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High-dimensional problems in uncertainty quantification

Parameter-dependent models
M(u(X); X)=0

where X = (Xi,..., X4) are random variables.
@ Forward problem: evaluation of statistics, probability of events, sensitivity indices...
uX)) = [ FuG0)plx)ds
@ Inverse problem: from (partial) observations of u, estimate the density of X

p(x)

@ Solving forward and inverse problems requires the evaluation of the model for many
instances of X.

Anthony Nouy Ecole Centrale Nantes 2



High-dimensional problems in uncertainty quantification (UQ)

@ In practice, we rely on approximations of the solution map
x — u(x)
which are used as surrogate models.

o Complexity issues:
e For complex models, only a few evaluations of the function are available.
e High-dimensional function
u(xi, ..., xd)

@ Specific low-dimensional structures of functions have to be exploited (low effective
dimensionality, anisotropy, sparsity, low rank...)
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Tensor spaces of multivariate functions

Let V, be a space of functions defined on an interval X, C R.

The elementary tensor product v = v® ®R...RQ v of functions v(*) ¢ V, is a
multivariate function defined on X = X1 x ... x Xy and such that

v(x) = v(x1,...,xq) = v(l)(xl) . v(d)(xd)

The algebraic tensor product of spaces V, is defined as

Viw...® Vd:span{v(1)®...®v(d) v ¢ V,,1<v<d}
A Banach tensor space Vie..ov!
norm || - ||

is obtained by completion with respect to a

Here we consider V), = L ,(X.) where X, is equipped with a probability measure p,,
and the Hilbert tensor space

- _ Z(X)

L) e... oL, (X)
with 1 = ji1 ® ... ® jug and where || - || is the natural norm on L2 (X).
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Canonical rank

The canonical rank of a tensor v € V1 ® ... ® Vg is the minimal integer r such that

v = Z Vlsl)(Xl) . Vlgd)(Xd)
k=1

For d = 2, it is the unique notion of rank and
Rr={v:rank(v) <r}
is a proximinal set and a smooth manifold.

An order-two tensor u in the Hilbert tensor space Vi ® VQH.”

decomposition

admits a singular value

u= Z Ok V£1)(X1)VI£2)(X2)

k>1

An element of best approximation of u from R, is given by the truncated singular value
decomposition where we retain the r largest singular values.
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Canonical rank

For d > 3, the set R, looses many of the favorable properties of the case d = 2.
@ Determining the rank of a given tensor is a NP-hard problem.

@ R, is not closed. The consequence is that for most problems involving
approximation in canonical format R,, there is no robust method when d > 2.

@ The set R, is not an algebraic variety.

@ No notion of singular value decomposition.
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a-rank

For a non-empty subset « of D ={1,...,d}, atensoru e V=WV ®

identified with an order-two tensor

Ma(u) € Vo ® Vae,

where Vo, = Q) V,,and a“ =D\ a.

vea

[T T A

My

M2y

...® V4 can be

The a-rank of u, denoted rankq (1), is the rank of the order-two tensor M (u),

ranka (u) = rank(Mq(v)),

which is the minimal integer r, such that

roo

u(x) = Y vid ()i (xac)

k=1

for some functions v (x.) and W (xac) of groups of variables

Xa = {Xv}rea and xac = {x}rcac.
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a-rank

The motivation behind the definition of tensor formats based on a-ranks is to benefit
from the nice properties of the two dimensional case.

@ The set
'T,ia} ={v e V:ranka(v) < r.}
of tensors with a-rank bounded by r, is weakly closed (and therefore proximinal).

@ For a given tensor u, Mq(u) admits a singular value decomposition. A best
approximation of u from 7’,({10‘} is provided by the truncated singular value
decomposition of M (u) where we retain the r, largest singular values.

@ The determination of the a-rank of a tensor is feasible.

° 'ﬁc{f} is a smooth manifold.
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a-ranks and related low-rank formats

For T a collection of subsets of D, we define the T-rank of a tensor v, denoted
rankr(u), as the tuple

rankr(v) = {ranka(v)}aer.

The subset of tensors with T-rank bounded by r = (ra)acT is

’T,T:{VG V :rankr(v) <r} = m 771&}'

acT

As a finite intersection of subsets 'T,i”}, 7,7 inherits from geometrical and topological
properties of the subsets 77({10‘} which are favorable for numerical simulation.

In particular, 7,7 is weakly closed.
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a-ranks and related low-rank formats

Different choices for T yield different tensor formats:
o the Tucker format for T = {{1},...,{d}}

@ the Tensor Train format @[Oseledets—Tyrtyshnikov'09] for
T ={{1},{1,2},...,{1,...,d — 1}}

@ and more general tree-based (or hierarchical) Tucker formats @[Hackbusch-Kuhn'OQ]
for T a tree-structured subset of 2°.

{1,2,3,4,5}

{1,2,3,4,5}

{1,2,3,4}
{1,2,3,4,5}

m o N
{1,2}

{1+ {2y {3y {4} {5}
Tucker

{2y {3}

& Tree-based Tucker

Tensor Train
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Tree-based tensor formats

A tensor v € 7,7 admits a representation

n r d M
V(X1, ce. 7Xd) = Z cee Z H P(V) (Xy, (ki)ies,,) H P(V) ((ki)fes,,)

k=1 kp=1v=1 v=d+1

where the parameter p{*) is a tensor which depends on a subset of summation variables
(ki)ies, = ks, .

@ Multilinear parametrization:
T, ={v=F(pi,...,p)ipx € Pi,1 < k< L}
where F is a multilinear map.

@ Storage complexity scaling as O(dR®) where #S, <s, r, < R.

o Different extensions of the notion of singular value decomposition for higher-order
tensors u, which provide quasi-optimal approximations u, € 7,7 such that

o= ull < VFET min flu—v]
vE’r,T
e 7,7 is a smooth manifold
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Statistical learning methods for tensor approximation

o Approximation of a function u(X) = u(Xi,..., Xy) from evaluations
{yk = u(x*)}&_; on a training set {x*}¥_; (i.i.d. samples of X)
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Statistical learning methods for tensor approximation

o Approximation of a function u(X) = u(Xi,..., Xy) from evaluations
{yk = u(x*)}&_; on a training set {x*}¥_; (i.i.d. samples of X)

@ Approximation in subsets of rank-structured functions M, by minimization of an
empirical risk

Ric(v) = 7 S Uu(x), V(=)

where £ is a certain loss function.
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Statistical learning methods for tensor approximation

o Approximation of a function u(X) = u(Xi,..., Xy) from evaluations
{yk = u(x*)}&_; on a training set {x*}¥_; (i.i.d. samples of X)

@ Approximation in subsets of rank-structured functions M, by minimization of an
empirical risk

Ric(v) = 7 S Uu(x), V(=)

where £ is a certain loss function.

@ Here, we consider for least-squares regression
Ri(v) = (u(x*) = v(x"))? = Ex((u(X) = v(X))")
but other loss functions could be used for different objectives than L?-approximation

(e.g. classification).
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Alternating minimization algorithm

@ Multilinear parametrization of tensor manifolds
M’:{V: F(p17"‘apL):p/ ERm/al SIS L}
so that R R
min Ri(v) = min Rx(F(p1,...,pL))

veEM, P1s--5PL
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Alternating minimization algorithm

@ Multilinear parametrization of tensor manifolds
M’:{V: F(p17"‘apL):p/ ERm/al SIS L}
so that R R

min Ri(v) = min Rx(F(p1,...,pL))

veM, Plseeey PL
@ Alternating minimization algorithm: Successive minimization problems

min Ric(F(py- 1+ p))
pIER™I
vi()

which are standard linear approximation problems

min 1 Zf(u(xk), v,(x*) " p))

perm™ K

Anthony Nouy Ecole Centrale Nantes



Alternating minimization algorithm

@ Regularization

min 2o D (u(x), W13 1) + ()

with regularization functional 2, promoting
e smoothness (of univariate functions),
o sparsity (e.g. Q/(pr) = \i||pi]|1 for convex relaxation methods, or a

characteristic function for working set algorithms),
o ...

@ (x) is a standard regularized linear approximation problem.

o For square-loss and Q;(p1) = \/||pil]1, (%) is a LASSO problem.

@ Cross-validation methods for the selection of ;.
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Illustrations

@ Approximation in tensor-train (TT) format:

fd—1

d
v(xi,...,xd) = Z Z V1 ,1 Vi, EZ(XZ)"'Vi(d,)l,l(Xd)

=1 ig—1=1

e Polynomial approximations: v W e Pq

lk 1 ’k
e Parametrization: v = F(p1,...,ps) with parameter p, € R (@+rkn—1 gathering
the coefficients of functions of xx on a polynomial basis (orthonormal in
Lik(Xk)).

@ Number of parameters:
storage(v Z nin(p+1) = 0(d(p + 1)R?)

with R > r,.

@ Sparsity inducing regularization and cross-validation (leave one out) for the
automatic selection of polynomial basis functions. Use of standard least-squares in
the selected basis.
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Illustration : Borehole function

The Borehole function models water flow through a borehole:

2r Tu(Hy — Hi)

LI(X) = ) X = (rW7|0g(r)1 TLHHLH T/7 H/,L, KW)
Y (e ——
In(r/rw)ra Kw T
fw radius of borehole (m) N(p = 0.10,0 = 0.0161812)
r radius of influence (m) LN(p =7.71,0 = 1.0056)
T,  transmissivity of upper aquifer (m?2/yr) U(63070, 115600)
H,  potentiometric head of upper aquifer (m)  U(990,1110)
T,  transmissivity of lower aquifer (m?/yr) U(63.1,116)
H, potentiometric head of lower aquifer (m)  U(700, 820)
L length of borehole (m) U(1120, 1680)

K,  hydraulic conductivity of borehole (m/yr)  U(9855,12045)

@ Polynomial approximation with degree g = 8.
@ Test set of size 1000.
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Illustration : Borehole function

@ Test error for different ranks and for different sizes K of the training set.

rank K =100 | K=1000 | K=10000
(1111111)] 17107 | 141077 | 14102
(2222222) [ 6710 % [ 91107* | 331077
(3333333) [ 3210° [ 1.210°* | 1.010°
(4444444)| 211007 [ 7610 ° | 1.910 7
(55655555) | 7.310° | 3.8107° | 2.810° 7
(6666666) | 7.910° T | 41107° | 21107
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Illustration : Borehole function

@ Test error for different ranks and for different sizes K of the training set.

rank K =100 | K=1000 | K=10000
(1111111)] 17107 | 141077 | 14102
(2222222) [ 6710 % [ 91107* | 331077
(3333333) [ 3210° [ 1.210°* | 1.010°
(4444444)| 211007 [ 7610 ° | 1.910 7
( )
( )

5555555 7.310° | 3.8107%* | 2.810~°
6666666) | 79101 | 411073 | 2.110°7

e Finding optimal rank is a combinatorial problem...
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Heuristic strategy for rank adaptation (tree-based Tucker format)

o Given T c 2t+9} construction of a sequence of approximations uy, in tree-based
Tucker format with increasing rank:

um € {v : rankr(v) < (ry)aet}
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Heuristic strategy for rank adaptation (tree-based Tucker format)

o Given T c 2t+9} construction of a sequence of approximations uy, in tree-based
Tucker format with increasing rank:

um € {v : rankr(v) < (ry)aet}

@ At iteration m,

=™ 11 fae Ty
rmtl = pm ifad¢ Tm

where T, is selected in order to obtain (hopefully) the fastest decrease of the error.
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Heuristic strategy for rank adaptation (tree-based Tucker format)

o Given T c 2t+9} construction of a sequence of approximations uy, in tree-based
Tucker format with increasing rank:

um € {v : rankr(v) < (ry)aet}

@ At iteration m,

=™ 11 fae Ty
rmtl = pm ifad¢ Tm

where T, is selected in order to obtain (hopefully) the fastest decrease of the error.

@ A heuristic strategy consists in computing the singular values
ol > ... > O'f:r:?

of a-matricizations Mq(um) of um foralla € T

o |[uml2 =0, (0%) foralla € T.
e o provides an estimation of an upper bound of ||u — um|lv(va@v,c)
o Letting 0 < 0 <1, we choose

Tm = {a eT:om> Gmaxafm}
o geT 5
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Illustration :

@ Training set of size K = 1000

The selected rank is one order of magnitude better than the optimal “isotropic”
rank (r,r,...

7r)

Anthony Nouy

Borehole function

iteration rank test error
0 (1111111) ] 1.41072
1 (2222222) | 441077
2 (2223322) | 8110°°
3 (3334322) | 6.210°°
4 (3334432) | 21107°
5 (3334433) ] 9610°°
6 (3444544)| 1.510°
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Illustration : Borehole function

@ Training set of size K = 1000

iteration rank test error
0 (1111111) ] 1.41072
1 (2222222) | 441077
2 (2223322) | 8110°°
3 (3334322) | 6.210°°
4 (3334432) | 21107°
5 (3334433) ] 9610°°
6 (3444544)| 1.510°

The selected rank is one order of magnitude better than the optimal “isotropic”
rank (r,r,...,r)

o Different sizes K of training set, selection of optimal ranks.

TT format Canonical format
K rank test error K rank | test error
100 | (3443321) ] 711077 100 2 1.0107°
1000 | (3334432) | 6.210°° 1000 5 3.81077
10000 | (5667754) | 2410°° 10000 7 6.010°°
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Influence of the tree

o Test error for different trees T (Training set of size K = 50)

{v1,v2,v3, 14}

{v1,v2,v3}

{v1, 12}

{v1,v2,v3, 14,05}

{vs}

{vi} {r2}
tree {vi,...,va} optimal rank test error
T, | (12345678) | (2222211) | 6210 °
T, | (13856247) | (2222221) | 1.310 °
Ts | (716814523) | (1111111) | 15102
T. | (82475136) | (1123322) | 1.310 2

o Finding the optimal tree is a combinatorial problem...
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Strategy for tree adaptation

Starting from an initial tree, we perform iteratively the following two steps:

@ Run the learning algorithm with rank adaptation to compute an approximation v
associated with the current tree

fd—1
(

d
v(xt,. .., X Z Z v1 ,1 (Xpy) - v,-d_)hl(x,,d)

i1=1 ig—1=1

@ Run a tree optimization algorithm yielding an equivalent representation of v (at the
current precision)

Fg—1
o 1/1) (g
v(xt,. .. xq) & V(x1,. .., Xd E E U (xin) - 7 11(xl,d)
=1 ig—1=1
with reduced storage complexity, where {1, ...,vq4} is a permutation of

{I/1, . .,l/d}.
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Strategy for tree adaptation

Illustration with training set of size K = 50.
We run the algorithm for different initial trees.
Indicated in blue are the permuted dimensions in the final tree.

l tree | {v,...,va} | optimal rank [ test error

12345678) | (2222211) [ 621077
12354678) | (2222211) | 45107

initial 13856247)[(2222221) [ 1.3107°
final 13852647) | (2222221) | 5110 7

( (
( (
( (
( (
[ initial and final [ (76814523) [ (1111111)] 15107
( (
( (
( (

initial
final

82475136) | (1123322) | 1.310 7
82751436) | (1122222) | 1210 °
82751346) | (1122222) | 1.310 °

initial

final
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Concluding remarks

@ For rank adaptation, possible use of constructive (greedy) algorithms for tree-based
Tucker formats.
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Concluding remarks

@ For rank adaptation, possible use of constructive (greedy) algorithms for tree-based
Tucker formats.

@ Need for robust strategies for tree adaptation.

@ “Statistical dimension” of low-rank subsets ?
For example, the Henon-Heiles potential

2 d—1

0 2
u(x) = Zx + 0. 2Z(X,X,+1 5 Z(x,2 +Xi2+1)7 xi ~ U(-1,1),

i=1

has TT-rank (3,...,3), a storage complexity scaling as O(d), and the number of
samples to recover the function with probability 90% scales as O(d%/?).
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0 2
u(x) = Zx + 0. 2Z(X,X,+1 5 Z(x,2 +Xi2+1)7 xi ~ U(-1,1),

i=1

has TT-rank (3,...,3), a storage complexity scaling as O(d), and the number of
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o Adaptive/structured sampling strategies.
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Concluding remarks

@ For rank adaptation, possible use of constructive (greedy) algorithms for tree-based
Tucker formats.

@ Need for robust strategies for tree adaptation.

@ “Statistical dimension” of low-rank subsets ?

For example, the Henon-Heiles potential

0. 22
u(x) = Zx + 0. 2Z(X,X,+1 5 Zl(x,2 + Xi2+1)7 xi ~ U(-1,1),
has TT-rank (3,...,3), a storage complexity scaling as O(d), and the number of
samples to recover the function with probability 90% scales as O(d%/?).

o Adaptive/structured sampling strategies.

@ Goal-oriented approximations.
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