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Optical waveguide arrays

f(n+1,2) f(n,z) f(n—-1,2)

e From mode-coupled theory for an infinite array:

dé,

dz = Wf(na z)5n+)‘ [g(na Z)gn,1 + g(n + 1,Z)Sn+1] ’ nez

—i

e If g(1,2) =0, this set of equations uncouples into two semi-infinite
sets: n <0 and n> 1.

o If further g(N,z) =0, for N > 0, it uncouples into three sets:
n<0,1<n<Nandn>N.
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ty versus non-unitar

Matrix description of optical waveguide arrays
In any case, the equations can be written as:

el "
—i-1€(2)) = H(z)[€(2))

where
E(2)) =) &(2)l))  Icz
jez
and
0
) = 1 «— j-th
0

The Hamiltonian H(z) reads:
A(z) = wf(h,2) + A [g(n,2) VT + Vg(h,2)

with flj) = jlj), V|j) =|j — 1) and V1]j) = |j + 1).
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Physical motivation

Symmetric waveguide arrays

A(z) = Z ou(2)Ax

with AA;( constant matrices closing a Lie algebra G with
[Ai, Al = Zivzl c,-jkAk, then the differential equation
9 1E(2) = A)IER)
—i— = H(2)|&(z
dz

can be solved by group-theoretical methods (like Wei-Norman
factorization):

£(2)) = U(2)[€(0)) = MLy ™% £(0)) = p(g(2))]€(0))
where the functions ux(z) satisfy non-linear first-order coupled differential

equations involving the structure constants c,-jk and the coefficients
ak(z). g(z) € G and p is a representation of G.

Then |£(z)) will be a coherent state of the Gilmore-Perelomov type!!
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Unitarity versus non-unitarity

We shall focus in a finite number of waveguide arrays: Z finite.

If the Lie algebra expanded by the A, corresponds to a compact
group (like SU(2)), U(z) is unitary and the total power
P(z) = Y ez 1€(2)P is conserved:

d

Zp(2) =

e (z)=0
If the Lie algebra expanded by the A, corresponds to a non-compact
group (like SO(2,1) or SO(3,1)), U(z) is not unitary and the total
power is not conserved:

d
EP(Z) #0

Non-unitarity is caused by non-Hermiticity of the Hamiltonian, due
to complex matrix elements of the Hamiltonian.

Non-Hermitian Hamiltonians describe waveguides with losses or
gain, or complex couplings (due, for instance, to torsion of the
waveguides).
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Non-Hermitian dimer

02 e

Consider the non-Hermitian coupling matrix

_ (a(z) Au(2) (). Bi(=z
o= (50 23). s e

Setting the effective refractive indices relative to their average,
oz 1
E(2)) = e/ s ©*Ez)),  ao(z) = 5 loa(2) + az(2)],

gives the traceless effective non-Hermitian coupling matrix,

(a(z)  Bi(z) NS SRV
H_<52(Z) —a(2)>’ (2) = 5 [aa(2) = a2(2)],
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Non-Hermitian dimer

and the differential system,

~i0.|E(2)) = H)IE(2))-
Note that H(z) € s/(2,C) = so(3,1).
Choosing the parameters appropriately, H(z) € su(1,1) =~ so(2,1).
sl(2,C) = so(3) @ i s0(3), with basis {J,, J,, J;, i), id,, i)}
Varios conjugate so(2,1) subalgebras can be found in s/(2,C):
(R, Ky, Ko} = {idyidy, Iy, {idy,idy, B}, {ideyide, Jy}s ...
Experimentally, the easiest to realize is:
{Rx, Ry, Re} = {idy, idz, 3}

It corresponds to a PT-symmetric waveguide array with balanced
gain/loss.
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Finite waveguide arrays with SO(2,1) symmetry

The Hamiltonian for a finite waveguide array with underlying
50(2,1) = SU(1,1) symmetry is

A(z) = iv(2)]: + Az)

In this case there are 2j + 1 waveguides for the non-unitary
representation with “spin” j € £ of SO(2,1) ~ SU(1, 1).

Under the P symmetry (n — 2j — n) and T symmetry (i — —i, z = —z)
the Hamiltonian changes to:

A(z) > AT = —in(=2) (=) + X(=2)J = A(2)

provided y(z) and A(z) are even. Therefore the system is
PT-symmetric!!.

However, for some values of the parameters, the PT-symmetry can be
spontaneously broken, in the sense that wavefunctions are not
PT-symmetric

SU(1,1
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For the case v(z) = v and A(z) = A, simple analytical expressions can be
obtained. Three cases have to be considered, depending on wheather

Q = /A2 — 12 is positive, zero or pure imaginary.

(a) 0<vy<1 (b)yy=1
[SH)
72 e —
—1.5
0 1 -1 0 1 -1 0 1
R(Q;) R(Q;)
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Non-Hermitian Coherent States

Let p be a non-unitary representation of a Lie group G with Lie algebra G
in the Hilbert space H.

Since p(g)' # p(g)1, it is crucial to introduce the contragredient (or
dual) representation 5*(g) = p(g~1)", which is neither unitary.

It verifies
(7" (g)V,p(g)®) = (V,®)
If pis unitary then p* = p.

Define a family of non-hermitian Gilmore-Perelomov Coherent States as
usual:

Wg) =p(g)lV), VgeG
for a suitable vector |W) € H.

le arrays  Non-Hermitian Coherent States Example: SU(1
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Non-Hermitian Coherent States

We must introduce the dual family of Coherent States:

[bg) = 7"(8)|9), Vg EG
for another suitable vector |®) € H.

Then _
(Pg|Wg) = (OV), VgeG

Define the Analysis (or Sampling) operator for the set of coherent states:

T o) = {(Velt)}ges

and for the dual set of coherent states:

~

T [y) = {(Pglv)}gec



Non-Hermitian Coherent States

Introduce the Resolution operators

+

>
Il

>
\|z>

= [ dute)ate)v) vlate)

ho At 7 / du(g)p (8)|)(W|p(g)!

It holds o
He)A=Apg). i (e)A=Ap'(g), VgeG

If the representation p is irreducible then A= 74 = Ay.

Square integrability of the representation j is required (and admissibility
conditions for the vectors |W) and |®)), or a suitable restriction in the
integration to a quotient space G/H or to a subset C C G, but in this
case the resulting resolution operator need not verify A= Aly.
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Define the Overlapping Kernel:

K(g' g) = (Dg|Vg) = (05" (g") i(g)V)
= (®|p(g) ' h(g)V) = K(g''g)

Under suitable conditions K(g’, g) is a reproducing kernel defining a
reproducing kernel Hilbert space.



Example: SU(1,1) Non-hermitian coherent states

Consider the realization of su(1,1) ~ so(2,1)
{Ki=iJe, K, =iy, K, = J,}
(note that is different to that of the non-hermitian dimer!!).

For the 2j + 1-dimesional unitary irreducible representation of SU(2), we
get a 2j + 1-dimensional non-unitary irreducible representation of
SuU(1,1).

The representation can be chosen as:
PG, (7 1) = et et

For instance, the j = 1/2 case is:

a e e N 1 e ¢
p(¢C) = T\CP < e~ e >
The contragradient representation is:

JDSE 1 e —e¢
P ((aC 7’7) - W( _e—i'yc* e—i'y )
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Choosing |V) = |¢) = (

o)
0

1 el
1€,7) = m( e—ivgr )
— 1 ei'y
1&,7) = m( —e*”{* )

The resolution operator is:

i d¢d¢” 1 1 e?"¢ )
A= /stl (1- |C|2)2d71 —CP < e ¢ |

but it is divergent since the representation is not square integrable.

The coherent states are:

Example: SU(1,1



The overlapping kernel is given by:

1
VA=) -I[¢P)

It is hermitian and positive definite, but it is not bounded. In fact, it
coincides with the overlapping kernel for the coherent states associated
with the representation of the discrete series with Bargmann index
k=-1)2.

K((¢',7), (C,) = (e'0=7) — == ¢x¢)

To overcome this we can:

o Consider the subgroup (0,0, ), leading to a unitary (reducible!)
representation of U(1).

Consider a subgroup of elliptic elements in SU(1,1).
Fix || =r < 1.
Take 0 < rpy < |C] < rm < 1.

Consider discrete families like ¢ = rpe’ %, k =0,1,...,N — 1.

Example: SU(1,1
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