = skew matrices (X* = —X)
Use on u(N) scaled Hilbert—Schmidt inner product:

(X,Y) = NRe[Trace(X*Y)].

This inner product determines a bi-invariant Riemannian metric on
U(N)
Metric determines Laplacian Ay (with Ay < 0)
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B-version Segal-Bargmann transform

e (U(N))c = GL(N;C) = group of all N x N invertible matrices

@ Transform as before
(BY1)(8) = [, plox ) o
_ tAy/2
(e f) - (@)

o Full heat kernel j1, on GL(N;C)

Theorem (H 1994)
The map Bl is a unitary map of L2(U(N), p,) onto HL?(GL(N;C), u,)
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Large-N behavior of Laplacian

@ Consider normalized trace,

Uj.

1 1 &
tr(U) = NTrace(U) =X
=1

@ Now consider trace polynomials, i.e., polynomials in traces of
powers of U. E.g.

f(U) = 7tr(UP)tr (U3) — (tr(U?))3.

@ The action of Ay on trace polynomials decomposes as:

1
AN:AOO—FWL

for operators “As" and “L" whose actions are independent of N.
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Large-N behavior of Laplacian, cont'd

Two basic properties determine Ay

o First,

Ao[tr(UR)] = —ktr(U¥) — 2 li:ljtr(Uj)tr(Uk_j).

Second, A satisfies the first-order product rule:
Awo(fg) = Awo(f)g + F(Awg).

@ Cross terms are small in product rule for Ay
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Concentration of heat kernels

@ Look at heat kernel measure
do¥(U) := p,(U) dvol(U) on U(N)
@ Measure is concentrating to set where tr(U) has definite value:

— 0

Htr(U) _et/?
L(UN).p)

@ Trace polynomials effectively become constants (as elements of
L2(U(N), p}"))!
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Concentration of heat kernels, cont'd

@ Concentration related to the first-order product rule for A.
@ If Aw behaves like a first-order operator, then heat doesn’t diffuse.

@ Similar concentration results on GL(N;C) w.r.t.
du¥(2) = p,(2) dvol(Z)

on GL(N;C)
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Back to Segal-Bargmann transform

@ Limiting SBT on trace polynomials makes sense but is trivial
(constants map to constants)

o Consider matrix-valued trace polynomials, e.g.,
f(U) = 20°tr(U?) — 9Utr(U*).
@ Product rule extends only if one of the polynomials is scalar:

Ao (UPUP) # Ao (UP)UP + UP A (UP).
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e Function:
f(U)=U? Uc U(N).
o Transform:
N e 5 .sinh(t/N)
B (f)(Z) = e *|cosh(t/N) Z°— tw Ztr(2)
~ e '[Z?—tZtr(Z)], Z € GL(N;C)

o Concentration: on GL(N;C) we have tr(Z) ~ 1 (w.r.t. uV) in the

large-N limit
o Limit:

lim BN(f)(Z) = e t(Z% + tZ)

N—oo
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Main result

@ Traces disappear: only powers of U survive

Theorem (Driver-H-Kemp, 2013)

Let p be a polynomial in a single variable and let

F(U) = p(U), U e U(N).

Then for each t > 0, there exists a unique polynomial q; in a single
variable such that

— 0

B (D) = 4D ey ey

as N — oo.

o Eg., if p(u) = u?, then
q:(z) = e 122 + tz).
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Comparison with Biane

@ Map p — q; coincides with the “free Hall transform” of Biane 1997
@ Biane uses “free unitary Brownian motion” for large-N limit

o Map G, : L?(St,7,) — H(Z:) for domain £; C C. Here 7, is
limiting eigenvalue distribution of p?’.
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Comparison with Biane

@ Driver-H-Kemp shows that G; is limit of BtN on trace polynomials
@ New recursive method of computation

@ Two-parameter version
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Computing large-N limit

tAs /2

Step 1: Start with U* and apply heat operator e

Step 2: Evaluate the traces. Actually, tr(Z¥) ~ 1 for every k.
tAeo /2

Example: f(U) = U3. Applying e gives

2
o—3t/2 {23 + t[22%tr(2) + Ztr(2%)] + 3;Ztr(2)2}

Evaluating all traces to 1 gives

2
BI(U°) = qi(Z) = e 3/2 {23 222+ Z) + 352}
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Computing large-N limit

Recursive method of computing on UX

Generating function for transform and inverse

References: Biane 1999, Driver—Hall-Kemp 2015, G. Cébron 2015
Expository paper: arXiv:1308.0615 [math.RT]
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Conclusion

@ Thank you for your attention!
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