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1 (i) - The Helmholtz decomposition

Velocity v = div-free part vaiv = curl ¢ + curl-free part Vq

- The sum is orthogonal in ? R2 fvdlv Vqg=—- f q div vaiy = 0.

- The div-free part vgi, can be written as the curl of a scalar stream
function ¢ :

dp Oy
Vaiv = curl ¢ (8y - 5‘2:)
(one has diveurl ¢ = 0)

- The term Vg is curl-free since curl(Vq) =V x Vg = 0.



1 (i) - Application 1 : Maxwell equations

Following Helmholtz (1858), the electric field E, that vanishes suitably
quickly at infinity can be decomposed as :

E = FEro + Esol

where V - E,o: = 0 (rotational component) and curl Esop =V X Esop =0
(solenoidal component).

E and B (magnetic field) are related to a scalar potential V and a vector
potential A :
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By Maxwell equations V - E = %, VXE= %7 V-B =0,... rewrites :

E=VXxF-VV

(V charge density potential)



Application 2 : Incompressible fluids

2D turbulent velocity/vorticity /pressure fields

_ Bul)

e Incompressibility condition : V.u = 6“1 + 8“2 =0

pressure p;(x)
— u = curl ¢ where ¢ is the stream function (and ul Vp)




1 (i) - Application 3 : visualization of 3D vector fields

Fig.1: Helmholtz decomposition of a longitudinal trajectory in Alzheimer’s disease,
and pressure potential and divergence maps associated to the irrotational component.
The divergence describes the critical areas of local expansion and contraction.

[Lorenzi-Ayache-Pennec, MICCAI2012]



1 (i) - Application 5 : Optimal Transport

Linear interpolation between two densities po and p1 ( f po = f p1) vs
interpolation by transport

Monge-Kantorovitch problem (MKP)

Find a transport M from po to p1 that realize the infimum of the Wasserstein
distance :

d(po. p1)? = in / M (2) — 2%p(z) de




1 (i) - Application 5 : Optimal Transport
Benamou-Brenier formulation (2000)
Continuum mechanic framework : Q = (0, T) x [0, 1]

- Time-dependent densities p(¢,2) >0 s.t.  p(0,z) = po(z), p(T,z) = p1(2),
- Velocities v(t,z) s.t.  Jip+ V.(pv) =0

Let m = pv, V(Q) = {f = (p,m) € (L2(Q))'*", dive.of = 0}.

Convex problem with linear constraints

d2(po,p1)? =  inf // ddt ://2
2(po, p1) - o ( pv7)

=
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Linear interpolation between po and p1 vs interpolation by transport



1 (ii) - Helmholtz decomposition in the whole space

] U = Ugip + Ueun, = curl o +Vq in R" [ (n=2,3)

Remark that :

curl ¢ L Vg, diva=V-u= div(ug,)+divVg = Aq (Poisson)

e In the whole space 2 = R? we have the orthogonal splitting :
(L*(R?)? = Hain(R?) & Hi (R?)
where

Hain (R?) {uaiy € (L*(R*)?; div ug, = 0}

= {ua = curl ¢ ; p € H'(R?)}

is the space of divergence-free vector functions on R
Its orthogonal complement is the space of curl-free vector functions :

Hiw(R?) = {ueun € (L*(R?))?; curl ueyn = 0}
= {uen =Vyq; g€ Hl(RQ)}



1 (ii) - Helmholtz-Hodge decomposition in the square/cube

e Expected boundary conditions on I" = 92

u = 0 (Dirichlet) or u- v = 0 (free-slip)
(v outward normal to I)

o Now we want to write u € (L?(£2))? as follows

| u=curl p+Vqg in Q

By Green’s formula, the sum is orthogonal if :

Jo curl ¢ -NVq=— [, qdiv(curl o)+ [ q curl p-v= [.qcurl p-v=0
Two possibilities :

or

| curl p-v=0 on I' |




(iii) More general : Helmholtz-Hodge Decomposition

[Girault-Raviart 86]

e For u ¢ (L*(Q))", @ C R a regular open subset, we have :

u=curl p+Vqg+h — unique go,qGHol(Q),h J

with
V- (curl ) =0, curl (Vq) =0, V-h=0 and curl h=0
e In terms of spaces, we obtain :
(L2(Q)" = Hai () ® Hewrt(Q) @ Hpar () — orthogonal sum
where
Haw(Q) = {ue(L*(Q)"; V-u=0and u-v=0on dQ}

chrl(Q) = {Vq ;4 € H()l(Q)} and H}Lm'(Q) = {Vq ;g€ Hl(Q) @Aq = 0}



(iii) Practical computation of the Helmholtz-Hodge
decomposition

u=curl p+Vqg=u4w+ Vg

e In the whole space R" :
divVg(= Ag) =divu

Udiv = A — V(A)fldlvu
— all computations can be done in Fourier domain

e On a subdomain 2 : one has first to solve the Poisson equation
Ag=divu

with suitable B.C. % =u-v on 99, and then compute ug, =u— Vg
— needs for Compatible Discrete Operators
(grad(curl) = 0 and div(grad) = 0) on staggered grids.

e If O =[0,1]", use divergence free/curl free wavelets!



Divergence-free function basis of H 4, () = curl(Hy (2))

Scaling functions : (I)Zl”’k = curllp]) ;. ® ¢p 1]

Wavelets : \I/J‘l‘l"( = curl[y)) 1, ® ;) 1]

[Kadri-Harouna Perrier 2012]



Curl-free function basis of H ., (Q) = grad(Hy ())

Tl

. . . Geurl _ D D
Scaling functions : <I>j07k = VI©jo k © Cio ky)

Wavelets : j“l;l = V[T/)]l,kl & wjz,kQ]
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Helmholtz-Hodge decomposition by wavelets

U = Udiv + Ucurl + Uhar

. divy\ __ . div curly __ curl
Then "<u/\I]‘],k> = (udw/\If‘]’k> and <u/qu,k> = (Ueun/¥5%)
Searching

div dlv curl curl
Udiv = E 4k ik and Ucurl = E dj )¢
jk
leads to :
div div curl curl
(dJ k) Mdlv(<u/\11 >) and (dj’k ) - curl((u/\lj >)
(Masy and Meyp1 : Gram matrices). Finally up.r = u — Udiv — Ucurl
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(i) Incompressible Navier-Stokes equations

v —vAV+ (v-V)v+Vp=1f, z€Q, te[0,T]
V.-v=0, zeQ, te|0,T]

V(07 :L) = V[)(.’L‘), T €Q

v =0, z €N, te|0,T)

Unknowns : velocity v(t,z) and pressure p(¢,z)

(NS)

Projecting (NS) onto H 4, () yields :
Ov =PlvAv — (v-V)v + 1] (NSP)

with P : (L*(Q))™ — Hain () orthogonal projector.
The pressure p is recovered through the Helmholtz-Hodge decomposition :

Vp =vAv — (v-V)v+f —PrAv — (v-V)v +{]
— Modified projection method with spacial approximation :

vit,z) =" di'R () ¥k (2)
jk

[Kadri-Harouna Perrier 2014]



Lid Driven Cavity, Re=1000

Divergence-free scaling coefficients :

Vorticity contour (left) and divergence-free scaling function coefficients

contour (middle). Steady state for Re = 1000 and j = 7.
Evolution in time of the ratio of divergence-free wavelet coefficients up to a

fized € (right), for Re = 1000 and j = 8.



1 (iii) - Optimal Transport Computation

Set po, p1 € L. ]
V(Q)={f = (p,m) € (L*(Q)'", pe L™, v=" € L', diveof = 0}.

(BB) (W”i)relfv(Q)j(p, m) with J(p,m / /0 . |m|2d dt
e Helmholtz-Hodge decomposition of (p, m) € V(Q)

(pym)=V x¢d+Vh
with V=V,,, ¢ =0 on 0Q, and

{Ah:[)inQ7

9 = (p,m) v on 9Q,

New functional (h being fixed)

/ /01 F(V X ¢+ Vh)dzdt

. Y|?
where F': (X, Y) — ‘T

Proposition : The functional J, has better convexity properties than
J(p, m) — Primal dual algorithm to J [Henry, Maitre, P._2016]



Application to 2D+t (test case)

[Henry, Maitre, P. 2016]

t=20 t=0.25 t=20.5 t =0.75 t=1

Comparaison between the primal-dual method using HH decomposition
(PDHH) and the same primal-dual method of [Papadakis, Peyré, Oudet
2014] (PDPOP"), needing a projection at each iteration on a 64 x 64 x 64

grid .
[lpi — psl] PDHH PDPOP%" Speedup
1072 1243 (3°117) 514 (3'317) 9%
1073 3985 (10°10”) 3761 (25'46”) 61%
107 30569 (1 :21°56”) | 30349 (3 :27°30”) 61%

TABLE — Performance evaluation
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Conclusion

» Helmholtz-Hodge decomposition occurs in various contexts

» Divergence-free and curl-free wavelets allows its practical
computation on square/cubic domains

» Used for Navier-Stokes simulation (2D, 3D)

» Optimal Transport : (in progress) use of divergence-free wavelets, to
provide a new functional in terms of div free wavelet coefficients
(preliminary studies with periodic divergence free wavelets using a
gradient descent method)
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