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Wavelets in signal and image processing . . .

• Signal or image: explicitly given object described by N data points

• Goal: data compression without loosing essential information

• Method: single-(fine-)scale ←→ multi-scale representation of object

• Change of representation by Fast Wavelet Transform in O(N) operations (based on locally
supported functions)

; Discard small coefficients in multi-scale representation

; Data compression

• Landmark: Daubechies’ construction of L2(R) orthonormal wavelets with compact support
[1988]
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Image Compression — (Old) Examples

Original (768×768 pixels, 589.824 bytes) JPEG compression (12.9:1, 45.853 bytes)
Wavelet compression: JPEG 2000 (12.9:1, 45.621 bytes) [Brislawn, FBI, Los Alamos Laboratory, 1996]

Original (left), compression 100:1 (MT-WICE (Wavelet Based Image Compression), Mevis, right)
Compression 80:1 (MT-WICE left) JPEG (right)
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Wavelets: Multiscale Basis with Additional Properties

Image v ∈ VN ⊂ L2(R2) (or L2((0, 1)2) with dim VN = N <∞

. . . more general:
consider objects in (infinite-dimensional) Hilbert space H on domain Ω ⊂ Rd with ‖ · ‖H

Ψ := {ψλ : λ ∈ I} ⊂ H wavelets, I (infinite) index set, λ index: resolution |λ|, location k. . .

(NE) Norm equivalence: Ψ Riesz basis for H:

v ∈ H: v = vT Ψ :=
∑
λ∈I

vλ ψλ such that ‖v‖H ∼ ‖v‖`2(I)

(L) Locality diam (suppψλ) ∼ 2−|λ| |λ| resolution

ψλ centered around 2−|λ|k

(CP) Cancellation property (vanishing moments)

〈v , ψλ〉 <∼ 2−|λ|(
d
2

+m̃) ‖v (m̃)‖L∞(supp ψλ) for some m̃

0 1

ψ
2,2

ψ
2,1

[Dahmen, Kunoth, Urban ’99] [Dahmen, Schneider ’99], [Kunoth, Sahner ’06] [Harbrecht, Schneider ’00]
Constructions of (biorthogonal spline-)wavelets on bounded domains (based on [Cohen, Daubechies, Feauveau ’92])
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Applications to PDEs:
(Local) wavelet transforms to detect shocks/discontinuties for hyperbolic conservation laws

. . . spectral viscosity methods . . .

Wavelets as multiscale bases for numerically solving PDEs? A typical example . . .

Elliptic PDE (Elliptic Partial Differential Equation)

Elliptic PDE of order 2r on domain Ω ⊂ Rd , d ≥ 2

r = 1 (Laplace operator): −∆y = f in Ω, y |∂Ω = 0
r = 2 (biharmonic operator): ∆2y = f in Ω, y |∂Ω = n · ∇y |∂Ω = 0

Variational formulation ; Weak operator form: for given f ∈ H−r (Ω), find y ∈ H r
0 (Ω) such that

Ay = f in H−r (Ω)

Elliptic operator A defined by 〈Av ,w〉 := a(v ,w) symmetric, continuous

and coercive on H r
0 (Ω): ‖Av‖H−r (Ω) ∼ ‖v‖Hr (Ω) (mapping poperty (MP))

Example: r = 1 (Laplace operator ; Dirichlet problem)

a(v ,w) :=

∫
Ω

∇v(x) · ∇w(x) dx
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Numerical Solution on Finite-Dimensional Space — A View from Finite Elements

Discretization on uniform grid: Vh ⊂ H r
0 (Ω) dimVh <∞ ; Ah yh = fh (∗)

0 < h < 1 grid spacing

Goal: Realize discretization error accuracy ε
with minimal amount of work O(N(ε)) in amount of unknowns N(ε)

Obstructions for fast numerical solution:

◦ Typical: representation of Vh using basis with compact support (finite element basis)

; large sparse linear system of equations (∗) ; iterative solver

◦ Convergence speed of iterative solver depends on cond2(Ah)

◦ Standard discretizations with finite elements ; cond2(Ah) ∼ h−2r

0 < h < 1 grid spacing

◦ High desired accuracy, resolution of singularities in data and/or geometry ; small h

; larger problem ; worse condition number
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A-priori Estimates for Finite Elements

Quality measure: Approximation in norm ‖y − yh‖L2(Ω) ≤ ε

A–priori error estimates: Ω ⊂ Rd dim Vh = N ∼ h−d uniform grid

‖y − yh‖L2(Ω) <∼ hs ‖y‖Hs (Ω) yh ∈ Vh 0 ≤ s ≤ p + 1

⇐⇒ ‖y − yN‖L2(Ω) <∼ N−s/d ‖y‖Hs (Ω)

N degrees of freedom ←→ accuracy O(N−(p+1)/d )

Approximation rate determined by

(i) (piecewiese polynomials of degree p ;) approximation order p + 1 of Vh

(ii) space dimension d

(iii) amount of smoothness of y in L2

Target:

Realize discretization error accuracy ε ∼ hp+1 ∼ 2−(p+1)J for fine grid with spacing h ∼ 2−J

Problem complexity: For h ∼ 2−J a total of N ∼ 2Jd unknowns

Optimal complexity for iterative solver: Minimal amount of work is O(N)

Multilevel setting:
Vh ←→ VJ h ∼ 2−J J finest resolution level

Multiresolution Vj0
⊂ Vj0+1 ⊂ . . . ⊂ Vj ⊂ . . . ⊂ VJ ⊂ H r

0 (Ω)
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Multilevel Preconditioners

Asymptotically optimal preconditioner CJ such that cond2(CJAJ ) ∼ 1 and
setup and application of CJ in optimal linear complexity O(N)

Schwarz iterative schemes based on subspace corrections

; Multilevel schemes yielding optimal preconditioners:

I Multiplicative schemes ; multigrid methods Brandt, Braess, Bramble, Hackbusch . . .

I Additive schemes (; BPX preconditioner [Bramble, Pasciak, Xu ’90])
Wavelet discretizations/Preconditioner based on Fast Wavelet Transform

[Jaffard ’92], [Dahmen, Kunoth ’92], [Oswald ’92]

Relevant idea from Approximation Theory: Multilevel characterization of function spaces;
Isomorphism ‖Av‖H−r (Ω) ∼ ‖v‖Hr (Ω) combined with norm equivalences (NE)

Ingredients for reaching goal to reach discretization accuracy in optimal complexity:

(i) Multilevel preconditioner Ch

multigrid methods, BPX preconditioner, wavelet discretizations ; cond2(CJAJ ) ∼ 1

(ii) Nested iteration
optimal condition of system matrix CjAj for each j ; fixed amount of iterations on each
level to reach discretization error accuracy on that level;
spaces nested and Nj ∼ 2dj and geometric series argument

Beyond point of view of finite elements:
wavelets can represent infinite-dimensional and implicitly given objects . . .
; (elliptic) PDEs well-conditioned in (properly scaled) wavelet bases

and allow for adaptivity for non-smooth solutions . . .

Angela Kunoth — 25+ Years of Wavelets for PDEs 7



Multilevel Preconditioners

Asymptotically optimal preconditioner CJ such that cond2(CJAJ ) ∼ 1 and
setup and application of CJ in optimal linear complexity O(N)

Schwarz iterative schemes based on subspace corrections

; Multilevel schemes yielding optimal preconditioners:

I Multiplicative schemes ; multigrid methods Brandt, Braess, Bramble, Hackbusch . . .

I Additive schemes (; BPX preconditioner [Bramble, Pasciak, Xu ’90])
Wavelet discretizations/Preconditioner based on Fast Wavelet Transform

[Jaffard ’92], [Dahmen, Kunoth ’92], [Oswald ’92]

Relevant idea from Approximation Theory: Multilevel characterization of function spaces;
Isomorphism ‖Av‖H−r (Ω) ∼ ‖v‖Hr (Ω) combined with norm equivalences (NE)

Ingredients for reaching goal to reach discretization accuracy in optimal complexity:

(i) Multilevel preconditioner Ch

multigrid methods, BPX preconditioner, wavelet discretizations ; cond2(CJAJ ) ∼ 1

(ii) Nested iteration
optimal condition of system matrix CjAj for each j ; fixed amount of iterations on each
level to reach discretization error accuracy on that level;
spaces nested and Nj ∼ 2dj and geometric series argument

Beyond point of view of finite elements:
wavelets can represent infinite-dimensional and implicitly given objects . . .
; (elliptic) PDEs well-conditioned in (properly scaled) wavelet bases

and allow for adaptivity for non-smooth solutions . . .

Angela Kunoth — 25+ Years of Wavelets for PDEs 7



Paradigm of Adaptive Wavelet Method for One Stationary (Elliptic) PDE
[Cohen, Dahmen, DeVore ’01/’02]

(i) Well–posed variational problem: given f ∈ Q′, B : Y → Q′, find y ∈ Y such that By = f

(MP) ‖Bw‖Q′ ∼ ‖w‖Y for all w ∈ Y mapping property

(ii) ΨY ,ΨQ wavelet bases for Y,Q :

(NE) ‖wT ΨY‖Y ∼ ‖w‖`2
for all w = (wλ)λ∈I ∈ `2

Bw := (〈ψYλ ,Bw〉)λ∈I f := (〈ψYλ , f 〉)λ∈I

;

Theorem By = f ⇐⇒ By = f well-posed in `2 (B : `2 → `2)

(MP) + (NE) ⇐⇒ ‖Bw‖`2
∼ ‖w‖`2

for all w ∈ `2

(iii) Practical solution schemes for By = f:

(A) Perturbed Richardson iteration (for symmetric B):

(A.1) yn+1 = yn + (f−Byn) n = 0, 1, 2, . . . ‖yn+1−y‖`2
≤ ρ ‖yn−y‖`2

ρ < 1

(A.2) Approximate realization: adaptive evaluation of Byn in Solve [ε,B, f]→ yε

(A.3) Coarsening (thresholding) of the iterands (for complexity)

(B) Adaptive wavelet Galerkin method and bulk chasing strategy
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Extension to a Single Parabolic Evolution PDE in Space-Time Variational Form
[Ladyshenskaya et al. 1967], [Wloka ’82], [Dautray, Lions ’92], [Schwab, Stevenson ’09] . . .

(i) Variational space-time form of (PDE)
y ′(t) + A(t) y(t) = f (t) a.e. t ∈ I

y(0) = y0

solution space: Lebesgue-Bochner space Y := (L2(I )⊗ Y ) ∩ (H1(I )⊗ Y ′)

with norm ‖w‖2
Y := ‖w‖2

L2(I )⊗Y + ‖w ′‖2
H1(I )⊗Y ′

test space Q := L2(I ; Y )× L2(Ω) with norm ‖v‖2
Q := ‖v1‖2

L2(I )⊗Y + ‖v2‖2
L2(Ω)

bilinear form b(·, ·) : Y ×Q → R
b(y , (v1, v2)) :=∫

I

[
〈y ′(t, ·), v1(t, ·)〉 + 〈A(t)y(t, ·), v1(t, ·)〉

]
dt + 〈y(0, ·), v2〉 =: 〈By , v〉

right hand side

〈f , v〉 :=

∫
I

〈f (t, ·), v1(t, ·)〉 dt + 〈y0, v2〉

(PDE) ; given f ∈ Q′, find y ∈ Y: By = f

Theorem (MP) ‖Bw‖Q′ ∼ ‖w‖Y for all w ∈ Y mapping property

(ii) ΨY ,ΨQ wavelet bases for Y,Q ; By := (〈ψQλ ,By〉)λ∈I f := (〈ψQλ , f 〉)λ∈I
Theorem By = f ⇐⇒ By = f B : `2 → `2 and By = f well-posed in `2

(MP) + (NE) =⇒ ‖Bv‖`2
∼ ‖v‖`2

, v ∈ `2 B unsymmetric
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Complexity Analysis

Based on benchmark:
decay rate s for (wavelet-)best N term approximation As := {v ∈ `2 : ‖v − vN‖ <∼ N−s}

Work/accuracy balance of best N term approximation:

Target accuracy ε (∼ N−s ) ←→ Work ε−1/s (∼ N)

Convergence and Complexity

For solution routine (A): (Idealized) iteration (for symmetric B)

vn+1 = vn + (f − Bvn) update via Res [η,B, f, v]→ rη ; Solve [ε,B, f]→ vε

Benchmark Theorem [Cohen, Dahmen, DeVore ’01/’02]

Vanishing moments (CP) for wavelets =⇒ B is s∗–compressible

=⇒ for variational problem satisfying (MP) scheme Solve can be designed with properties:

(I) For every target accuracy ε > 0 Solve produces after finitely many steps
approximate solution vε such that ‖v − vε‖ ≤ ε

(II) Exact solution v ∈ As =⇒ supp vε, # flops ∼ ε−1/s ∼ N

Angela Kunoth — 25+ Years of Wavelets for PDEs 10



Core Ingredient of Solve : Compressible Operators

(CP) ; B is s∗–compressible:

for every s ∈ (0, s∗) there exists Bj with ≤ αj2
j

nonzero entries per row and column s.th. for j ∈ N0

‖B− Bj‖ ≤ αj2
−sj ,

∑
j∈N0

αj <∞

(B ‘close to’ sparse matrix)

Application of (Non)Linear Operators in Wavelet Bases
Theory: [Dahmen, Schneider, Xu ’00], [Cohen, Dahmen, DeVore ’03] . . .

Implementation with isotropic tensor-product wavelets: d = 2: [Vorloeper ’10] general d : [Stapel ’11], [Mollet, Pabel ’12], [Pabel ’15]

Input: finitely supported vector v = (vµ)µ∈Λ Λ ⊂ I finite

Output: approximation of Bv with infinite-dimensional operator B : `2(I)→ `2(I)

B : Y → Q′ ; expand Bv ∈ Q′ in dual wavelet basis for Q′ and v in primal wavelet basis for Y
;

Bv = (Bv)T Ψ̃ =
∑
λ∈I
〈Bv , ψλ〉 ψ̃λ =

∑
λ∈I
〈B(
∑
µ∈Λ

vµψµ, ψλ〉) ψ̃λ =
∑
λ∈I

∑
µ∈Λ

vµ〈Bψµ, ψλ〉 ψ̃λ

; compute 〈Bψµ, ψλ〉 for given µ ∈ Λ (finite) and all λ ∈ I

Compressibility of B: |〈Bψµ, ψλ〉| ≤ C‖v‖ sup
µ: Sλ∩Sµ 6=∅

2−γ(|λ|−|µ|) |vµ| γ > d
2 + 1

follows from wavelet property (CP)
Essential data structure (for nonlinear operators): tree-type index sets
input v ; prediction of tree index set based on supp v and properties of B

; computation of (Bv)λ after transformation to piecewise polynomials
; application of B in optimal linear complexity
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Numerical Example for One Parabolic Linear PDE
[Chegini, Stevenson ’11], [Stapel ’11]

Compute y = y(t, x) such that

yt(t, x)− yxx (t, x) = g(t)⊗ (−π2) sin(πx) in I × Ω := (0, 1)2

y(t, 0) = y(t, 1) = 0 for t ≥ 0
y(0, x) = 0 for x ∈ (0, 1)

and g(t) :=

{
1 t ∈ [0, 1

3 )
2 t ∈ [ 1

3 , 1]

Problem formulation and implementation:

I Modified problem with zero initial conditions ;

solution space Y = (L2(I )⊗ H1(Ω)) ∩ (H1
(0(I )⊗ H−1(Ω)) and test space Q = L2(I )⊗ Y

I Inhomogeneous initial data: homogenization of initial conditions ; modification of r.h.s.
I Implementation based on AWM Toolbox by [Vorloeper ’10]

biorthogonal isotropic wavelets of order m = 2, m̃ = 4
I Iterative solution by GMRES

Plot of Solution, Refined Grid and Residual Error Reduction

8526 degrees of freedom Expected rate in H1 (isotropic wavelets): 1/2 red: after coarsening
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Application of Nonlinear Operator in Wavelet Bases: Numerical Example

[Mollet, Pabel ’12], [Pabel ’15]

PDE with nonlinear term

−∆y + y3 = f in Ω := (0, 1)2

y = 0 on ∂Ω

right hand side f solution y (with Richardson scheme and residual error bound 10−3)

distribution of 7177 active wavelet coefficients Runtime (seconds) for evaluating y3 for d ≤ 4
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Application: Optimal Control Problem Constrained by a Parabolic PDE

Given y∗(t, ·) f ω > 0 end time T > 0 initial condition y0

minimize J (y , u) = 1
2

∫ T

0

‖y(t, ·)− y∗(t, ·)‖2
Z dt + ω

2

∫ T

0

‖u(t, ·)‖2
U dt

subject to y ′(t) + A(t)y(t) = f (t) + u(t) a.e. t ∈ (0,T ) =: I (PDE)

y(0) = y0

y ′ := ∂
∂t y y = y(t, x) state u = u(t, x) control

Y = H1
0 (Ω) state space Z = Y = H1

0 (Ω) observation space U = Y ′ = H−1(Ω) control space

A(t) : Y → Y ′ 〈A(t)v(t, ·),w(t, ·)〉 :=

∫
Ω

[∇v(t, x) · ∇w(t, x) + v(t, x)w(t, x)] dx on Ω ⊂ Rd

A(t) 2nd order linear selfadjoint coercive & continuous operator on Y

PDE-constrained control problem ; requires repeated solution of (PDE)

y ′(t) + A(t)y(t) = f (t) + u(t)

y(0) = y0

; requires fast solver as core ingredient

Conventional time discretizations (e.g., Crank-Nicolson method) ;

requires fast solver for elliptic PDE
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Necessary and Sufficient Conditions for Optimality

Optimal control problem constrained by parabolic PDE

; System of parabolic PDEs coupled globally in time (and space)

y ′(t) + A(t) y(t) = f (t) + u(t) a.e. t ∈ I

y(0) = y0

ω R̃−1u(t) + p(t) = 0 a.e. t ∈ I

−p′(t) + A(t)T p(t) = R̃ (y∗(t)− y(t)) a.e. t ∈ I

p(T ) = 0

Riesz operator R̃ defined by 〈v , R̃w〉Y×Y ′ := (v ,w)Y for all v ,w ∈ Y

Obstructions for numerical solution:

• convential time discretizations: time-marching methods
; need storage of y(ti ), u(ti ), p(ti ) for all discrete times 0 = t0, . . . ,T = tN

• in each time step: solve elliptic PDE ; large linear system of equations
; iterative solver ; need preconditioning in (conjugate) gradient method

• singularities in data/domain: adaptive (FE) mesh(es) for y(ti ), u(ti ), p(ti ) for all ti

one mesh for all variables, refinement/coarsening ? . . . [Oeltz ’06], [Meidner, Vexler ’07], . . .

convergence ? complexity ??

Solution Ansatz here: full weak space-time form of parabolic PDE constraint and setup of
control problem in (infinite) wavelet coordinates
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PDE-Constrained Optimal Control Problem in Wavelet Coordinates

minimize J(y, u) = 1
2 ‖R

1/2(y − y∗)‖2 + ω
2 ‖R

−1/2u‖2

subject to By = f + u B : `2 → `2 automorphism ‖ · ‖ := ‖ · ‖`2

Necessary and Sufficient Conditions — Karush-Kuhn-Tucker (KKT) system

L(y, u, p) := J(y, u) + 〈p, By − (f + u)〉

δL = 0 ;

By = f + u

ωR−1u = p

B∗p = R(y∗ − y)

⇐⇒ Qu = g

⇐⇒

R 0 B∗

0 ωR−1 −E
B −E 0


y

u

p

 =

Ry∗

0

f

 (SPP) Q : `2 → `2 automorphism

where
Q := B−∗RB−1 + ωR−1

g := B−∗(Ry∗ − RB−1f)

Angela Kunoth — 25+ Years of Wavelets for PDEs 16



Convergence and Complexity Analysis for Control Problem

with Elliptic or Parabolic PDE Constraints

Essential ideas: Res for Solve [. . . ,Q, . . .] reduced to Res for Solve [. . . ,B, . . .]

applied to normal equations

and KKT system ←→ condensed system Qu = g

Theorem [Dahmen, Kunoth ’05], [Gunzburger, Kunoth ’11]

For any target accuracy ε > 0 Solve [ε,Q, g]→ uε converges in finitely many steps

‖u− uε‖ ≤ ε ‖y − yε‖ <∼ ε ‖p− pε‖ <∼ ε uε, yε, pε finitely supported

u, y, p ∈ As =⇒

(# supp uε) + (# supp yε) + (# supp pε) <∼ ε−1/s
(
‖u‖1/s
As + ‖y‖1/s

As + ‖p‖1/s
As

)
‖uε‖As + ‖yε‖As + ‖pε‖As <∼ ‖u‖As + ‖y‖As + ‖p‖As

#flops ∼ ε−1/s
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Numerical Example for Elliptic Control Problem (2D)

target state y∗

type e = (1, 0) type e = (0, 1)
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1.69e-03

0.00e+00 4

5

6

7

1.69e-03

0.00e+00
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2.08e-01

0.00e+00 4

5

6

7

2.08e-01

0.00e+00

4

5

6

7

4.34e-03

0.00e+00 4

5

6

7

4.34e-03

0.00e+00

[Burstedde ’05]
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Summary: PDE-Constrained Control Problems

I Control problem constrained by parabolic PDE

Full weak space-time formulation of evolution PDE

; saddle point system of PDEs coupled globally in time and space

I For smooth solutions: multilevel/wavelet preconditioners + nested iteration

; numerical solution scheme with optimal complexity

I For non-smooth solutions:
proofs of convergence and optimal complexity based on adaptive wavelets

Beyond Wavelets

I Optimal preconditioning: multilevel and multigrid methods (for normal equations);
fast iterative solvers on (non)uniform grids

I (A posteriori) error estimates for PDE constrained control problems [Liu et al . . . et al . . . ]

I Convergence theory of adaptive (finite element) method for control problem
with linear elliptic PDE constraints ?

One or different meshes for all variables ? Refinement / coarsening of meshes ?

I Complexity estimates ? Optimal complexity ? Application of PDE operator ?

I Convergence theory of adaptive (FE/DG) methods for control problems
constrained by linear evolutionary PDE ?
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