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Related literature:
= de Boor, C.: Cutting corners always works, CAGD (1987)

= Gregory, J.A., Qu, R.: Nonuniform corner cutting, CAGD (1996)

Goals of our work:

o Give a very simple proof of the fact that a corner cutting algorithm
for points always converges if the corner cutting weights satisfy the
conditions assumed by Gregory and Qu.

o Extend this result to the bivariate setting to show convergence of
bivariate corner cutting algorithms refining nets of functions.
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Preliminary definitions

Definition (Corner cutting weights)

W = {(a,ﬁ) e UZ) x UZ) : jg%{a;, 1-6;, Bi—aj} > 0}

Examples: Chaikin weights de Rham weights

(i, Bi) = (%7%) (a7, i) = (%’%)
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Definition (CC, s)-operator)
Let (OL,,@) € W and P = (Pi)ile P; € R".
The corner cutting operator acting on P € £"(Z) is defined as
CC(a,B) . En(Z) - gn(Z),
@i :=(CCa, 5 (P))y; = (1 — ) Pi + @i Pit1,
Qit1 = (CCa,8)(P))rjp1 = (1 = Bi)Pi + BiPiy1.

1@ = Pill
Q= s
[Pit1— Pill2

1 = |Pit1 — Qoit1ll2

| Pit1 — Pill2

|Q2it1 — Qaill2

fi—aj = o+
[ Pit1 — Pill2
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The corner cutting algorithm

The CC-algorithm

Input: PO € ¢"(Z)
For k=0,1,...,
Input: (¥, 8) e W
Compute PI<TY = CC g g0,(PH)
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The corner cutting algorithm

The CC-algorithm

Input: Pl € ¢(Z)
For k=0,1,...,
Input: (¥, 8y e W
Compute P = CC g ga)(PH)

= The CC-algorithm is applied to the
n scalar sequences obtained from the
components of P
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The corner cutting algorithm
Example (n = 2):

1 . .
FiTcos2= ) if i even
1

o = .
The CC-algorithm (T cosh(2- T} if i odd

Input: P € ¢(Z) ﬁ[k] 1= m, if i even
For k=0,1,..., i 1 t

Input: (¥, g) e W
Compute Pkl = CC(alk],ﬁlkl)(P[k]) y

~ 2(1tcosh(2— D)) > if i odd

= The CC-algorithm is applied to the
n scalar sequences obtained from the
components of P

plol
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The corner cutting algorithm
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~ 2(1tcosh(2— D)) > if i odd

= The CC-algorithm is applied to the
n scalar sequences obtained from the
components of P

pl2
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The corner cutting algorithm
Example (n = 2):

1 . .
FiTcos2= ) if i even
1

o = .
The CC-algorithm (T cosh(2- T} if i odd

Input: P € ¢(Z) ﬁ[k] 1= m, if i even
For k=0,1,..., i 1 t

Input: (¥, g) e W
Compute Pkl = CC(alk],ﬁlkl)(P[k]) y

~ 2(1tcosh(2— D)) > if i odd

= The CC-algorithm is applied to the
n scalar sequences obtained from the
components of P

H k
lim P
k—o0
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Theorem | (Analysis of convergence)

For {(al¥, 81) € W, k > 0} such that

p=sup p <1 with ptd = sup {ﬁ,[k] - af-k], 1-— B,[ﬁll + agk]}
k>0 i€z

the CC-algorithm converges for all PO = {P,-[O] e R" i € Z} € 1"(Z)
satisfying for a certain L > 0

i

O _ P, <L, Viez
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Corner cutting algorithms for points
[e]e]e]e] Telele]

Theorem | (Analysis of convergence)

For {(al¥, 81) € W, k > 0} such that

p=sup p <1 with ptd = sup {ﬁ,[k] - af-k], 1-— B,[ﬁll + aE-k]}
k>0 i€z

the CC-algorithm converges for all PO = {P,-[o] e R" i € Z} € 1"(Z)
satisfying for a certain L > 0

i

o P <L, Viez (¥

1= The assumption (%) is equivalent to requiring that the piecewise linear

interpolant to the data (/, P,.[o]), i € Z is Lipschitz continuous (LipC) in R
with Lipschitz constant L.
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Theorem | (Analysis of convergence)

For {(al¥, 81) € W, k > 0} such that

p=sup p <1 with ptd = sup {ﬁ,[k] - af-k], 1-— B,[ﬁll + aE-k]}
k>0 i€z

the CC-algorithm converges for all PO = {P,-[o] e R" i € Z} € 1"(Z)
satisfying for a certain L > 0

1P, — PP < L, Viez.

° pl[k] € R one component of P,-[k] e R”
o Li(pl): R — R piecewise linear interpolant to (u,[k],p,[k]), i€Z

o ulkl:  scalar sequence obtained from ul® = Z after k steps of CC-algorithm.
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_ g, g _oldy 5

.
ipH»l
oy e e o,
k k—1 k—1 k—1 k—1 k k—1 k—1 k—1 k—1
Wl = (ol Qe e g gty et gl o)

ol = (5, — ol ol

T o e YO0 C NP I PN 1o LR )
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. k K K k
;2;{045-],1—6,“,/3,“—&5]}>0

pld = sup {8 — o, 18 ol <1
i€Z

K
pUl

i i i
1 A e 1

[M ] k4]

Uj—1 U2 Ui-1 U 2i+1 Wi+l
k+1 k+1 k k k k
o u i = uity = (0 — el - ) 1] = sup{ulltl] i1y
i€Z

o it Wl = (1 - ) (Wl — o)) + ol (Wl - ul¥)
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inf {al, 1 g, g —al} > 0

pl = sup {81 — ol 1 g 1 aldy <1
i€EZ

P
P T T T R TR
° ”gft}] [k+1] (B[k] ayill)(ull"] — u,[lill) Ikl = sup{ug:ll] [k+1]}
o u£1;+1] £II<+1] (1 _ ﬁl[/i]l)(u’[k] [k] )+a[k](u[k] I[k]) i€Z

dlier1] <l Ikl

= dll < d[O],uk"'1 with  p := sup ,u[k] <1
k>0

Convergence of corner cutting algorithms
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The proof consists in showing that {Ek(P[k])}kzo is a Cauchy sequence.
Key steps of the proof:

1. By assumption, Lo(p[®) is LipC in R with Lipschitz constant L.
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The proof consists in showing that {Ek(P[k])}kzo is a Cauchy sequence.
Key steps of the proof:

1. By assumption, Lo(p[®) is LipC in R with Lipschitz constant L.
2. Vk >0 all points of plk*] lie on £,(p!¥]) thus, by the choice of ulk+1,

|p,[f:1] - p,[k]| <L |u,[ﬁ1] - u,[k]| Vi = Li(p!) LipC in R with constant L.
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The proof consists in showing that {Ek(P[k])}kzo is a Cauchy sequence.
Key steps of the proof:
1. By assumption, Lo(p[®) is LipC in R with Lipschitz constant L.
2. Vk >0 all points of plk*] lie on £,(p!¥]) thus, by the choice of ulk+1,
|p[k+1] ,[k]| <L |u,[ff1r1] - u,[k]| Vi = Li(p!) LipC in R with constant L.

Proposition (A)

If f is LipC on [a, b] with Lipschitz constant L, then py(x) := §=3f(b) + 2=5f(a)
o 1
satisfies Ip1(x) — F(x)| < 5(b —a)Ll, Vxe€]a, b] .
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The proof consists in showing that {Ek(P[k])}kzo is a Cauchy sequence.
Key steps of the proof:
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2. Vk >0 all points of plk*] lie on £,(p!¥]) thus, by the choice of ulk+1,
|p[k+1] ,[k]| <L |u,[ff1r1] - u,[k]| Vi = Li(p!) LipC in R with constant L.

Proposition (A)

If f is LipC on [a, b] with Lipschitz constant L, then py(x) := §=3f(b) + 2=5f(a)
.y 1
satisfies Ip1(x) — F(x)] < 5(b —a)L, Vxe€]a, b] .

3. Since Li41(p*™1) can be regarded as an approximation of the LipC function
Li(p!H), in view of Prop.(A)

1 1
L (pF ) () = Li(pM)(0)] < 5 Ll < SLdl i
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satisfies Ip1(x) — F(x)] < 5(b —a)L, Vxe€]a, b] .

3. Since Li41(p*™1) can be regarded as an approximation of the LipC function
Li(p!H), in view of Prop.(A)

1 1
L (pF ) () = Li(pM)(0)] < 5 Ll < SLdl i

[}
Laar () — Li(pH)(0)] < L k“(ZM) =
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The Generalized Lane-Riesenfeld algorithm

Lane-Riesenfeld: at each refinement level Chaikin corner cutting is followed
by m averaging steps 1= degree-(m + 2) splines in the limit
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The Generalized Lane-Riesenfeld algorithm

Lane-Riesenfeld: at each refinement level Chaikin corner cutting is followed
by m averaging steps 1= degree-(m + 2) splines in the limit

k — oo
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The Generalized Lane-Riesenfeld algorithm

Input: P € ¢7(Z)
For k=0,1,...
PIHL0l = CC sy (PH) with (al¥, gy e W

Input: wikl € ¢(Z) with 0 < W/ <1 Viez, k>0
Forj=0,..m¢—1 (mx € Ngst. mg <M Vk>0)
pletlitl] — APK+LI  with  (AKP), = (1— whP, + WP,

P[k+1] _ P[k+1,mk]
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orithms for nets of functions

The Generalized Lane-Riesenfeld algorithm

Input: P € ¢7(Z)
For k=0,1,...
PIHL0l = CCw yi,(PH) with (ald, gy e W
Input: wikl € £(Z) with 0 < Wil <1 Viez k>0
Forj=0,...m¢—1 (mx € Ngsit. mg <M Vk>0)
plrti+l] = APK+LI  with  (AKIP), = (1—w!)p+ wi¥lpy,

plk+l] — plk+1,m]

1 Convergence is still guaranteed by the fact that
L1 (plH ) (u) — Li(pW)(u)] < 3 ML lkH1],
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Generalization to nets of functions
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From point corner cutting to net corner cutting

= Point corner cutting (2D case):

For a given PlKl ("(Z?), we define PIk+1] by sampling the piecewise
bilinear interpolant to P! at the values of s and t specified by
(a[SL[kLg[S]a[k]) and (a[f],[k]“g[flﬁ[k])_

Py P11
1-— ﬁm : : :
/ 1 Qi) +1 Q212411
-
______ I PO
o,
NN SRR )
P’-J PH»Lj
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From point corner cutting to net corner cutting

1= Point corner cutting (2D case):

For a given PIK € ¢7(Z?), we define PI¥*1] by sampling the piecewise
bilinear interpolant to P! at the values of s and t specified by
(alsHK gl and (alth K] glELIK)y

1= Net corner cutting (rough idea):

For a given NI, we define NIkt by sampling the piecewise Coons
interpolant to NI at the values of s and t specified by (a[s]v[k],,@[s]’[k]) and
(alth K], glELIAy
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Grid of lines and net of functions

We consider a net of functions N(T) defined on a grid of lines
= [s] Rt — oo . .
T—T<(\h ,,ht), O >~—{RXt”I€Z}U{SJXR,JEZ}
hES]ZZSKJrl—Sg,ZEZ (x0,¥0)

N := N(T) is a continuous bivariate function defined on the grid of lines
T, which consists of the following continuous univariate functions:

{N(S, t')}y- 7 . Analogous to
{N(SJ 2‘)} Jliz (callod the u—fUHCthHS) polyline definition
Point abscissae: | € Z

gg i ; Point values: {f(i)}ieZ

T N(T)
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Definition (Compatible net of functions)

Let ¢i(s) := {N(s, ti) }iez and ¥;(t) := {N(s}, t)}jez.
A net of functions N is said to be compatible if ¢;(s;) = ;(ti) Vi,j € Z.

Compatible net
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Definition (Compatible net of functions)

Let ¢i(s) := {N(s, ti)}icz and 9;(t) := {N(s}, t)}jez.
A net of functions N is said to be compatible if ¢;(s;) = ¥;(t;) Vi,j € Z.

Definition (Piecewise Coons patch)

We denote by C(N) the piecewise Coons patch interpolating a compatible
net .

Compatible net Piecewise Coons patch
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Definition ( The operator BC,, 5(C(N)) )
We denote by BC,, 5 (C(N)) the net of u-functions obtained by sampling
the piecewise Coons patch C(N) at the values of s and t specified by
(!, Bl e W and (all, Bl ew, e,

BCem(C(N) = {C(N)(s. 5+ '), C(N)(s, 55+ 5 ), j € 2}

U {C(N)(si + oPh 6), e(N)(si + B4R 1), i e 7}

where

(s,t) € [si, siv1] % [tj, tia1] and A = 511 — s, hj[-t] =tiy1—t, i,j €L

N C(N)
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Corner cutting algorithms for nets of functions

O0000e00000

The corner cutting algorithm for nets of functions

The CC-algorithm for nets

Input: a compatible net niol
For k=0,1,...
Input: (alsHK, gLk € W
and (althK gLy e w
Compute
NI — BC(a[k],ﬁ[k])(C(N[k]))

’
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The corner cutting algorithm for nets of functions

Example:

The CC-algorithm for nets

Input: a compatible net NIO]
For k=0,1,...
Input: (alshK, gLk ¢ W
and (a[t]v[k]’ﬂ[t],[k]) cW

Compute
N .= BC u_giy(C(NIK)) Iy

v
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The corner cutting algorithm for nets of functions

The CC-algorithm for nets Example:

Input: a compatible net NI

For k=0,1,...
Input: (a[s]:[k]”@[S],[k]) cW
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Compute
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The corner cutting algorithm for nets of functions

The CC-algorithm for nets Example:

Input: a compatible net NI

For k=0,1,...
Input: (a[s]:[k]”@[S],[k]) cW
and (a[t]:[k]“@[t],[k]) cW

Compute
N .= BC u_giy(C(NIK)) lim NI

< k—00
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Theorem Il (Analysis of convergence)

Let N9 be a net of C° compatible u-functions that are LipC on grid intervals
with a bound ﬁ) on the Lipschitz constants. The corner cutting algorithm is

convergent for all (al*hK, gIsLIK) - (althlk], gIELIK) € W such that

L = sup ,u[k] <1
k>0

Bl[t],[k] [t] [k] 5[1‘] el g, [f] [k]
B[S]’[k] [S] [k] /3[51 I o g, [S] [k] :

with

i€z
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Theorem Il (Analysis of convergence)

Let N9 be a net of C° compatible u-functions that are LipC on grid intervals
with a bound ﬁ) on the Lipschitz constants. The corner cutting algorithm is
convergent for all (al*hK, gIsLIK) - (althlk], gIELIK) € W such that

L = sup ,u[k] <1
k>0

i — su B[t] [k [t] [k] 5[1‘] el g, [f] [k]
p 5[5] 1L [S] [k] 5[51 I o g, [S] [k] :

with

The proof consists in showing that {C(N!¥)},~ is a Cauchy sequence.
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Key steps of the proof:

1. For all k>0, NI<T = BC 1 g, (C(N)) and C(NI) are both LipC in
R? with Lipschitz constant L.
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Key steps of the proof:
1. For all k>0, NI<T = BC 1 g, (C(N)) and C(NI) are both LipC in
R? with Lipschitz constant L.
2. Attaching the u-functions of N to the gridlines of
T — T((h[s]’[ol, h[t],[O])7 0) with h[S] 0] _ h[t] o _
the u-functions of NIl are attached to the gridlines of T obtamed from T
by k steps of C((«, 3). Therefore:

d[k+1] < M[k] d[k] with d[k] — Sup{hl[slv[k], hEl’]v[k]}
i€Z

Convergence of corner cutting algorithms Lucia Romani 17
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by k steps of C((«, 3). Therefore:

d[k+1] < M[k] d[k] with d[k] — Sup{hl[slv[k], hEl’]v[k]}
i€Z

Proposition (B)

Let F be a continuous function defined on R = [a, b] x [c, d] and let C(F|or) be
the Coons patch interpolating the u-functions F(s,c), F(s,d), F(a,t), F(b,t). If
F is LipC with Lipschitz constant L, then ||C(Fsr) — F|| < 2Lmin{d — ¢, b — a}.
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Key steps of the proof:
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R? with Lipschitz constant L.
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d[k+1] < M[k] d[k] with d[k] — Sup{hl[slv[k], hEl’]v[k]}
i€Z

Proposition (B)

Let F be a continuous function defined on R = [a, b] x [c, d] and let C(F|or) be
the Coons patch interpolating the u-functions F(s,c), F(s,d), F(a,t), F(b,t). If
F is LipC with Lipschitz constant L, then ||C(Fsr) — F|| < 2Lmin{d — ¢, b — a}.

il regarding C(NI¥+1) as a piecewise
Coons approximation of C(NH!)

Je(Nt ) — e(nH) | < 2 ol =

Convergence of corner cutting algorithms Lucia Romani 17
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The Generalized Lane-Riesenfeld algorithm for nets of functions

The GLR-algorithm for nets

Input: compatible net N
For k=0,1,...
Input: a4 and B
Compute NK+1.01 .— BC(a[k]ﬁ[k])(C(N[k]))
Input: wf T WM e 0 1)vijez k>0
Forj=0,...,my—1 (mg € Ny u.b.)
NIk+1+1] A[kl(c(/\/[k+1,j]))
with A(C(N)) = {C(N)(s, t;+w/ hiT), j € Z}
u{C(N)(si + whl 1), i e z}
NI — gLk 1mg]

1= The GLR-algorithm converges!
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The Generalized Lane-Riesenfeld algorithm for nets of functions

Example: my =1 Vk >0

The GLR-algorithm for nets

Input: compatible net N[
For k=0,1,...
Input: !Xl and B4
Compute N0 = BC 1y 40 (C(NIH))
Input: WM WM € ©0,1)vijez k>0
Forj=0,...mg—1 (mg € Ny u.b.)
NIk+L+1] — A[kl(c(/\/[kHJ]))
with A(C(N)) = {C(N)(s, tj+w[Tl), j € 7}
U{C(N)(si + wiThl 1), i ez}

NIk = pylke1,mi]

N
1z The GLR-algorithm converges!

Convergence of corner cutting algorithms Lucia Romani
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The Generalized Lane-Riesenfeld algorithm for nets of functions

Example: my =1 Vk >0
The GLR-algorithm for nets

Input: compatible net N
For k=0,1,...
Input: al%l and ,B[k]
Compute N0 = BC 1 40 (C(NIH))
Input: wf T WM e 01)vijez k>0
For j=0,...,mg —1 (mg € Ny u.b.)
NIk+1+1] A[kl(c(/\/[k+1,j]))
with AC(N)) = {C(N)(s, tj+w/hlY), j € z}
u{C(N)(si + wihll 1), i ez}
NIKHT — plk+1mi]

1= The GLR-algorithm converges!

Convergence of corner cutting algorithms Lucia Romani
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The Generalized Lane-Riesenfeld algorithm for nets of functions

The GLR-algorithm for nets

Input: compatible net N[
For k=0,1,...
Input: al¥l and ,B[k]
Compute NK+1.0] . — BC(a[k]ﬁ[k])(C(N[k]))

Input: wf T WM e 01)vijez k>0

Example: my =1 Vk >0

For j=0,...,mg —1 (mg € Ny u.b.)
NIk+1+1] A[kl(c(/\/[k+1,j]))
with A(C(N)) = {C(N)(s, tj+wTh[T), j € 2}
u{C(N)(si + wihll 1), i ez}
MK — k1 mg]

1= The GLR-algorithm converges!
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The Generalized Lane-Riesenfeld algorithm for nets of functions

The GLR-algorithm for nets

Input: compatible net N[
For k=0,1,...
Input: al¥l and ,B[k]
Compute NK+1.0] . — BC(a[k]ﬁ[k])(C(N[k]))

Input: wf T WM e 01)vijez k>0

Example: my =1 Vk >0

For j=0,...,mg —1 (mg € Ny u.b.)
NIk+1+1] A[kl(c(/\/[k+1,j]))
with A(C(N)) = {C(N)(s, tj+wTh[T), j € 2}
u{C(N)(si + wihll 1), i ez}
MK — k1 mg]

1= The GLR-algorithm converges!
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The Generalized Lane-Riesenfeld algorithm for nets of functions

The GLR-algorithm for nets

Example: my =1 Vk >0

Input: compatible net N[
For k=0,1,...
Input: al¥l and ,B[k]

Compute N0 = BC 1 40 (C(NIH))
Input: wf T WM e 01)vijez k>0
For j=0,...,mg —1 (mg € Ny u.b.)
NIk+1+1] A[kl(c(/\/[k+1,j]))
with A(C(N)) = {C(N)(s, tj+wTh[T), j € 2}
u{C(N)(si + wihll 1), i ez}
MK — k1 mg]

1= The GLR-algorithm converges!
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The Generalized Lane-Riesenfeld algorithm for nets of functions

The GLR-algorithm for nets

Example: my =1 Vk >0

Input: compatible net N[
For k=0,1,...
Input: al¥l and ,B[k]

Compute N0 = BC 1 40 (C(NIH))
Input: wf T WM e 01)vijez k>0
For j=0,...,mg —1 (mg € Ny u.b.)
NIk+1+1] A[kl(c(/\/[k+1,j]))
with A(C(N)) = {C(N)(s, tj+wTh[T), j € 2}
u{C(N)(si + wihll 1), i ez}
MK — k1 mg]

lim NI
1= The GLR-algorithm converges! k=00

Convergence of corner cutting algorithms Lucia Romani
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SMART 2017

L - - ""—21 September, 2017 Gaeta, Italy
2 International Conference on Subdivision; Geometric and Algebraic

Methods, Isogeometric Analysis and Refinability i |n ITaly
\ Web site: sbai.uniromal.it/smart2017

= ; o,
il e Tl q
pics - : f g
Topics include Algebraic and - 3 ey
Differential Geometry, Computer s
Aided Design, Curve and Surface S,

Design, Finite Elements, NURBS and

Isogeometric Analysis, Refinability, Lk
Approximation Theory, Subdivision, 4 .
Wavelets and Multiresolution : et

Methods.... K {
’ y %
Organizing Committee " -
Costanza Conti (Univ. Firenze) -
Mariantonia Cotronei (Univ. Reggio Calabria)
Serena Morigi (Univ. Bologna) it <2
Enza Pellegrino (Univ. L'Aquila) Venue: Hotel Sera
: (Uni IS " : po
Francesca Pelosi (Univ. Roma “Tor Vergata”)
Francesca Pitolli (Univ. Roma “La Sapienza”) Located on the ;Iopes of the Natqral Park of - B
Sara Remogna (Univ. Torino) Monte Orlando in the most beautiful and S T
Lucia Romani (Univ. Milano-Bicocca) panoramic corner overlooking Serapo Beach,
Maria Lucia Sampoli (Univ. Siena) very close to the city center and the old town
Alessandra Sestini (Univ. Firenze) of Gaeta.
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