
Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Convergence of corner cutting algorithms refining points
and nets of functions

Lucia Romani

University of Milano-Bicocca, Italy

Joint work with:

Costanza Conti (University of Firenze, Italy)

Nira Dyn (Tel-Aviv University, Israel)

“Multivariate Approximation and Interpolation with Applications”

Luminy, September 19-23, 2016

Convergence of corner cutting algorithms Lucia Romani 1

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Related literature:

+ de Boor, C.: Cutting corners always works, CAGD (1987)

+ Gregory, J.A., Qu, R.: Nonuniform corner cutting, CAGD (1996)

Goals of our work:

Give a very simple proof of the fact that a corner cutting algorithm
for points always converges if the corner cutting weights satisfy the
conditions assumed by Gregory and Qu.

Extend this result to the bivariate setting to show convergence of
bivariate corner cutting algorithms refining nets of functions.

Convergence of corner cutting algorithms Lucia Romani 2

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Preliminary definitions

Definition (Corner cutting weights)

W =

{
(α,β) ∈ `(Z)× `(Z) : inf

i∈Z
{αi , 1− βi , βi − αi} > 0

}

Pi

Pi+1

Q2i

1− βi :

βi − αi :

αi :

Q2i+1

Examples: Chaikin weights de Rham weights

(αi , βi) =

(
1

4
,

3

4

)
(αi , βi) =

(
1

3
,

2

3

)
Convergence of corner cutting algorithms Lucia Romani 3

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Definition (CC(α,β)-operator)

Let (α,β) ∈W and P = (Pi)i∈Z, Pi ∈ Rn.
The corner cutting operator acting on P ∈ `n(Z) is defined as

CC(α,β) : `n(Z) −→ `n(Z),

Q2i := (CC(α,β)(P))2i = (1− αi)Pi + αiPi+1,
Q2i+1 := (CC(α,β)(P))2i+1 = (1− βi)Pi + βiPi+1.

Pi

Pi+1

Q2i+1
βi − αi :

1− βi :

Q2iαi :

αi =
‖Q2i − Pi‖2

‖Pi+1 − Pi‖2

1−βi =
‖Pi+1 − Q2i+1‖2

‖Pi+1 − Pi‖2

βi−αi =
‖Q2i+1 − Q2i‖2

‖Pi+1 − Pi‖2

Convergence of corner cutting algorithms Lucia Romani 4

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The corner cutting algorithm

The CC -algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . . ,

Input: (α[k],β[k]) ∈W

Compute P[k+1] = CC(α[k],β[k])(P
[k])

Convergence of corner cutting algorithms Lucia Romani 5

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The corner cutting algorithm

The CC -algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . . ,

Input: (α[k],β[k]) ∈W

Compute P[k+1] = CC(α[k],β[k])(P
[k])

+ The CC -algorithm is applied to the
n scalar sequences obtained from the

components of P[0].

Convergence of corner cutting algorithms Lucia Romani 5

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The corner cutting algorithm

The CC -algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . . ,

Input: (α[k],β[k]) ∈W

Compute P[k+1] = CC(α[k],β[k])(P
[k])

+ The CC -algorithm is applied to the
n scalar sequences obtained from the

components of P[0].

Example (n = 2):

α
[k]
i =

{
1

2(1+cos(2−(k+2)π))
, if i even

1
2(1+cosh(2−(k+1)))

, if i odd

β
[k]
i =

{
1− 1

2(1+cos(2−(k+2)π))
, if i even

1− 1
2(1+cosh(2−(k+1)))

, if i odd

P[0]

Convergence of corner cutting algorithms Lucia Romani 5

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The corner cutting algorithm

The CC -algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . . ,

Input: (α[k],β[k]) ∈W

Compute P[k+1] = CC(α[k],β[k])(P
[k])

+ The CC -algorithm is applied to the
n scalar sequences obtained from the

components of P[0].

Example (n = 2):

α
[k]
i =

{
1

2(1+cos(2−(k+2)π))
, if i even

1
2(1+cosh(2−(k+1)))

, if i odd

β
[k]
i =

{
1− 1

2(1+cos(2−(k+2)π))
, if i even

1− 1
2(1+cosh(2−(k+1)))

, if i odd

P[1]

Convergence of corner cutting algorithms Lucia Romani 5

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The corner cutting algorithm

The CC -algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . . ,

Input: (α[k],β[k]) ∈W

Compute P[k+1] = CC(α[k],β[k])(P
[k])

+ The CC -algorithm is applied to the
n scalar sequences obtained from the

components of P[0].

Example (n = 2):

α
[k]
i =

{
1

2(1+cos(2−(k+2)π))
, if i even

1
2(1+cosh(2−(k+1)))

, if i odd

β
[k]
i =

{
1− 1

2(1+cos(2−(k+2)π))
, if i even

1− 1
2(1+cosh(2−(k+1)))

, if i odd

P[2]

Convergence of corner cutting algorithms Lucia Romani 5

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The corner cutting algorithm

The CC -algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . . ,

Input: (α[k],β[k]) ∈W

Compute P[k+1] = CC(α[k],β[k])(P
[k])

+ The CC -algorithm is applied to the
n scalar sequences obtained from the

components of P[0].

Example (n = 2):

α
[k]
i =

{
1

2(1+cos(2−(k+2)π))
, if i even

1
2(1+cosh(2−(k+1)))

, if i odd

β
[k]
i =

{
1− 1

2(1+cos(2−(k+2)π))
, if i even

1− 1
2(1+cosh(2−(k+1)))

, if i odd

P[3]

Convergence of corner cutting algorithms Lucia Romani 5

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The corner cutting algorithm

The CC -algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . . ,

Input: (α[k],β[k]) ∈W

Compute P[k+1] = CC(α[k],β[k])(P
[k])

+ The CC -algorithm is applied to the
n scalar sequences obtained from the

components of P[0].

Example (n = 2):

α
[k]
i =

{
1

2(1+cos(2−(k+2)π))
, if i even

1
2(1+cosh(2−(k+1)))

, if i odd

β
[k]
i =

{
1− 1

2(1+cos(2−(k+2)π))
, if i even

1− 1
2(1+cosh(2−(k+1)))

, if i odd

lim
k→∞

P[k]

Convergence of corner cutting algorithms Lucia Romani 5

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Theorem I (Analysis of convergence)

For {(α[k],β[k]) ∈W, k ≥ 0} such that

µ = sup
k≥0

µ[k] < 1 with µ[k] = sup
i∈Z
{β[k]

i − α
[k]
i , 1− β[k]

i−1 + α
[k]
i }

the CC -algorithm converges for all P[0] = {P [0]
i ∈ Rn, i ∈ Z} ∈ `n(Z)

satisfying for a certain L > 0

‖P [0]
i+1 − P

[0]
i ‖∞ < L, ∀i ∈ Z.

(?)

+ The assumption (?) is equivalent to requiring that the piecewise linear

interpolant to the data (i ,P
[0]
i), i ∈ Z is Lipschitz continuous (LipC) in R

with Lipschitz constant L.

p
[k]
i ∈ R one component of P

[k]
i ∈ Rn

Lk(p[k]) : R→ R piecewise linear interpolant to (u
[k]
i , p

[k]
i), i ∈ Z

u[k]: scalar sequence obtained from u[0] = Z after k steps of CC -algorithm.

Convergence of corner cutting algorithms Lucia Romani 6

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Theorem I (Analysis of convergence)

For {(α[k],β[k]) ∈W, k ≥ 0} such that

µ = sup
k≥0

µ[k] < 1 with µ[k] = sup
i∈Z
{β[k]

i − α
[k]
i , 1− β[k]

i−1 + α
[k]
i }

the CC -algorithm converges for all P[0] = {P [0]
i ∈ Rn, i ∈ Z} ∈ `n(Z)

satisfying for a certain L > 0

‖P [0]
i+1 − P

[0]
i ‖∞ < L, ∀i ∈ Z. (?)

+ The assumption (?) is equivalent to requiring that the piecewise linear

interpolant to the data (i ,P
[0]
i), i ∈ Z is Lipschitz continuous (LipC) in R

with Lipschitz constant L.

p
[k]
i ∈ R one component of P

[k]
i ∈ Rn

Lk(p[k]) : R→ R piecewise linear interpolant to (u
[k]
i , p

[k]
i), i ∈ Z

u[k]: scalar sequence obtained from u[0] = Z after k steps of CC -algorithm.

Convergence of corner cutting algorithms Lucia Romani 6

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Theorem I (Analysis of convergence)

For {(α[k],β[k]) ∈W, k ≥ 0} such that

µ = sup
k≥0

µ[k] < 1 with µ[k] = sup
i∈Z
{β[k]

i − α
[k]
i , 1− β[k]

i−1 + α
[k]
i }

the CC -algorithm converges for all P[0] = {P [0]
i ∈ Rn, i ∈ Z} ∈ `n(Z)

satisfying for a certain L > 0

‖P [0]
i+1 − P

[0]
i ‖∞ < L, ∀i ∈ Z.

(?)

+ The assumption (?) is equivalent to requiring that the piecewise linear

interpolant to the data (i ,P
[0]
i), i ∈ Z is Lipschitz continuous (LipC) in R

with Lipschitz constant L.

p
[k]
i ∈ R one component of P

[k]
i ∈ Rn

Lk(p[k]) : R→ R piecewise linear interpolant to (u
[k]
i , p

[k]
i), i ∈ Z

u[k]: scalar sequence obtained from u[0] = Z after k steps of CC -algorithm.

Convergence of corner cutting algorithms Lucia Romani 6

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

p
[k+1]
2i+1

p
[k+1]
2i

p
[k]
i

u
[k]
i u

[k]
i+1u

[k+1]
2i+1

p
[k+1]
2i−1

p
[k+1]
2i−2

p
[k]
i+1

u
[k+1]
2i−2u

[k]
i−1

p
[k]
i−1

u
[k+1]
2i−1 u

[k+1]
2i

inf
i∈Z
{α[k]

i , 1− β[k]
i , β

[k]
i − α

[k]
i } > 0

u
[k]
2i = (1−α[k−1]

i)u
[k−1]
i +α

[k−1]
i u

[k−1]
i+1 , u

[k]
2i+1 = (1−β[k−1]

i)u
[k−1]
i +β

[k−1]
i u

[k−1]
i+1

u
[k+1]
2i−1 − u

[k+1]
2i−2 = (β

[k]
i−1 − α

[k]
i−1)(u

[k]
i − u

[k]
i−1)

u
[k+1]
2i −u

[k+1]
2i−1 = (1− β[k]

i−1)(u
[k]
i −u

[k]
i−1) +α

[k]
i (u

[k]
i+1−u

[k]
i)

d [k+1] := sup
i∈Z
{u[k+1]

2i+1 − u
[k+1]
2i }

Convergence of corner cutting algorithms Lucia Romani 7

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

p
[k+1]
2i+1

p
[k+1]
2i

p
[k]
i

u
[k]
i u

[k]
i+1u

[k+1]
2i+1

p
[k+1]
2i−1

p
[k+1]
2i−2

p
[k]
i+1

u
[k+1]
2i−2u

[k]
i−1

p
[k]
i−1

u
[k+1]
2i−1 u

[k+1]
2i

inf
i∈Z
{α[k]

i , 1− β[k]
i , β

[k]
i − α

[k]
i } > 0

µ[k] = sup
i∈Z
{β[k]

i − α
[k]
i , 1− β[k]

i−1 + α
[k]
i } < 1

u
[k+1]
2i−1 − u

[k+1]
2i−2 = (β

[k]
i−1 − α

[k]
i−1)(u

[k]
i − u

[k]
i−1)

u
[k+1]
2i −u

[k+1]
2i−1 = (1− β[k]

i−1)(u
[k]
i −u

[k]
i−1) +α

[k]
i (u

[k]
i+1−u

[k]
i)

d [k+1] := sup
i∈Z
{u[k+1]

2i+1 − u
[k+1]
2i }

Convergence of corner cutting algorithms Lucia Romani 7

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

p
[k+1]
2i+1

p
[k+1]
2i

p
[k]
i

u
[k]
i u

[k]
i+1u

[k+1]
2i+1

p
[k+1]
2i−1

p
[k+1]
2i−2

p
[k]
i+1

u
[k+1]
2i−2u

[k]
i−1

p
[k]
i−1

u
[k+1]
2i−1 u

[k+1]
2i

inf
i∈Z
{α[k]

i , 1− β[k]
i , β

[k]
i − α

[k]
i } > 0

µ[k] = sup
i∈Z
{β[k]

i − α
[k]
i , 1− β[k]

i−1 + α
[k]
i } < 1

u
[k+1]
2i−1 − u

[k+1]
2i−2 = (β

[k]
i−1 − α

[k]
i−1)(u

[k]
i − u

[k]
i−1)

u
[k+1]
2i −u

[k+1]
2i−1 = (1− β[k]

i−1)(u
[k]
i −u

[k]
i−1) +α

[k]
i (u

[k]
i+1−u

[k]
i)

d [k+1] := sup
i∈Z
{u[k+1]

2i+1 − u
[k+1]
2i }

d [k+1] ≤ µ[k] d [k] ⇒ d [k+1] < d [0]µk+1 with µ := sup
k≥0

µ[k] < 1

Convergence of corner cutting algorithms Lucia Romani 7

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The proof consists in showing that {Lk(p[k])}k≥0 is a Cauchy sequence.

Key steps of the proof:

1. By assumption, L0(p[0]) is LipC in R with Lipschitz constant L.

2. ∀ k ≥ 0 all points of p[k+1] lie on Lk(p[k]) thus, by the choice of u[k+1],

|p[k+1]
i+1 − p

[k]
i | ≤ L |u[k+1]

i+1 − u
[k]
i | ∀i ⇒ Lk(p[k]) LipC in R with constant L.

Proposition (A)

If f is LipC on [a, b] with Lipschitz constant L, then p1(x) := x−a
b−a f (b) + b−x

b−a f (a)
satisfies |p1(x)− f (x)| ≤ 1

2
(b − a)L, ∀x ∈ [a, b] .

3. Since Lk+1(p[k+1]) can be regarded as an approximation of the LipC function
Lk(p[k]), in view of Prop.(A)

|Lk+1(p[k+1])(u)− Lk(p[k])(u)| ≤ 1

2
L d [k+1] <

1

2
L d [0] µk+1

⇓
|Lk+r (p[k+r])(u)− Lk(p[k])(u)| ≤ 1

2
L d [0]µk+1

(r−1∑
`=0

µ`
)
. �

Convergence of corner cutting algorithms Lucia Romani 8

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The proof consists in showing that {Lk(p[k])}k≥0 is a Cauchy sequence.

Key steps of the proof:

1. By assumption, L0(p[0]) is LipC in R with Lipschitz constant L.

2. ∀ k ≥ 0 all points of p[k+1] lie on Lk(p[k]) thus, by the choice of u[k+1],

|p[k+1]
i+1 − p

[k]
i | ≤ L |u[k+1]

i+1 − u
[k]
i | ∀i ⇒ Lk(p[k]) LipC in R with constant L.

Proposition (A)

If f is LipC on [a, b] with Lipschitz constant L, then p1(x) := x−a
b−a f (b) + b−x

b−a f (a)
satisfies |p1(x)− f (x)| ≤ 1

2
(b − a)L, ∀x ∈ [a, b] .

3. Since Lk+1(p[k+1]) can be regarded as an approximation of the LipC function
Lk(p[k]), in view of Prop.(A)

|Lk+1(p[k+1])(u)− Lk(p[k])(u)| ≤ 1

2
L d [k+1] <

1

2
L d [0] µk+1

⇓
|Lk+r (p[k+r])(u)− Lk(p[k])(u)| ≤ 1

2
L d [0]µk+1

(r−1∑
`=0

µ`
)
. �

Convergence of corner cutting algorithms Lucia Romani 8

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The proof consists in showing that {Lk(p[k])}k≥0 is a Cauchy sequence.

Key steps of the proof:

1. By assumption, L0(p[0]) is LipC in R with Lipschitz constant L.

2. ∀ k ≥ 0 all points of p[k+1] lie on Lk(p[k]) thus, by the choice of u[k+1],

|p[k+1]
i+1 − p

[k]
i | ≤ L |u[k+1]

i+1 − u
[k]
i | ∀i ⇒ Lk(p[k]) LipC in R with constant L.

Proposition (A)

If f is LipC on [a, b] with Lipschitz constant L, then p1(x) := x−a
b−a f (b) + b−x

b−a f (a)
satisfies |p1(x)− f (x)| ≤ 1

2
(b − a)L, ∀x ∈ [a, b] .

3. Since Lk+1(p[k+1]) can be regarded as an approximation of the LipC function
Lk(p[k]), in view of Prop.(A)

|Lk+1(p[k+1])(u)− Lk(p[k])(u)| ≤ 1

2
L d [k+1] <

1

2
L d [0] µk+1

⇓
|Lk+r (p[k+r])(u)− Lk(p[k])(u)| ≤ 1

2
L d [0]µk+1

(r−1∑
`=0

µ`
)
. �

Convergence of corner cutting algorithms Lucia Romani 8

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The proof consists in showing that {Lk(p[k])}k≥0 is a Cauchy sequence.

Key steps of the proof:

1. By assumption, L0(p[0]) is LipC in R with Lipschitz constant L.

2. ∀ k ≥ 0 all points of p[k+1] lie on Lk(p[k]) thus, by the choice of u[k+1],

|p[k+1]
i+1 − p

[k]
i | ≤ L |u[k+1]

i+1 − u
[k]
i | ∀i ⇒ Lk(p[k]) LipC in R with constant L.

Proposition (A)

If f is LipC on [a, b] with Lipschitz constant L, then p1(x) := x−a
b−a f (b) + b−x

b−a f (a)
satisfies |p1(x)− f (x)| ≤ 1

2
(b − a)L, ∀x ∈ [a, b] .

3. Since Lk+1(p[k+1]) can be regarded as an approximation of the LipC function
Lk(p[k]), in view of Prop.(A)

|Lk+1(p[k+1])(u)− Lk(p[k])(u)| ≤ 1

2
L d [k+1] <

1

2
L d [0] µk+1

⇓
|Lk+r (p[k+r])(u)− Lk(p[k])(u)| ≤ 1

2
L d [0]µk+1

(r−1∑
`=0

µ`
)
. �

Convergence of corner cutting algorithms Lucia Romani 8

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The proof consists in showing that {Lk(p[k])}k≥0 is a Cauchy sequence.

Key steps of the proof:

1. By assumption, L0(p[0]) is LipC in R with Lipschitz constant L.

2. ∀ k ≥ 0 all points of p[k+1] lie on Lk(p[k]) thus, by the choice of u[k+1],

|p[k+1]
i+1 − p

[k]
i | ≤ L |u[k+1]

i+1 − u
[k]
i | ∀i ⇒ Lk(p[k]) LipC in R with constant L.

Proposition (A)

If f is LipC on [a, b] with Lipschitz constant L, then p1(x) := x−a
b−a f (b) + b−x

b−a f (a)
satisfies |p1(x)− f (x)| ≤ 1

2
(b − a)L, ∀x ∈ [a, b] .

3. Since Lk+1(p[k+1]) can be regarded as an approximation of the LipC function
Lk(p[k]), in view of Prop.(A)

|Lk+1(p[k+1])(u)− Lk(p[k])(u)| ≤ 1

2
L d [k+1] <

1

2
L d [0] µk+1

⇓
|Lk+r (p[k+r])(u)− Lk(p[k])(u)| ≤ 1

2
L d [0]µk+1

(r−1∑
`=0

µ`
)
. �

Convergence of corner cutting algorithms Lucia Romani 8

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm

Lane-Riesenfeld: at each refinement level Chaikin corner cutting is followed
by m averaging steps + degree-(m + 2) splines in the limit

The GLR-algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . .

P[k+1,0] = CC(α[k],β[k])(P
[k]) with (α[k],β[k]) ∈W

Input: w[k] ∈ `(Z) with 0 < w
[k]
i < 1 ∀i ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 s.t. mk < M ∀k ≥ 0)

P[k+1,j+1] = A[k]P[k+1,j] with (A[k]P)i = (1−w
[k]
i)Pi +w

[k]
i Pi+1

P[k+1] = P[k+1,mk]

Convergence of corner cutting algorithms Lucia Romani 9

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm

Lane-Riesenfeld: at each refinement level Chaikin corner cutting is followed
by m averaging steps + degree-(m + 2) splines in the limit

k = 0

The GLR-algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . .

P[k+1,0] = CC(α[k],β[k])(P
[k]) with (α[k],β[k]) ∈W

Input: w[k] ∈ `(Z) with 0 < w
[k]
i < 1 ∀i ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 s.t. mk < M ∀k ≥ 0)

P[k+1,j+1] = A[k]P[k+1,j] with (A[k]P)i = (1−w
[k]
i)Pi +w

[k]
i Pi+1

P[k+1] = P[k+1,mk]

Convergence of corner cutting algorithms Lucia Romani 9

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm

Lane-Riesenfeld: at each refinement level Chaikin corner cutting is followed
by m averaging steps + degree-(m + 2) splines in the limit

k = 1

The GLR-algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . .

P[k+1,0] = CC(α[k],β[k])(P
[k]) with (α[k],β[k]) ∈W

Input: w[k] ∈ `(Z) with 0 < w
[k]
i < 1 ∀i ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 s.t. mk < M ∀k ≥ 0)

P[k+1,j+1] = A[k]P[k+1,j] with (A[k]P)i = (1−w
[k]
i)Pi +w

[k]
i Pi+1

P[k+1] = P[k+1,mk]

Convergence of corner cutting algorithms Lucia Romani 9

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm

Lane-Riesenfeld: at each refinement level Chaikin corner cutting is followed
by m averaging steps + degree-(m + 2) splines in the limit

k = 2

The GLR-algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . .

P[k+1,0] = CC(α[k],β[k])(P
[k]) with (α[k],β[k]) ∈W

Input: w[k] ∈ `(Z) with 0 < w
[k]
i < 1 ∀i ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 s.t. mk < M ∀k ≥ 0)

P[k+1,j+1] = A[k]P[k+1,j] with (A[k]P)i = (1−w
[k]
i)Pi +w

[k]
i Pi+1

P[k+1] = P[k+1,mk]

Convergence of corner cutting algorithms Lucia Romani 9

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm

Lane-Riesenfeld: at each refinement level Chaikin corner cutting is followed
by m averaging steps + degree-(m + 2) splines in the limit

k = 3

The GLR-algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . .

P[k+1,0] = CC(α[k],β[k])(P
[k]) with (α[k],β[k]) ∈W

Input: w[k] ∈ `(Z) with 0 < w
[k]
i < 1 ∀i ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 s.t. mk < M ∀k ≥ 0)

P[k+1,j+1] = A[k]P[k+1,j] with (A[k]P)i = (1−w
[k]
i)Pi +w

[k]
i Pi+1

P[k+1] = P[k+1,mk]

Convergence of corner cutting algorithms Lucia Romani 9

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm

Lane-Riesenfeld: at each refinement level Chaikin corner cutting is followed
by m averaging steps + degree-(m + 2) splines in the limit

k →∞

The GLR-algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . .

P[k+1,0] = CC(α[k],β[k])(P
[k]) with (α[k],β[k]) ∈W

Input: w[k] ∈ `(Z) with 0 < w
[k]
i < 1 ∀i ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 s.t. mk < M ∀k ≥ 0)

P[k+1,j+1] = A[k]P[k+1,j] with (A[k]P)i = (1−w
[k]
i)Pi +w

[k]
i Pi+1

P[k+1] = P[k+1,mk]

Convergence of corner cutting algorithms Lucia Romani 9

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm

Lane-Riesenfeld: at each refinement level Chaikin corner cut-
ting is followed by m averaging steps + degree-(m+2) splines in the limit

The GLR-algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . .

P[k+1,0] = CC(α[k],β[k])(P
[k]) with (α[k],β[k]) ∈W

Input: w[k] ∈ `(Z) with 0 < w
[k]
i < 1 ∀i ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 s.t. mk < M ∀k ≥ 0)

P[k+1,j+1] = A[k]P[k+1,j] with (A[k]P)i = (1−w
[k]
i)Pi +w

[k]
i Pi+1

P[k+1] = P[k+1,mk]

Convergence of corner cutting algorithms Lucia Romani 9

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm

Lane-Riesenfeld: at each refinement level Chaikin corner cut-
ting is followed by m averaging steps + degree-(m+2) splines in the limit

The GLR-algorithm

Input: P[0] ∈ `n(Z)

For k = 0, 1, . . .

P[k+1,0] = CC(α[k],β[k])(P
[k]) with (α[k],β[k]) ∈W

Input: w[k] ∈ `(Z) with 0 < w
[k]
i < 1 ∀i ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 s.t. mk < M ∀k ≥ 0)

P[k+1,j+1] = A[k]P[k+1,j] with (A[k]P)i = (1−w
[k]
i)Pi +w

[k]
i Pi+1

P[k+1] = P[k+1,mk]

+ Convergence is still guaranteed by the fact that

|Lk+1(p[k+1])(u)− Lk(p[k])(u)| < 1
2 MLd [k+1].

Convergence of corner cutting algorithms Lucia Romani 9

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Generalization to nets of functions

Convergence of corner cutting algorithms Lucia Romani 10

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

From point corner cutting to net corner cutting

+ Point corner cutting (2D case):

For a given P[k] ∈ `n(Z2), we define P[k+1] by sampling the piecewise
bilinear interpolant to P[k] at the values of s and t specified by
(α[s],[k],β[s],[k]) and (α[t],[k],β[t],[k]).

Pi,j Pi+1,j

Pi,j+1 Pi+1,j+1

Q2i,2j

Q2i,2j+1

α
[s]
i : 1− β

[s]
i :

1− β
[t]
j :

α
[t]
j :

Q2i+1,2j+1

Q2i+1,2j

β
[s]
i − α

[s]
i :

β
[t]
j − α

[t]
j :

Convergence of corner cutting algorithms Lucia Romani 11

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

From point corner cutting to net corner cutting

+ Point corner cutting (2D case):

For a given P[k] ∈ `n(Z2), we define P[k+1] by sampling the piecewise
bilinear interpolant to P[k] at the values of s and t specified by
(α[s],[k],β[s],[k]) and (α[t],[k],β[t],[k]).

+ Net corner cutting (rough idea):

For a given N [k], we define N [k+1] by sampling the piecewise Coons
interpolant to N [k] at the values of s and t specified by (α[s],[k],β[s],[k]) and
(α[t],[k],β[t],[k]).

Convergence of corner cutting algorithms Lucia Romani 11

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Grid of lines and net of functions

We consider a net of functions N(T) defined on a grid of lines

T ≡ T
(

(h[s]︸︷︷︸
h

[s]
` :=s`+1−s`, `∈Z

,h[t]), O︸︷︷︸
(x0,y0)

)
:= {R× ti , i ∈ Z} ∪ {sj × R, j ∈ Z}

N := N(T) is a continuous bivariate function defined on the grid of lines
T , which consists of the following continuous univariate functions:

{N(s, ti)}, i∈Z
{N(sj , t)}, j∈Z (called the u-functions)

T N(T)

Analogous to

polyline definition

Point abscissae: i ∈ Z

Point values: {f (i)}i∈Z
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Convergence of corner cutting algorithms Lucia Romani 12

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Definition (Compatible net of functions)

Let φi (s) := {N(s, ti)}i∈Z and ψj(t) := {N(sj , t)}j∈Z.
A net of functions N is said to be compatible if φi (sj) = ψj(ti) ∀i , j ∈ Z.

Definition (Piecewise Coons patch)

We denote by C(N) the piecewise Coons patch interpolating a compatible
net N.

Compatible net

Piecewise Coons patch

Convergence of corner cutting algorithms Lucia Romani 13

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Definition (Compatible net of functions)

Let φi (s) := {N(s, ti)}i∈Z and ψj(t) := {N(sj , t)}j∈Z.
A net of functions N is said to be compatible if φi (sj) = ψj(ti) ∀i , j ∈ Z.

Definition (Piecewise Coons patch)

We denote by C(N) the piecewise Coons patch interpolating a compatible
net N.

Compatible net Piecewise Coons patch

Convergence of corner cutting algorithms Lucia Romani 13

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Definition (The operator BC(α,β)(C(N)))

We denote by BC(α,β)(C(N)) the net of u-functions obtained by sampling
the piecewise Coons patch C(N) at the values of s and t specified by
(α[s], β[s]) ∈W and (α[t], β[t]) ∈W, i.e.,

BC(α,β)(C(N)) := {C(N)(s, tj + α
[t]
j h

[t]
j), C(N)(s, tj + β

[t]
j h

[t]
j), j ∈ Z}

∪ {C(N)(si + α
[s]
i h

[s]
i , t), C(N)(si + β

[s]
i h

[s]
i , t), i ∈ Z}

where

(s, t) ∈ [si , si+1]× [tj , tj+1] and h
[s]
i = si+1 − si , h

[t]
j = tj+1 − tj , i , j ∈ Z.

N C(N) BC(α,β)(C(N))

Convergence of corner cutting algorithms Lucia Romani 14

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The corner cutting algorithm for nets of functions

The CC -algorithm for nets

Input: a compatible net N [0]

For k = 0, 1, . . .

Input: (α[s],[k],β[s],[k]) ∈W

and (α[t],[k],β[t],[k]) ∈W

Compute

N [k+1] := BC(α[k],β[k])(C(N [k]))

Example:

Convergence of corner cutting algorithms Lucia Romani 15

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The corner cutting algorithm for nets of functions

The CC -algorithm for nets

Input: a compatible net N [0]

For k = 0, 1, . . .

Input: (α[s],[k],β[s],[k]) ∈W

and (α[t],[k],β[t],[k]) ∈W

Compute

N [k+1] := BC(α[k],β[k])(C(N [k]))

Example:

N [0]

Convergence of corner cutting algorithms Lucia Romani 15

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The corner cutting algorithm for nets of functions

The CC -algorithm for nets

Input: a compatible net N [0]

For k = 0, 1, . . .

Input: (α[s],[k],β[s],[k]) ∈W

and (α[t],[k],β[t],[k]) ∈W

Compute

N [k+1] := BC(α[k],β[k])(C(N [k]))

Example:

N [1]

Convergence of corner cutting algorithms Lucia Romani 15

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The corner cutting algorithm for nets of functions

The CC -algorithm for nets

Input: a compatible net N [0]

For k = 0, 1, . . .

Input: (α[s],[k],β[s],[k]) ∈W

and (α[t],[k],β[t],[k]) ∈W

Compute

N [k+1] := BC(α[k],β[k])(C(N [k]))

Example:

N [2]

Convergence of corner cutting algorithms Lucia Romani 15

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The corner cutting algorithm for nets of functions

The CC -algorithm for nets

Input: a compatible net N [0]

For k = 0, 1, . . .

Input: (α[s],[k],β[s],[k]) ∈W

and (α[t],[k],β[t],[k]) ∈W

Compute

N [k+1] := BC(α[k],β[k])(C(N [k]))

Example:

N [3]

Convergence of corner cutting algorithms Lucia Romani 15

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The corner cutting algorithm for nets of functions

The CC -algorithm for nets

Input: a compatible net N [0]

For k = 0, 1, . . .

Input: (α[s],[k],β[s],[k]) ∈W

and (α[t],[k],β[t],[k]) ∈W

Compute

N [k+1] := BC(α[k],β[k])(C(N [k]))

Example:

N [4]

Convergence of corner cutting algorithms Lucia Romani 15

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The corner cutting algorithm for nets of functions

The CC -algorithm for nets

Input: a compatible net N [0]

For k = 0, 1, . . .

Input: (α[s],[k],β[s],[k]) ∈W

and (α[t],[k],β[t],[k]) ∈W

Compute

N [k+1] := BC(α[k],β[k])(C(N [k]))

Example:

lim
k→∞

N [k]

Convergence of corner cutting algorithms Lucia Romani 15

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Theorem II (Analysis of convergence)

Let N [0] be a net of C 0 compatible u-functions that are LipC on grid intervals
with a bound L

10 on the Lipschitz constants. The corner cutting algorithm is

convergent for all (α[s],[k],β[s],[k]), (α[t],[k],β[t],[k]) ∈W such that

µ = sup
k≥0

µ[k] < 1

with

µ[k] = sup
i∈Z

{
β

[t],[k]
i − α[t],[k]

i , 1− β[t],[k]
i−1 + α

[t],[k]
i ,

β
[s],[k]
i − α[s],[k]

i , 1− β[s],[k]
i−1 + α

[s],[k]
i

}
.

The proof consists in showing that {C(N [k])}k≥0 is a Cauchy sequence.

Convergence of corner cutting algorithms Lucia Romani 16

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Theorem II (Analysis of convergence)

Let N [0] be a net of C 0 compatible u-functions that are LipC on grid intervals
with a bound L

10 on the Lipschitz constants. The corner cutting algorithm is

convergent for all (α[s],[k],β[s],[k]), (α[t],[k],β[t],[k]) ∈W such that

µ = sup
k≥0

µ[k] < 1

with

µ[k] = sup
i∈Z

{
β

[t],[k]
i − α[t],[k]

i , 1− β[t],[k]
i−1 + α

[t],[k]
i ,

β
[s],[k]
i − α[s],[k]

i , 1− β[s],[k]
i−1 + α

[s],[k]
i

}
.

The proof consists in showing that {C(N [k])}k≥0 is a Cauchy sequence.

Convergence of corner cutting algorithms Lucia Romani 16

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Key steps of the proof:

1. For all k ≥ 0, N [k+1] := BC(α[k],β[k])(C(N [k])) and C(N [k+1]) are both LipC in

R2 with Lipschitz constant L.

2. Attaching the u-functions of N [0] to the gridlines of

T := T ((h[s],[0],h[t],[0]),O) with h
[s],[0]
i = h

[t],[0]
i = 1,

the u-functions of N [k] are attached to the gridlines of T [k] obtained from T
by k steps of CC(α,β). Therefore:

d [k+1] ≤ µ[k] d [k] with d [k] := sup
i∈Z
{h[s],[k]

i , h
[t],[k]
i }.

Proposition (B)

Let F be a continuous function defined on R = [a, b]× [c , d] and let C(F|∂R) be
the Coons patch interpolating the u-functions F (s, c), F (s, d), F (a, t), F (b, t). If
F is LipC with Lipschitz constant L, then ‖C(F|∂R)− F‖ ≤ 2Lmin{d − c , b − a}.

⇓ regarding C(N [k+1]) as a piecewise

Coons approximation of C(N [k])

‖C(N [k+1])− C(N [k])‖ ≤ 2L d [k] �

Convergence of corner cutting algorithms Lucia Romani 17

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Key steps of the proof:

1. For all k ≥ 0, N [k+1] := BC(α[k],β[k])(C(N [k])) and C(N [k+1]) are both LipC in

R2 with Lipschitz constant L.

2. Attaching the u-functions of N [0] to the gridlines of

T := T ((h[s],[0],h[t],[0]),O) with h
[s],[0]
i = h

[t],[0]
i = 1,

the u-functions of N [k] are attached to the gridlines of T [k] obtained from T
by k steps of CC(α,β). Therefore:

d [k+1] ≤ µ[k] d [k] with d [k] := sup
i∈Z
{h[s],[k]

i , h
[t],[k]
i }.

Proposition (B)

Let F be a continuous function defined on R = [a, b]× [c , d] and let C(F|∂R) be
the Coons patch interpolating the u-functions F (s, c), F (s, d), F (a, t), F (b, t). If
F is LipC with Lipschitz constant L, then ‖C(F|∂R)− F‖ ≤ 2Lmin{d − c , b − a}.

⇓ regarding C(N [k+1]) as a piecewise

Coons approximation of C(N [k])

‖C(N [k+1])− C(N [k])‖ ≤ 2L d [k] �

Convergence of corner cutting algorithms Lucia Romani 17

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Key steps of the proof:

1. For all k ≥ 0, N [k+1] := BC(α[k],β[k])(C(N [k])) and C(N [k+1]) are both LipC in

R2 with Lipschitz constant L.

2. Attaching the u-functions of N [0] to the gridlines of

T := T ((h[s],[0],h[t],[0]),O) with h
[s],[0]
i = h

[t],[0]
i = 1,

the u-functions of N [k] are attached to the gridlines of T [k] obtained from T
by k steps of CC(α,β). Therefore:

d [k+1] ≤ µ[k] d [k] with d [k] := sup
i∈Z
{h[s],[k]

i , h
[t],[k]
i }.

Proposition (B)

Let F be a continuous function defined on R = [a, b]× [c , d] and let C(F|∂R) be
the Coons patch interpolating the u-functions F (s, c), F (s, d), F (a, t), F (b, t). If
F is LipC with Lipschitz constant L, then ‖C(F|∂R)− F‖ ≤ 2Lmin{d − c , b − a}.

⇓ regarding C(N [k+1]) as a piecewise

Coons approximation of C(N [k])

‖C(N [k+1])− C(N [k])‖ ≤ 2L d [k] �

Convergence of corner cutting algorithms Lucia Romani 17

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Key steps of the proof:

1. For all k ≥ 0, N [k+1] := BC(α[k],β[k])(C(N [k])) and C(N [k+1]) are both LipC in

R2 with Lipschitz constant L.

2. Attaching the u-functions of N [0] to the gridlines of

T := T ((h[s],[0],h[t],[0]),O) with h
[s],[0]
i = h

[t],[0]
i = 1,

the u-functions of N [k] are attached to the gridlines of T [k] obtained from T
by k steps of CC(α,β). Therefore:

d [k+1] ≤ µ[k] d [k] with d [k] := sup
i∈Z
{h[s],[k]

i , h
[t],[k]
i }.

Proposition (B)

Let F be a continuous function defined on R = [a, b]× [c , d] and let C(F|∂R) be
the Coons patch interpolating the u-functions F (s, c), F (s, d), F (a, t), F (b, t). If
F is LipC with Lipschitz constant L, then ‖C(F|∂R)− F‖ ≤ 2Lmin{d − c , b − a}.

⇓ regarding C(N [k+1]) as a piecewise

Coons approximation of C(N [k])

‖C(N [k+1])− C(N [k])‖ ≤ 2L d [k] �
Convergence of corner cutting algorithms Lucia Romani 17

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm for nets of functions

The GLR-algorithm for nets

Input: compatible net N [0]

For k = 0, 1, . . .

Input: α[k] and β[k]

Compute N [k+1,0] := BC(α[k],β[k])(C(N [k]))

Input: w
[s],[k]
i ,w

[t],[k]
j ∈ (0, 1) ∀i , j ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 u.b.)

N [k+1,j+1] = A[k](C(N [k+1,j]))
with A(C(N)) = {C(N)(s, tj +w

[t]
j h

[t]
j), j ∈ Z}

∪ {C(N)(si + w
[s]
i h

[s]
i , t), i ∈ Z}

N [k+1] = N [k+1,mk]

+ The GLR-algorithm converges!

Convergence of corner cutting algorithms Lucia Romani 18

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm for nets of functions

The GLR-algorithm for nets

Input: compatible net N [0]

For k = 0, 1, . . .

Input: α[k] and β[k]

Compute N [k+1,0] := BC(α[k],β[k])(C(N [k]))

Input: w
[s],[k]
i ,w

[t],[k]
j ∈ (0, 1) ∀i , j ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 u.b.)

N [k+1,j+1] = A[k](C(N [k+1,j]))
with A(C(N)) = {C(N)(s, tj +w

[t]
j h

[t]
j), j ∈ Z}

∪ {C(N)(si + w
[s]
i h

[s]
i , t), i ∈ Z}

N [k+1] = N [k+1,mk]

+ The GLR-algorithm converges!

Example: mk = 1 ∀k ≥ 0

N [0]

Convergence of corner cutting algorithms Lucia Romani 18

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm for nets of functions

The GLR-algorithm for nets

Input: compatible net N [0]

For k = 0, 1, . . .

Input: α[k] and β[k]

Compute N [k+1,0] := BC(α[k],β[k])(C(N [k]))

Input: w
[s],[k]
i ,w

[t],[k]
j ∈ (0, 1) ∀i , j ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 u.b.)

N [k+1,j+1] = A[k](C(N [k+1,j]))
with A(C(N)) = {C(N)(s, tj +w

[t]
j h

[t]
j), j ∈ Z}

∪ {C(N)(si + w
[s]
i h

[s]
i , t), i ∈ Z}

N [k+1] = N [k+1,mk]

+ The GLR-algorithm converges!

Example: mk = 1 ∀k ≥ 0

N [1]

Convergence of corner cutting algorithms Lucia Romani 18

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm for nets of functions

The GLR-algorithm for nets

Input: compatible net N [0]

For k = 0, 1, . . .

Input: α[k] and β[k]

Compute N [k+1,0] := BC(α[k],β[k])(C(N [k]))

Input: w
[s],[k]
i ,w

[t],[k]
j ∈ (0, 1) ∀i , j ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 u.b.)

N [k+1,j+1] = A[k](C(N [k+1,j]))
with A(C(N)) = {C(N)(s, tj +w

[t]
j h

[t]
j), j ∈ Z}

∪ {C(N)(si + w
[s]
i h

[s]
i , t), i ∈ Z}

N [k+1] = N [k+1,mk]

+ The GLR-algorithm converges!

Example: mk = 1 ∀k ≥ 0

N [2]

Convergence of corner cutting algorithms Lucia Romani 18

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm for nets of functions

The GLR-algorithm for nets

Input: compatible net N [0]

For k = 0, 1, . . .

Input: α[k] and β[k]

Compute N [k+1,0] := BC(α[k],β[k])(C(N [k]))

Input: w
[s],[k]
i ,w

[t],[k]
j ∈ (0, 1) ∀i , j ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 u.b.)

N [k+1,j+1] = A[k](C(N [k+1,j]))
with A(C(N)) = {C(N)(s, tj +w

[t]
j h

[t]
j), j ∈ Z}

∪ {C(N)(si + w
[s]
i h

[s]
i , t), i ∈ Z}

N [k+1] = N [k+1,mk]

+ The GLR-algorithm converges!

Example: mk = 1 ∀k ≥ 0

N [3]

Convergence of corner cutting algorithms Lucia Romani 18

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm for nets of functions

The GLR-algorithm for nets

Input: compatible net N [0]

For k = 0, 1, . . .

Input: α[k] and β[k]

Compute N [k+1,0] := BC(α[k],β[k])(C(N [k]))

Input: w
[s],[k]
i ,w

[t],[k]
j ∈ (0, 1) ∀i , j ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 u.b.)

N [k+1,j+1] = A[k](C(N [k+1,j]))
with A(C(N)) = {C(N)(s, tj +w

[t]
j h

[t]
j), j ∈ Z}

∪ {C(N)(si + w
[s]
i h

[s]
i , t), i ∈ Z}

N [k+1] = N [k+1,mk]

+ The GLR-algorithm converges!

Example: mk = 1 ∀k ≥ 0

N [4]

Convergence of corner cutting algorithms Lucia Romani 18

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

The Generalized Lane-Riesenfeld algorithm for nets of functions

The GLR-algorithm for nets

Input: compatible net N [0]

For k = 0, 1, . . .

Input: α[k] and β[k]

Compute N [k+1,0] := BC(α[k],β[k])(C(N [k]))

Input: w
[s],[k]
i ,w

[t],[k]
j ∈ (0, 1) ∀i , j ∈ Z, k ≥ 0

For j = 0, ...,mk − 1 (mk ∈ N0 u.b.)

N [k+1,j+1] = A[k](C(N [k+1,j]))
with A(C(N)) = {C(N)(s, tj +w

[t]
j h

[t]
j), j ∈ Z}

∪ {C(N)(si + w
[s]
i h

[s]
i , t), i ∈ Z}

N [k+1] = N [k+1,mk]

+ The GLR-algorithm converges!

Example: mk = 1 ∀k ≥ 0

lim
k→∞

N [k]

Convergence of corner cutting algorithms Lucia Romani 18

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

Convergence of corner cutting algorithms Lucia Romani 19

Corner cutting algorithms for points Corner cutting algorithms for nets of functions

17th – 21st September, 2017 Gaeta, Italy
2nd International Conference on Subdivision; Geometric and Algebraic

Methods, Isogeometric Analysis and Refinability in ITaly

Costanza Conti (Univ. Firenze)
Mariantonia Cotronei (Univ. Reggio Calabria)
Serena Morigi (Univ. Bologna)
Enza Pellegrino (Univ. L'Aquila)
Francesca Pelosi (Univ. Roma “Tor Vergata”)
Francesca Pitolli (Univ. Roma “La Sapienza”)
Sara Remogna (Univ. Torino)
Lucia Romani (Univ. Milano-Bicocca)
Maria Lucia Sampoli (Univ. Siena)
Alessandra Sestini (Univ. Firenze)

Organizing Committee

Venue: Hotel Serapo
Located on the slopes of the Natural Park of
Monte Orlando in the most beautiful and
panoramic corner overlooking Serapo Beach,
very close to the city center and the old town
of Gaeta.

Topics
Topics include Algebraic and
Differential Geometry, Computer
Aided Design, Curve and Surface
Design, Finite Elements, NURBS and
Isogeometric Analysis, Refinability,
Approximation Theory, Subdivision,
Wavelets and Multiresolution
Methods….

Venue

SMART 2017

Web site: sbai.uniroma1.it/smart2017

Convergence of corner cutting algorithms Lucia Romani 20

	Corner cutting algorithms for points
	Corner cutting algorithms for nets of functions

