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The Problem

Exponentials

For an exponential polynomial

f (x) =
∑
ω∈Ω

fω eω
Tx, Ω ⊂ (R + iT)s ,

0 6=

fω ∈ C,

“learn”Ω and fω from regular samples of f : f (Λ), Λ ⊂ Zs.

Connections

1 Sparse polynomials: f (x) =
∑
α∈A

fα xα.

2 Multisource radar: MUSIC & ESPRIT (1D).
3 “Superresolution”.
4 <ω < 0: damped partials . . .
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Superresolution

The imaging model [Candes & Fernandez–Granda]

1 Few localized sources.
2 Image acquisition: low pass.
3 Point spread function.
4 Localization deteriorates.
5 Remedy: deconvolution.
6 For example by minimization.

Mathematical model

x =
∑
ω∈Ω

fω δω

7→ x̂(α) = , α ∈ Λ.
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Ts
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Moment Problems

Points & moments

1 Point set XΩ = eΩ = {xω := eω : ω ∈ Ω}.

eω = eω1 · · · eωs .

2 Discrete measure µ =
∑
ω fω δxω .

3 Moments
µ(α) =

∫
xα dµ(x)

=
∑
ω∈Ω

fω eω
Tα.

Prony as moment problem

1 Square positive functionals.
2 Flat extensions→ B. Mourrain.
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The History

Introduction

1795: My name is R. Prony and I have a problem with alcohol.
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Remarks on Prony’s Problem

Assumptions

1 Problem is sparse: #Ω small.
2 A priori information: some number N ≥ #Ω.

f (x) =
∑
ω∈Ω

fω eω
Tx.

Problem structure (Prony)

1 Frequencies: nonlinear problem.
2 Coefficients: linear problem.
3 Evaluation points: subgrid Λ of Zs

or ΞZs, Ξ ∈ Rs×s nonsingular.

4 Shift of Λ irrelevant: Λ ⊂Ns
0.
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Notation

Polynomials

1 Π = C[x] = C[x1, . . . , xs].

2 Πn =
{

p(x) =
∑
|α|≤n

pα xα : pα ∈ C
}

of total degree ≤ n.

3 Total degree: deg p = max {|α| : pα 6= 0}.
4 Γn := {α ∈Ns

0 : |α| ≤ n}.
5 For A ⊂Ns

0 define ΠA := span {(·)α : α ∈ A}, i.e.,

ΠA 3 p =
∑
α∈A

pα (·)α.

Coefficient vectors

p ' p = [pα : α ∈ . . . ] ∈ CΓn or CA.
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The Prony Trick

A Hankel matrix

Fn :=

[
f (α+β) :

α ∈ A
β ∈ B

]
∈ RA×B

A computation . . .

For p ∈ ΠB and α ∈ A:

(Fnp)α =
∑
ω∈Ω

fω eω
Tα p(xω).

Consequence

1 p(XΩ) = 0 implies Fnp = 0.
2 Converse

for s > 1? Depends! Let’s see . . .
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Vandermonde Factorizations

Definition

Vandermonde matrix for X ⊂ Cs and A ⊂ Γ :

V(X, A) :=

[
xα :

x ∈ X
α ∈ A

]
∈ CX×A.

Factorizations (known from ESPRIT)

Sampling matrix (Hankel) for A, B ⊂ Γ :

FA,B :=

[
f (α+β) :

α ∈ A
β ∈ B

]

, FΩ = diag [fω : ω ∈ Ω] ,

1 FA,B = V(XΩ, A)T FΩ V(XΩ, B).
2 FA,Bp = V(XΩ, A)T FΩ p(XΩ), p ∈ ΠB.
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Interpolation Spaces

Definition
1 P ⊂ Π interpolation space for X ⊂ Cs:

for any q ∈ Π there is p ∈P such that p(X) = q(X).
2 Degree reducing interpolation space: deg p ≤ deg q.
3 A ⊂Ns

0 interpolation set: ΠA is interpolation space.
4 Degree reducing interpolation set:

Exercise

Interpolation folklore

1 A is interpolation set for X iff rank V(X, A) = #X.
2 #X = #A: interpolation iff V(X, A) nonsingular.
3 For fixed A, generic case: nonsingular V(·, A) open & dense.
4 Degree reducing: ideal interpolation, Gröber-/H–bases . . .
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Vandermonde Consequences

The Prony ideal

1 IΩ := {p ∈ Π : p(XΩ) = 0}.

Zero dimensional & radical.

2 Replacement of univariate Prony polynomial.

FA,B = V(XΩ, A)T FΩ V(XΩ, B),

FA,Bp = V(XΩ, A)T FΩ p(XΩ), p ∈ ΠB.

Theorem
1 Reconstruct FΩ from FA,B iff A, B are interpolation sets for XΩ.
2 If A is interpolation set for XΩ then

ker FA,B ' IΩ ∩ΠB.
n 7→ rank FA,Γn is the affine Hilbert function of IΩ.
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Prony & Interpolation

Needed for solution
1 Find interpolation set A for XΩ.
2 But: XΩ is unknown.

The generic case

is of little value

1 Generic interpolation space

Πn where
(

n − 1 + s
s

)
< #Ω ≤

(
n + s

s

)
.

2 ker FΓn,Γn+1 : nonlinear homogeneous equations.
3 ≤ 2s#Ω samples, 2s best constant.
4 Linear in #Ω, not like (#Ω)s.
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Minimal Sampling

Two things needed

1 Interpolation space for all sets X with #X ≤ N.
2 Efficient polynomial solver.

Choices for the set A
1 Interpolation guaranteed for A = ΓN−1.
2 Minimal for s = 1.
3 dimΠN−1 =

(N−1+s
s

)
' Ns/s!.

4 FΓN ,ΓN too large: e.g. s = 13, N = 200 yields 1020 × 1020.

Notabene: naive algorithm

does not work

Build Fn := FΓn,Γn , n = 0, 1, 2, . . . , until rank Fn = rank Fn+1.

Example: Ω = {ω,ω ′}, fω = −fω ′ ⇒ F0 =
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Minimal Sampling

Two things needed

1 Interpolation space for all sets X with #X ≤ N.
2 Efficient polynomial solver.

Choices for the set A
1 Interpolation guaranteed for A = ΓN−1.
2 Minimal for s = 1.
3 dimΠN−1 =

(N−1+s
s

)
' Ns/s!.

4 FΓN ,ΓN too large: e.g. s = 13, N = 200 yields 1020 × 1020.

Notabene: naive algorithm does not work

Build Fn := FΓn,Γn , n = 0, 1, 2, . . . , until rank Fn = rank Fn+1.
Example: Ω = {ω,ω ′}, fω = −fω ′ ⇒ F0 = 0.
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Universal Interpolation

Definition

(poor man’s Haar space)

P ⊂ Π universal of order N if P is interpolation space space for any
X ⊂ Cs with # ≤ N.

Classical problem: minimal universal space

Given N, what is the least dimensional subspace of Π that allows for
interpolation at any X ⊂ Cs with #X ≤ N?

Prony version, monomial

Given N, what is the smallest set ΥN ⊂ Γ with:
for any X ⊂ Cs, #X ≤ N,
there exists A ⊂ ΥN, #A = #X,
such that A is a degree reducing interpolation set for X.
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Universal Interpolation and Lower Sets

Definition
1 A ⊂ Γ is called lower set if α ∈ A ⇒ {β : β ≤ α} ⊆ A.
2 Lj := all lower sets of cardinality j.

Theorem

(Tools: H–bases and ideals of tensor product grids)

1 If ΠΘ is degree reducing monomially universal then

Θ ⊇
N⋃

j=1

⋃
A∈Lj

B. (1)

2 The set on the right hand side of (1) is universal . . .

3 α ∈ Υ iff
s∏

j=1

(1 +αj) ≤ N.

Positive part of hyperbolic cross.
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Summary & Algorithm

Theorem

The hyperbolic cross ΥN ⊂Ns
0 of order N

1 is the unique minimal universal monomial degree reducing
interpolation space.

2 has cardinality ≤ N logs−1 N.
3 satisfies ΥN ⊂ ΓN ⊂ {‖α‖∞ ≤ N}.

Algorithm (Prony ideal & interpolation space)

For increasing sets {0} = A0 ⊂ A1 ⊂ · · · ⊂Ns
0

filling Γ0, Γ1, . . .

1 build Fj = FΥN ,Aj =
[
FΥN ,Aj−1 | ∗

]
,

2 from ker Fj

extend ideal basis to IΩ ∩ΠAj ,

3 from (ker Fj)
c

extend interpolation space to ΠAj ,

until rank Fj = rank Fj−1.
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S. Kunis, Th. Peter, T. Römer, and U. von der Ohe, A multivariate generalization of
Prony’s method, Linear Algebra Appl. 490 (2016), 31–47.

T. Sauer, Prony’s method in several variables, Numer. Math., to appear
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Numerically or Symbolically?

1 Symbolic:
Sparse Monomial Interpolation with Least Elements

(SMILE)

.

2 Symbolic/Numeric:

Sparse Homogeneous Ideal Techniques

Theorem (Small sample sets)

SMILE computes Gröbner basis and interpolation space from at most
s N2 logs−1 N samples of f on Γ .

Remarks

1 N2 cannot be improved.
2 Nonlinear equations are generated in “good” form:

Gröbner/H–basis + graded interpolation basis.
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Augmenting Matrices

Rank detection
1 Compute SVD of block augmented Fj = [Fj−1 |Aj].
2 τ ≥ σk+1 ≥ · · · ≥ σn yields

‖Fjxj‖2 ≤ τ‖x‖2, x ∈ span {v1, . . . , vn−k}.

3 Fj = UΣV : V gives bases for ker Fj and (ker Fj)
c.

SVD update [with J. M. Peña]

1 Use SVD of Fj−1 for SVD of Fj.
2 Strategy for given threshold τ.
3 Uses QR and SVD of smaller matrices.
4 Guarantees rank Fj ≥ rank Fj−1 .
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Completing the Job: Companion Matrices

Multiplication tables for ideal projectors

1 Multiplication: P 3 p

7→ LP

(
(·)jp

)
∈P .

2 Linear operation on P →matrix Mj for a basis P of P .
3 Implicitly computable: reduction.

Relies on good decomposition.

4 Monomial basis: Frobenius companion matrix.

LP

(
(·)j`ω

)

Theorem (Stetter, Sticklberger, . . . )

The eigenvalues of the Mj are (xω)j and the eigenvectors `ω,ω ∈ Ω.

Tomas Sauer (Uni Passau) Prony in several variables Luminy, September 19, 2016 19 / 24



Completing the Job: Companion Matrices

Multiplication tables for ideal projectors

1 Multiplication: P 3 p

7→ LP

(
(·)jp

)
∈P .

2 Linear operation on P →matrix Mj for a basis P of P .
3 Implicitly computable: reduction.

Relies on good decomposition.

4 Monomial basis: Frobenius companion matrix.

LP

(
(·)j`ω

)

Theorem (Stetter, Sticklberger, . . . )

The eigenvalues of the Mj are (xω)j and the eigenvectors `ω,ω ∈ Ω.

Tomas Sauer (Uni Passau) Prony in several variables Luminy, September 19, 2016 19 / 24



Completing the Job: Companion Matrices

Multiplication tables for ideal projectors

1 Multiplication: P 3 p 7→

LP

(

(·)jp

)

∈ Π

P .

2 Linear operation on P →matrix Mj for a basis P of P .
3 Implicitly computable: reduction.

Relies on good decomposition.

4 Monomial basis: Frobenius companion matrix.

LP

(
(·)j`ω

)

Theorem (Stetter, Sticklberger, . . . )

The eigenvalues of the Mj are (xω)j and the eigenvectors `ω,ω ∈ Ω.

Tomas Sauer (Uni Passau) Prony in several variables Luminy, September 19, 2016 19 / 24



Completing the Job: Companion Matrices

Multiplication tables for ideal projectors

1 Multiplication modulo ideal: P 3 p 7→ LP

(
(·)jp

)
∈P .

2 Linear operation on P →matrix Mj for a basis P of P .
3 Implicitly computable: reduction.

Relies on good decomposition.

4 Monomial basis: Frobenius companion matrix.

LP

(
(·)j`ω

)

Theorem (Stetter, Sticklberger, . . . )

The eigenvalues of the Mj are (xω)j and the eigenvectors `ω,ω ∈ Ω.

Tomas Sauer (Uni Passau) Prony in several variables Luminy, September 19, 2016 19 / 24



Completing the Job: Companion Matrices

Multiplication tables for ideal projectors

1 Multiplication modulo ideal: P 3 p 7→ LP

(
(·)jp

)
∈P .

2 Linear operation on P →matrix Mj for a basis P of P .
3 Implicitly computable: reduction.

Relies on good decomposition.

4 Monomial basis: Frobenius companion matrix.

LP

(
(·)j`ω

)

Theorem (Stetter, Sticklberger, . . . )

The eigenvalues of the Mj are (xω)j and the eigenvectors `ω,ω ∈ Ω.

Tomas Sauer (Uni Passau) Prony in several variables Luminy, September 19, 2016 19 / 24



Completing the Job: Companion Matrices

Multiplication tables for ideal projectors

1 Multiplication modulo ideal: P 3 p 7→ LP

(
(·)jp

)
∈P .

2 Linear operation on P →matrix Mj for a basis P of P .
3 Implicitly computable: reduction.

Relies on good decomposition.

4 Monomial basis: Frobenius companion matrix.

LP

(
(·)j`ω

)

Theorem (Stetter, Sticklberger, . . . )

The eigenvalues of the Mj are (xω)j and the eigenvectors `ω,ω ∈ Ω.

Tomas Sauer (Uni Passau) Prony in several variables Luminy, September 19, 2016 19 / 24



Completing the Job: Companion Matrices

Multiplication tables for ideal projectors

1 Multiplication modulo ideal: P 3 p 7→ LP

(
(·)jp

)
∈P .

2 Linear operation on P →matrix Mj for a basis P of P .
3 Implicitly computable: reduction. Relies on good decomposition.
4 Monomial basis: Frobenius companion matrix.

LP

(
(·)j`ω

)

Theorem (Stetter, Sticklberger, . . . )

The eigenvalues of the Mj are (xω)j and the eigenvectors `ω,ω ∈ Ω.

Tomas Sauer (Uni Passau) Prony in several variables Luminy, September 19, 2016 19 / 24



Completing the Job: Companion Matrices

Multiplication tables for ideal projectors

1 Multiplication modulo ideal: P 3 p 7→ LP

(
(·)jp

)
∈P .

2 Linear operation on P →matrix Mj for a basis P of P .
3 Implicitly computable: reduction. Relies on good decomposition.
4 Monomial basis: Frobenius companion matrix.

LP

(
(·)j`ω

)

Theorem (Stetter, Sticklberger, . . . )

The eigenvalues of the Mj are (xω)j and the eigenvectors `ω,ω ∈ Ω.

Tomas Sauer (Uni Passau) Prony in several variables Luminy, September 19, 2016 19 / 24



Completing the Job: Companion Matrices

Multiplication tables for ideal projectors

1 Multiplication modulo ideal: P 3 p 7→ LP

(
(·)jp

)
∈P .

2 Linear operation on P →matrix Mj for a basis P of P .
3 Implicitly computable: reduction. Relies on good decomposition.
4 Monomial basis: Frobenius companion matrix.

LPp =
∑
ω∈Ω

p(xω) `ω, `ω(ω
′) = δω,ω ′

LP

(
(·)j`ω

)

Theorem (Stetter, Sticklberger, . . . )

The eigenvalues of the Mj are (xω)j and the eigenvectors `ω,ω ∈ Ω.

Tomas Sauer (Uni Passau) Prony in several variables Luminy, September 19, 2016 19 / 24



Completing the Job: Companion Matrices

Multiplication tables for ideal projectors

1 Multiplication modulo ideal: P 3 p 7→ LP

(
(·)jp

)
∈P .

2 Linear operation on P →matrix Mj for a basis P of P .
3 Implicitly computable: reduction. Relies on good decomposition.
4 Monomial basis: Frobenius companion matrix.

LP

(
(·)j`ω

)

Theorem (Stetter, Sticklberger, . . . )

The eigenvalues of the Mj are (xω)j and the eigenvectors `ω,ω ∈ Ω.

Tomas Sauer (Uni Passau) Prony in several variables Luminy, September 19, 2016 19 / 24



Completing the Job: Companion Matrices

Multiplication tables for ideal projectors

1 Multiplication modulo ideal: P 3 p 7→ LP

(
(·)jp

)
∈P .

2 Linear operation on P →matrix Mj for a basis P of P .
3 Implicitly computable: reduction. Relies on good decomposition.
4 Monomial basis: Frobenius companion matrix.

LP

(
(·)j`ω

)
=
∑
ω ′∈Ω

(
(xω ′)j `ω(xω ′)

)
`ω ′

Theorem (Stetter, Sticklberger, . . . )

The eigenvalues of the Mj are (xω)j and the eigenvectors `ω,ω ∈ Ω.

Tomas Sauer (Uni Passau) Prony in several variables Luminy, September 19, 2016 19 / 24



Completing the Job: Companion Matrices

Multiplication tables for ideal projectors

1 Multiplication modulo ideal: P 3 p 7→ LP

(
(·)jp

)
∈P .

2 Linear operation on P →matrix Mj for a basis P of P .
3 Implicitly computable: reduction. Relies on good decomposition.
4 Monomial basis: Frobenius companion matrix.

LP

(
(·)j`ω

)
=
∑
ω ′∈Ω

(xω ′)j δω,ω ′ `ω ′

Theorem (Stetter, Sticklberger, . . . )

The eigenvalues of the Mj are (xω)j and the eigenvectors `ω,ω ∈ Ω.

Tomas Sauer (Uni Passau) Prony in several variables Luminy, September 19, 2016 19 / 24



Completing the Job: Companion Matrices

Multiplication tables for ideal projectors

1 Multiplication modulo ideal: P 3 p 7→ LP

(
(·)jp

)
∈P .

2 Linear operation on P →matrix Mj for a basis P of P .
3 Implicitly computable: reduction. Relies on good decomposition.
4 Monomial basis: Frobenius companion matrix.

LP

(
(·)j`ω

)
= (xω)j `ω

Theorem (Stetter, Sticklberger, . . . )

The eigenvalues of the Mj are (xω)j and the eigenvectors `ω,ω ∈ Ω.

Tomas Sauer (Uni Passau) Prony in several variables Luminy, September 19, 2016 19 / 24



Completing the Job: Companion Matrices

Multiplication tables for ideal projectors

1 Multiplication modulo ideal: P 3 p 7→ LP

(
(·)jp

)
∈P .

2 Linear operation on P →matrix Mj for a basis P of P .
3 Implicitly computable: reduction. Relies on good decomposition.
4 Monomial basis: Frobenius companion matrix.

LP

(
(·)j`ω

)
= (xω)j `ω

Theorem (Stetter, Sticklberger, . . . )

The eigenvalues of the Mj are (xω)j and the eigenvectors `ω,ω ∈ Ω.

Tomas Sauer (Uni Passau) Prony in several variables Luminy, September 19, 2016 19 / 24



Some Results

Random frequencies & coefficients, real, 100 tests

parameters average error max error
s # freq. n coeff freq coeff freq
2 5 3 1.3688e-11 1.8332e-09 3.5131e-09 2.4165e-07

2 10 5 4.9366e-08 2.6388e-06 7.3010e-05 5.3330e-04

2 15 8 7.0614e-07 2.9725e-04 1.4659e-04 4.4493e-02

2 20 9 Inf Inf NaN NaN

3 20 6 1.5874e-08 1.4165e-06 4.7337e-05 8.9382e-04

4 20 5 8.4712e-12 4.6565e-11 9.0309e-09 3.7456e-09

5 20 5 1.6879e-12 5.9416e-11 1.9510e-09 1.3243e-08

5 50 5 1.1079e-10 6.6070e-10 3.1709e-07 6.6913e-08

5 100 6 2.9307e-09 1.9431e-08 1.0034e-05 1.3912e-06

5 150 8 1.3142e-08 8.4199e-08 5.7281e-06 4.3975e-06
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Some Results

Random frequencies, purely imaginary, 100 tests
parameters average error max error

s # freq. n coeff freq coeff freq
2 10 5 1.3476e-14 3.4744e-13 6.0290e-12 1.3724e-10

2 20 7 2.5148e-14 1.2420e-12 3.2103e-11 7.8847e-10

2 50 11 5.9357e-14 3.9721e-12 1.1845e-10 5.5214e-09

2 100 15 9.0480e-13 5.7684e-11 8.8308e-09 2.0468e-07

5 100 6 2.3796e-15 4.3794e-15 3.1431e-11 3.2918e-14

5 150 8 2.3954e-15 4.7773e-15 1.1702e-11 6.9726e-14

Observations
1 Performs very well:

#Ω = 200, s = 13: 2180 quartic equations in 154.26s, accuracy ∼ 10−14

2 be combined with hyperbolic cross.
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Some Results

Perturbation of imaginary input data, 100 tests, 100 frequencies

parameters average error max error
s ε fail coeff freq coeff freq
5 10−5 0 3.7885e-08 1.1462e-06 2.0235e-06 1.3860e-05

5 10−7 0 3.7916e-10 1.1133e-08 2.1059e-08 7.8396e-08

5 10−10 0 3.7221e-13 1.1200e-11 1.5896e-11 1.6209e-10

3 10−4 27 0.0023822 0.0791873 5.3002 148.6645

4 10−4 1 1.2563e-04 5.9020e+01 1.1638e+00 2.9213e+05

5 10−4 2 3.7969e-07 1.1228e-05 6.8484e-06 7.1493e-05

10 10−4 0 1.2672e-07 3.7955e-06 7.7848e-07 1.4004e-05

Explanation

1 SVD threshold tolerance adapted to error.
2 Compensates errors smaller than “conditioning”.
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Summary

Prony’s problem in several variables . . .

1 . . . is interpolation & ideal theory.
2 . . . motivation for universal interpolation.
3 . . . efficiently solvable.

To do
1 Quantitative analysis, error estimates.
2 Good implementation

& application?

It’s on the arXiv!
T. Sauer, Prony’s method in several variables. arXiv:1602.02352

T. Sauer, Prony’s method in several variables: symbolic solutions by universal interpolation. arXiv:1603.03944

Thank you for your attention!
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Passau

Where three rivers meet . . .
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. . . lies the “Bavarian Venice” . . .
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Passau

. . . and great students
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