Approximation with Ambient B-Splines and Intrinsic PDEs on Manifolds

Ulrich Reif Technische Universität Darmstadt

MAIA 2016, September 22, 2016

Joint work with N. Lehmann and S. Odathuparambil

(日) (四) (문) (문) (문)

Approximation problem

- Given: manifold $\omega \subset \mathbb{R}^d$
 - without boundary, compact, smooth
 - codimension 1
 - arbitrary topology
- Given: function $f: \omega \to \mathbb{R}$
 - smooth
 - Sobolev class Wⁿ_p(ω)
- Sought: approximation $s: \omega \to \mathbb{R}$
 - accurate, $\|f s\| = O(h^n)$
 - smooth, C^k
 - finite-dimensional space
 - simple concept, easy implementation
 - fast evaluation

Approaches

- piecewise linear
 - flexible, standard in Computer Graphics
 - C⁰, low approximation order
- intrinsic functions
 - · explicitly known only for elementary geometry
 - otherwise comlicated
- chart-based methods
 - blending artifacts
- piecewise parametrization (subdivision, G-splines)
 - non-trivial quadrature
 - limited smoothness
- radial basis functions in ambient space
 - yes, but ...

Approaches

- piecewise linear
 - flexible, standard in Computer Graphics
 - C⁰, low approximation order
- intrinsic functions
 - · explicitly known only for elementary geometry
 - otherwise comlicated
- chart-based methods
 - blending artifacts
- piecewise parametrization (subdivision, G-splines)
 - non-trivial quadrature
 - limited smoothness
- radial basis functions in ambient space
 - yes, but . . .
- alternative: ambient B-spline method (ABM)

Basic idea

Define function space on ω by restricting functions in ambient space \mathbb{R}^d to ω . In particular, if S is a spline of order n on \mathbb{R}^d , then

 $s := S_{|\omega|}$

is a smooth function on ω .

Benefits:

- standard splines, independent of $\boldsymbol{\omega}$
- higher order smoothness
- adaptive refinement

Challenges:

- stability
- approximation order

Lack of stability

Condition number of Gramian matrix of TP Bernstein basis on $[0, 1]^2$:

n	2	3	4
cond	8e0	1e2	1e3

3 D (3 D)

Lack of stability

Condition number of Gramian matrix of TP Bernstein basis restricted to curve ω , e.g., graph of $\ln(1 + x)$, $0 \le x \le 1$:

n	2	3	4
cond	1e06	1e20	3e32

In order to use B-splines in a tubular neighborhood

 $\Omega\supset\omega$

of $\boldsymbol{\omega},$ we need to extend the given function,

 $f:\omega \to \mathbb{R}$

A B < A B <</p>

In order to use B-splines in a tubular neighborhood

 $\Omega\supset\omega$

of $\boldsymbol{\omega},$ we need to extend the given function,

 $f: \omega \to \mathbb{R} \quad \Rightarrow \quad F: \Omega \to \mathbb{R}$

(B)

- w the second sec
- Given (scattered) data on manifold ω .

• Given (scattered) data on manifold ω .

- Given (scattered) data on manifold ω .
- Define sufficiently thin tube $\Omega \supset \omega$.

- Given (scattered) data on manifold ω .
- Define sufficiently thin tube $\Omega \supset \omega$.
- Extend data to Ω.

(B)

A B A A B A

The ambient method: s = RPEf

Extension

Given $f : \omega \to \mathbb{R}$, it is not difficult to construct an extension $F : \Omega \to \mathbb{R}$, provided that Ω is small enough:

• constant in normal direction

 $F(x+tn) = f(x), \quad x \in \omega$

()

Extension

Given $f : \omega \to \mathbb{R}$, it is not difficult to construct an extension $F : \Omega \to \mathbb{R}$, provided that Ω is small enough:

constant in normal direction

$$F(x+tn)=f(x), x \in \omega$$

- orthogonal flow, if $\omega=arphi^{-1}(0)$ is given as a levelset

$$F(\psi(x,t)) = f(x), \quad \partial_t \psi = rac{
abla arphi}{|
abla arphi|}, \quad \psi(x,0) = \psi(x)$$

Properties:

• based on standard tensor product B-splines

(B)

Properties:

- based on standard tensor product B-splines
- arbitrary smoothness for free

(B)

Properties:

- based on standard tensor product B-splines
- arbitrary smoothness for free
- no problem with extraordinary points

∃ → (∃ →

Properties:

- based on standard tensor product B-splines
- arbitrary smoothness for free
- no problem with extraordinary points
- higher dimension, but comparable number of control points

B ▶ < B ▶

Properties:

- based on standard tensor product B-splines
- arbitrary smoothness for free
- no problem with extraordinary points
- higher dimension, but comparable number of control points
- approximation order?

∃ → (∃ →

Approximation order

Theorem (Odathuparambil, R. '15)

Let E_{ψ} be the extension operator based on some transversal flow ψ . For $f \in W_{p}^{n}(\omega)$, the approximation error $\Delta = RPE_{\psi}f - f$ is bounded by

$$\|\Delta\|_{W^m_p(\omega)} \leq c h^{n-m} \|f\|_{W^n_p(\omega)}, \quad m < n,$$

where c depends on ψ .

Proof is based on:

- approximation properties of P
- Friedrichs' inequality
- Markov inequality
- Faà di Bruno formula

Example: The geoid

The geoid is the equipotential surface of gravitational field corresponding to the mean-ocean surface.

Model currently used EGM2008:

- spherical harmonics up to degree 2190 and order 2159,
- more than 4 million coefficients.

Example: The geoid

Using ambient B-spline approximation method:

- drastically improves evaluation time,
- reduces number of coefficients (hierarchical B-splines).

Local B-Spline method (order 3, 1e6 coefficients):

Example: The geoid

approximation error for $h = \frac{1}{10} R_{\text{earth}}$

INISCHE /ERSITAT MSTADT

Ambient B-Splines

Example: The geoid, adaptive refinement

INISCHE /ERSITAT MSTADT

Example: The geoid, adaptive refinement

イロト イポト イヨト イヨト

Approximation with h = 0.2 and ~ 2000 B-Splines.

Adaptive approximation with $h_{\rm min}=0.02$ and ~ 6000 B-Splines.

Benefits:

- simple construction
- arbitrary smoothness
- adaptive refinement
- no extraordinary vertices

Challenges:

- How to find a *good* parametrization?
- How to build an interactive modeling tool?
- How to model sharp creases?

Intrinsic model equations:

• elliptic

$$\Delta_{\omega}u+cu=f,\quad c<0$$

• parabolic

$$u_t = -\Delta_\omega u$$

Applications:

- Computer Graphics (parametrization, segmentation)
- Fluid Dynamics
- Biology/Medicine
- Meteorology

. . .

A B < A B <</p>

- Piecewise linear FE approximation (Wardetzki '07).
- Embedding methods for parabolic PDEs (Bertalmio et. al. '01, Ruuth and Merriman '08). The Laplace-Beltrami operator is computed by

$$\Delta_{\omega} u = \Delta E_n u$$

instead of

$$\Delta_\omega u = rac{{
m div}ig(\sqrt{{
m det}\,G}\,G^{-1}
abla uig)}{\sqrt{{
m det}\,G}}.$$

• Embedding method for elliptic PDEs (Dziuk and Elliott '13). Problem: Loss of elipticity.

- Piecewise linear FE approximation (Wardetzki '07).
- Embedding methods for parabolic PDEs (Bertalmio et. al. '01, Ruuth and Merriman '08). The Laplace-Beltrami operator is computed by

$$\Delta_{\omega} u = \Delta E_n u$$

instead of

$$\Delta_\omega u = rac{{
m div}ig(\sqrt{{
m det}\,G}\,G^{-1}
abla uig)}{\sqrt{{
m det}\,G}}.$$

- Embedding method for elliptic PDEs (Dziuk and Elliott '13). Problem: Loss of elipticity.
- New: Ambient B-spline approximation of extended elliptic PDE.

Caution: Let u be a solution of the intrinsic PDE

$$\Delta_{\omega}u+cu=f.$$

Consider the extensions $U := E_n u$ and $F := E_n f$ in normal direction. Then

$$\Delta U + cU = F$$
 on ω

but

 $\Delta U + cU \neq F$ on Ω .

TECHNISCHE UNIVERSITAT DARMSTADT

Can we define an elliptic operator L such that

 $LEu = E\Delta_{\omega}u$?

Then, we would have

$$\Delta_{\omega}u + cu = f$$

$$E(\Delta_{\omega}u + cu) = Ef$$

$$LEu + cEu = Ef$$

$$LU + cU = F$$

→ ∃ > < ∃ >

< □ > < ---->

New approach

Theorem (Odathuparambil, R. '14)

Let d be the signed distance function of ω . Define

• the matrix

$$Q := (\mathsf{Id} - dH)^{-1}, \quad H := \nabla^2 d.$$

• the differential operator

$$LU := \Delta_Q U := \sum_{i,j} Q_{i,j} (\nabla Q \nabla U)_{i,j}.$$

Then L is uniformly elliptic in a vicinity of ω and satisfies

$$LE_n u = E_n \Delta_\omega u$$

In particular,

$$\Delta_{\omega} u + cu = f \quad \Rightarrow \quad LU + cU = F, \quad \nabla U \cdot \nabla d = 0.$$

New approach

Theorem (Odathuparambil, R. '14)

Let d be the signed distance function of ω . Define

• the matrix

$$Q:=(\mathsf{Id}-dH)^{-1},\quad H:=\nabla^2 d.$$

• the differential operator

$$LU := \Delta_Q U := \sum_{i,j} Q_{i,j} (\nabla Q \nabla U)_{i,j}.$$

Then L is uniformly elliptic in a vicinity of ω and satisfies

$$LE_n u = E_n \Delta_\omega u$$

In particular,

$$\Delta_{\omega}u + cu = f \quad \Leftrightarrow \quad LU + cU = F, \quad \nabla U \cdot \nabla d = 0.$$

• $\omega = \varphi^{-1}(0)$ is given as a levelset.

- General second order differential operator on $\boldsymbol{\omega}$

$$L^{0} := A^{0} * \nabla^{2} u + B^{0} * \nabla u := \sum_{i,j} A^{0}_{i,j} \partial_{i,j} u + \sum_{i} B^{0}_{i} \partial_{i} u$$

• Sought: Extension

$$L := A * \nabla^2 U + B * \nabla U$$

to ambient space along the orthogonal flow ψ such that

$$LU = LE_{\psi}u = E_{\psi}L^{0}u.$$

• **Challenge:** Find a formula for the functions $A = A(X), B = B(X), X \in \Omega$.

Theorem (Odathuparambil, R. 15)

Consider the system of ODEs

$$egin{aligned} & ilde{A}' = |
abla arphi|^{-1} (ilde{A}H + H ilde{A}), \quad H :=
abla^2 arphi \ & ilde{B}' = |
abla arphi|^{-1} (H ilde{B} + ilde{A} * \partial H) \end{aligned}$$

with initial conditions $\tilde{A}(0) := A^0, \tilde{B}(0) := B^0$ and define

$$A(\psi(x,t)) := \tilde{A}(t), \quad B(\psi(x,t)) := \tilde{B}(t).$$

Then the operator L, as defined above, is uniformly elliptic in a vicinity of ω if so is L⁰, and satisfies

$$LU = E_{\psi}L^0u$$

In particular,

$$L^0 u = f \quad \Leftrightarrow \quad LU = F, \quad \nabla U \cdot \nabla \varphi = 0.$$

- If the boundary $\partial \Omega$ is given by levelsets, the problem

$$LU = F, \quad \nabla U \cdot \nabla \varphi = 0$$

is equivalent to an elliptic PDE with Neumann boundary conditions,

$$LU = F$$
, $\nabla U \cdot \nabla \varphi = 0$ on $\partial \Omega$.

• Meshing required.

• If the boundary of Ω is *not* given by levelsets, the problem

$$LU = F, \quad \nabla U \cdot \nabla \varphi = 0$$

- is still well posed. In particular, Ω can be defined as a union of boxes covering $\omega.$
- No meshing required!

- Implementation and practical tests
- Ambient smoothing splines (L. Maier)
- Manifolds with boundary
- Error estimates

. . .

TECHNISCHE UNIVERSITAT DARMSTADT

글 > - + 글 >

- Implementation and practical tests
- Ambient smoothing splines (L. Maier)
- Manifolds with boundary
- Error estimates
- . . .

Thanks for your attention!

(B)