Applications of Variably Scaled Kernels

Milvia Rossini

University of Milano-Bicocca, Italy

Multivariate Approximation and Interpolation with Applications
Luminy, 19-23 September 2016



Aim

@ present some applications of interpolation with variably scaled kernels



Aim

@ present some applications of interpolation with variably scaled kernels

@ discuss their potentialities and show that



Aim

@ present some applications of interpolation with variably scaled kernels

@ discuss their potentialities and show that

@ they work quite satisfactorily in cases spoiled by excessive instability of the
standard method



Aim

@ present some applications of interpolation with variably scaled kernels

@ discuss their potentialities and show that

@ they work quite satisfactorily in cases spoiled by excessive instability of the
standard method

@ they can significantly improve the recovery quality by preserving shape properties
and particular features as gradient discontinuities.
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Background

A symmetric kernel
K:QOxQ—->R

is very useful for a variety of purposes going from interpolation or approximation to
PDE solving, if certain centers

X = {zy,...,zx} C R?
are used to define kernel translates
K('a zj)

as trial functions.
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If the kernel is positive definite, i.e. the kernel matrices

Ax = (K(zj, 7k))1<) k<N,

are positive definite for all choices of nodes,

@ there is a native Hilbert space H in the background in which the kernel is
reproducing, i.e.

g(x) = (9, K(-,x))y YexeQ, geH.
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The use of reproducing kernels in Hilbert spaces leads to various optimality
properties and plenty of applications.

@ In particular interpolation of values

f::{f17~-~7fN} on XZ:{le,...,.%‘N}

proceeds via solving a linear system

AXa:f

@ the coefficient vector a € R allows the interpolant function to be written as

SXf E a] JSSC]
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o If the kernel K is translation—invariant on R%, it is of the form
K(z,y) = ®(z —y) forall z,y € R

@ If the kernel is radial, i.e. of the form
K(z,y) = ¢(|lz — yll2)
for a scalar function

¢ : [0,00) > R,

the function ¢ is called a radial basis function (RBF).
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Scale parameter

Kernels on R? can be scaled by a positive factor &
K(x,y;0) := K(x/6,y/6) Vz,y € R"

In case of a radial kernel supported on the unit ball (e.g. the Wendland kernels), the
support of the scaled kernel has radius 9.
@ Large ¢ increase the condition of kernel matrices,

@ small 0 let the translates turn into sharp peaks which approximate functions
badly, if separated too far from each other.
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The scale parameter can be tuned by the user (according to the applications) and
plays an important role both for the accuracy of the method and its stability.

Within kernel-based interpolation and its many applications, how to chose the scale
parameter ¢ (or e = 1/4) is a well-documented but still an unsolved problem.
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1. Fixed scale parameter

To pick the parameter by some ad hoc criterion, e.g. [Hardy 71], [Franke 82]
for multiquadric interpolation in R2.

To chose the parameter by some optimal criterion based for instance on a
variant of the cross validation approach (leave-one-out) [Rippa 99] or on its
extension [Fasshauer, Zhang 07]

special case of scaling the flat limit § — oo [Driscoll, Fornberg 02],
[Fornberg, Wright, Larsson 04], [Larsson, Fornberg 05], [Lee, Yoon, Yoon 07],
[Schaback 05], [Schaback 08]...
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in the radial case, [Kansa, Carlson 92], [Bozzini, Lenarduzzi, Schaback 02],
[Fornberg, Zuev 07]
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2. Spatially variable §;

@ The scale of a kernel translate varies with the translation. E.g.

oz = zjll2/d;), 1<i< N

in the radial case, [Kansa, Carlson 92], [Bozzini, Lenarduzzi, Schaback 02],
[Fornberg, Zuev 07]

@ basic functions that vary with j, both in shape and scale. E.g.
[Bozzini, Lenarduzzi 05], [Casciola, Lazzaro et al. 06].

In these cases, it is easy to come up with examples that let interpolation fails for
certain nonuniform choices of scale.

@ In [Bozzini, Lenarduzzi,R. Schaback 04] sufficient conditions for the unique
solvability of such interpolation processes are given.



Variably Scaled Kernels
@0000

3. Variably scale kernels

In [Bozzini, Lenarduzzi, R, Schaback 15], we mimic the case of spatially variable d;
at the centers by letting the scale parameter be an additional coordinate.

This allows us



Variably Scaled Kernels
@0000

3. Variably scale kernels

In [Bozzini, Lenarduzzi, R, Schaback 15], we mimic the case of spatially variable d;
at the centers by letting the scale parameter be an additional coordinate.

This allows us

@ varying scales in a continuous way



Variably Scaled Kernels
@0000

3. Variably scale kernels

In [Bozzini, Lenarduzzi, R, Schaback 15], we mimic the case of spatially variable d;
at the centers by letting the scale parameter be an additional coordinate.

This allows us
@ varying scales in a continuous way
@ without leaving the firm grounds of kernel-based interpolation.

This approach can be fully understood as the standard fixed—scale method applied
to a certain sub-manifold of R4+, J
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Definition

Let K be a kernel on R%*!. If a scale function
c: R (0,00)
is given, we define a variably scaled kernel on R® by

Ke(x,y) == K((z,c(2)), (y,¢(y))) Yz,y € R™.
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Definition

Let K be a kernel on R%*!. If a scale function
c: R (0,00)
is given, we define a variably scaled kernel on R® by

Ke(x,y) == K((z,c(2)), (y,¢(y))) Yz,y € R™.

Theorem

If K is positive definite on R**1, so is K. on R?.
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If K is positive definite, interpolation of given values values

f={f1,.-.,fn} on X =A{x,...,zn}
proceeds as usual via solving a linear system
Ac,Xa = f
with the positive definite kernel matrix

Aex = (Ke(wj,7k))1<) k<N-

VSK-interpolant

N
Se.x.f(@ Zaj o(@,m) = a;K((z,c(@)), (7, c(;))).
J=1

Radial case
If K(xz,y) = o[z —yll3),

Se,x,f (@ Zam =513 + (c(x) = e(27))?).
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z s (z,c(x))
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@ the space R? into a d-dimensional submanifold C'(RY) of R4+!

@ a set of of nodes

X ={z1,..., o2y} CQ CR?
into
C(X) cC(Q) c C(RY) c R
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The map
C : x— (x,¢(x))

maps

@ the space R? into a d-dimensional submanifold C'(RY) of R4+!

@ a set of of nodes

X ={z1,..., o2y} CQ CR?
into
C(X) cC(Q) c C(RY) c R

@ interpolation by the kernel K takes place on Rt at the point set

C(X) = {(z1, ¢(21)), (w2, ¢(22)), - -, (2N, c(2n)) }

and the kernel K((x,c(x)), (y,c(y))) is used

@ if we project points (z,c(x)) € R back to 2 € R, the projection of the
kernel turns into the variably scaled kernel

K.(z,y)

on R? whenever ¢(z) is not constant.
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@ The analysis of error and stability of the variably—scale problem in R? coincides
with the analysis of a fixed—scale problem on a submanifold in R4+1.
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Important facts

@ The analysis of error and stability of the variably—scale problem in R? coincides
with the analysis of a fixed—scale problem on a submanifold in R4+1.

Q@ The fill distance and separation distance

h(X,Q) := — X) = -
(X,0Q) := Z:pmm”x Yyl ¢(X) Xa;éeX”x ylla-

will transform with C and and
1C(z) = C(y)3

IC(z) = CW)I3

[z = yll3 + (c(z) — e(y))?
|z = yll3(1 + L)?
Iz = yl3

VAN I
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Important facts

@ The analysis of error and stability of the variably—scale problem in R? coincides
with the analysis of a fixed—scale problem on a submanifold in R4+1.

Q@ The fill distance and separation distance

h(X,Q) := - X) = -
(X,0Q) := 21€1pm1n||:c Yyl ¢(X) X9¢GX||$ ylla-

will transform with C' and and
1C(z) = C(y)3

IC(z) = CW)I3

= =9l + (ela) - ew)?
< Jo-ylBa+D)
> o=yl

@ distances will blow up with C, letting separation distance never decrease, thus
enhancing stability

@ but fill distance may also blow up, increasing the usual error bounds.
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Applications

Variably scaled kernels are capable to

@ improve stability

@ to reproduce features like discontinuities in the gradient of the underlying
function
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Stability: Chebyshev Point

For Chebyshev points
rj=—cos(m(j —1)/(N—-1)), 1<j<N

the fill distance behaves like 1/N, while the separation distance behaves like 1/N2,
leading to a very large condition in the kernel matrices.
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Stability: Chebyshev Point

For Chebyshev points
2 = —cos(n(j— /(N = 1)), 12§ < N

the fill distance behaves like 1/N, while the separation distance behaves like 1/N2,
leading to a very large condition in the kernel matrices.

If we map the interval Q = [—~1,+1] C R to the semi—circle C(Q2) C R? via

C(z) = (z,V1—122)

the separation distance behaves like 1/N.
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from the Runge function f(x) = 1/(1 + 2522).
The L, errors and condition numbers are
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We chose the Gaussian kernel at fixed scale 0.1 - v/2 and took 55 Chebyshev points
from the Runge function f(x) = 1/(1 + 2522).
The L, errors and condition numbers are

Points and scaling H Condition ‘ no noise ‘ 0.001 noise ‘
Chebyshev, single scale 1-10 | 1.1-107° 1.4294
Chebyshev, variable scale 8-10° | 1.3-10~* 0.0012

Table: Interpolation of Runge function by Gaussians
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Interpolating functions with discontinuities

Functions with discontinuities appear in many scientific applications including signal
and image processing and geophysics.
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The variably scaled kernels contribute to fill the gap between reconstruction of
functions with discontinuities and kernel-based methods.
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The gradient discontinuity case

The variably scaled kernels contribute to fill the gap between reconstruction of
functions with discontinuities and kernel-based methods.

Idea

To use a scale function ¢(z) that reproduces the shape of the discontinuity. In this
way we use translates of basis functions that change their smoothness locally
according to the position of the discontinuity.
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Case d =1

Let the data sites X be scattered in [a,b] and let us assume that the derivative of
the underlying function is discontinuous at z* € [a, b].

We fix the scale function to be

[ 1=-3/2lx —a*|/R+1/2]x — 2*|3/R3, |z —a*| <R;
o) = { 0, otherwise. 1

2R is the support of c¢(x) which goes to zero smoothly. Generally R < (b —a)/2.
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The shifts of the variably scaled kernel change their shape: they are no more radial
functions and, as expected, exhibit, if the center is "next to" z*, a discontinuity in
the first derivative.

-1 -05 0 0.5 1 -1 -05 0 0.5 1
0 05[ J\,\J 0 05[ ]

0 * 0 ®

-1 -05 0 0.5 1 -1 -05 0 0.5 1
0 05[ J\M 0.05[ M

0 * 0 *

-1  -05 0 0.5 1 -1 -05 0 0.5 1
IS0 ]

0 ¥ 0 *

-1 -05 0 0.5 1 -1 -05 0 0.5 1

Figure: Wendland VS-basis for some centers
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In the examples we have considered, the C2—Wendland function with, § = 2,
N = 61 scattered points in [-1,1], and R = 0.5.

Example 1

1.2

Figure: Test function and data points
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Figure: Standard interpolant Figure: VSK-interpolant
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Results
Figure: Standard interpolant Figure: VSK-interpolant
‘ Example 1 H €oo-€rror ‘
= Standard interpolant || 2.692631e-02
. i VKS-interpolant || 2.193475e-03

? ’ ” ' Table: Errors for Example 1
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Figure: Test function and data points
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Figure: Standard Interpolant
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Figure: Standard Interpolant Figure: VSK-interpolant
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Results

Figure: Standard Interpolant
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Figure: Standard Interpolant Figure: VSK-interpolant
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Figure: VSK-interpolant

Example 2 H €so-€error ‘

Standard interpolant || 1.573100e-002
VKS-interpolant || 2.250510e-003

Table: Errors for Example 2
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Case d =2

f:QCcR?*=R, Q=012

The gradient V f(z,y) of f is discontinuous across a curve I' of 2 and smooth in
any neighborhood U of §2 which does not intersect I". Let us assume to know the
explicit equation of T', for instance y = I'(x).
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Case d =2

f:QCcR?*=R, Q=012

The gradient V f(z,y) of f is discontinuous across a curve I' of 2 and smooth in
any neighborhood U of 2 which does not intersect I'. Let us assume to know the
explicit equation of T', for instance y = I'(x).

Scale function

e(e,y) = { |82 TR 12 = TIR - T@I <R

Again the scale function goes to zero smoothly.
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In the following examples, we have considered N = 256 scattered points in the
unitary square, fixed d = 1, and R = 0.3.

Example 3
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In the following examples, we have considered N = 256 scattered points in the
unitary square, fixed d = 1, and R = 0.3.

Example 3

Figure: Data sites, discontinuity line and scale function
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Results

Figure: Standard interpolant Figure: VSK-interpolant

Example 4 || RMS-error | eso-error |
Standard interpolant || 2.184125e-03 | 2.648879e-02 |

VKS-interpolant || 5.101804e-04 | 4.605954e-03

Table: Errors for Example 3
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Example 4

Figure: Data sites, discontinuity line and scale function
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Figure: Standard interpolant
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Results

Figure: Standard interpolant Figure: VSK-interpolant
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Results

Figure: Standard interpolant Figure: VSK-interpolant

Example 5 H RMS-error ‘ €co-€rror ‘

Standard interpolant || 3.531240e-02 | 2.811598e-01
VKS-interpolant || 3.456239e-03 | 3.804824e-02

Table: Errors for Example 4




Background Scale parameter Variably Scaled Kernels Applications
0000 0000 00000 0000000000000 0000e

Concusions

The examples show how the proper use of the variable scaled kernel K. can lead




Background Scale parameter Variably Scaled Kernels Applications
0000 0000 00000 0000000000000 0000e

Concusions

The examples show how the proper use of the variable scaled kernel K. can lead

@ to a more stable interpolant




Applications
0000000000000 0000e

Concusions

The examples show how the proper use of the variable scaled kernel K. can lead

@ to a more stable interpolant

@ to a much more faithful recovering when the variable scale function ¢(x) is
chosen to depend on critical shape properties of the data




Applications
0000000000000 0000e

Concusions

The examples show how the proper use of the variable scaled kernel K. can lead

@ to a more stable interpolant

@ to a much more faithful recovering when the variable scale function ¢(x) is
chosen to depend on critical shape properties of the data

@ to a reduction of the interpolation error in the critical regions




Applications
0000000000000 0000e

Concusions

The examples show how the proper use of the variable scaled kernel K. can lead

@ to a more stable interpolant

@ to a much more faithful recovering when the variable scale function ¢(x) is
chosen to depend on critical shape properties of the data

@ to a reduction of the interpolation error in the critical regions
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@ Ripra, S. (1999)
An algorithm for selecting a good value for the parameter ¢ in radial basis
function interpolation.

[ SchaBack, R. (2005)
Multivariate interpolation by polynomials and radial basis functions.
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