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Wavelets in signal and image processing . ..
e Signal or image: explicitly given object described by N data points
e Goal: data compression without loosing essential information
e Method: single-(fine-)scale <— multi-scale representation of object

e Change of representation by Fast Wavelet Transform in O(N) operations (based on locally
supported functions)

~» Discard small coefficients in multi-scale representation

~» Data compression

e Landmark: Daubechies’ construction of L(R) orthonormal wavelets with compact support
[1988]
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Image Compression — (Old) Examples

Original (768X 768 pixels, 580.824 bytes)  JPEG compression (12.0:1, 45.853 bytes)
Wavelet compression: JPEG 2000 (12.9:1, 45.621 bytes)  [Brislawn, FBI, Los Alamos Laboratory, 1996]

Angela Kunoth — 25+ Years of Wavelets for PDEs



Image Compression — (Old) Examples

N

JPEG compression (12.9:1, 45.853 bytes)
Wavelet compression: JPEG 2000 (12.9:1, 45.621 bytes)  [Brislawn, FBI, Los Alamos Laboratory, 1996]

Original (left), compression 100:1 (MT-WICE (Wavelet Based Image Compression), Mevis, right)
Compression 80:1 (MT-WICE left)  JPEG (right)
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Wavelets: Multiscale Basis with Additional Properties

Image v € Viy C La(R?) (or Ly((0,1)?) with dim Viy = N < oo
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Wavelets: Multiscale Basis with Additional Properties

Image v € Viy C La(R?) (or Ly((0, 1)) with dim Vy = N < oo
. more general:
consider objects in (infinite-dimensional) Hilbert space H on domain Q C RY with |- ln

W= {1 : XA € I} C H wavelets, T (infinite) index set, X index: resolution ||, location k...
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Wavelets: Multiscale Basis with Additional Properties

Image v € Viy C La(R?) (or Ly((0,1)?) with dim Viy = N < oo
. more general:
consider objects in (infinite-dimensional) Hilbert space H on doma

in Q C R with || - ||y

W= {Y : XA € I} C H wavelets, T (infinite) index set, A
(NE) Norm equivalence: W Riesz basis for H:

A€l

(L) Locality diam (supp ) ~ 2

(CP) Cancellation property (vanishing moments)
(v, a) g 27 G

)”Loo(SUPP Py)

index: resolution ||, location k. ..

vEH: v =vV = Zv; P such that  [[v|[y ~ [[v]le,m

—IAl |A| resolution

Y centered around 2 Mk

for some m

Vo Vo2

[Dahmen, Kunoth, Urban '99] [Dahmen, Schneider '99], [Kunoth, Sahner '06]
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[Harbrecht, Schneider '00]
Constructions of (biorthogonal spline-)wavelets on bounded domains (based on [Cohen, Daubechies, Feauveau '92])




Applications to PDEs:
(Local) wavelet transforms to detect shocks/discontinuties for hyperbolic conservation laws
.. .spectral viscosity methods ...
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(Local) wavelet transforms to detect shocks/discontinuties for hyperbolic conservation laws
.. .spectral viscosity methods ...

Wavelets as multiscale bases for numerically solving PDEs? A typical example . ..
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Applications to PDEs:
(Local) wavelet transforms to detect shocks/discontinuties for hyperbolic conservation laws
.. .spectral viscosity methods ...

Wavelets as multiscale bases for numerically solving PDEs? A typical example . ..

Elliptic PDE (Elliptic Partial Differential Equation)
Elliptic PDE of order 2r on domain Q C R, d > 2

r =1 (Laplace operator): —Ay =f in Q, yloa =0
r = 2 (biharmonic operator): A%y =f in Q, yloa =n-Vylog =0

Variational formulation ~» Weak operator form: for given f € H™"(Q), find y € Hj(€) such that

‘Ay:f in H"(Q)

Elliptic operator A defined by (Av, w) := a(v, w) symmetric, continuous

and coercive on H{(Q): ‘ 1AVl y—r(@) ~ IVIlkr(@)  (mapping poperty (MP))

Example: r = 1 (Laplace operator ~» Dirichlet problem)
a(v,w) = / Vv(x) - Vw(x) dx
Q
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Numerical Solution on Finite-Dimensional Space — A View from Finite Elements

Discretization on uniform grid: Vj, C Hg(Q) dimV, < © ~> Apyn = fp (%)

0 < h < 1 grid spacing

Goal: Realize discretization error accuracy &
with minimal amount of work O(N(g)) in amount of unknowns N(e)
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Numerical Solution on Finite-Dimensional Space — A View from Finite Elements

Discretization on uniform grid: Vj, C Hg(Q) dimV, < © ~> Apyn = fp (%)

0 < h < 1 grid spacing

Goal: Realize discretization error accuracy &
with minimal amount of work O(N(g)) in amount of unknowns N(e)

Obstructions for fast numerical solution:

o Typical: representation of V} using basis with compact support (finite element basis)
~> large sparse linear system of equations (x¥) ~» iterative solver
o Convergence speed of iterative solver depends on cond,(Ap)

o Standard discretizations with finite elements ~» condz(Ap) ~ h—2r
0 < h < 1 grid spacing
o High desired accuracy, resolution of singularities in data and/or geometry ~» small h

~~ larger problem ~» worse condition number
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A-priori Estimates for Finite Elements

Quality measure:  Approximation in norm lly — _thLZ(Q) < e
A—priori error estimates: Q C RY dimV, =N~ h~¢ uniform grid
ly = yallip@) < b lylies@ yh € Vi 0<s<p+1
= Iy =yl < N ylls(

N degrees of freedom <—> accuracy O(N’("“)/d)
Approximation rate determined by

(i) (piecewiese polynomials of degree p ~») approximation order p + 1 of Vj,
(ii) space dimension d

(iii) amount of smoothness of y in L,

Target:
Realize discretization error accuracy £ ~ h?*1 ~ 27 (P for fine grid with spacing h ~ 277
Problem complexity: For h ~ 277 a total of N ~ 2’ unknowns

Optimal complexity for iterative solver:  Minimal amount of work is O(N)
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A-priori Estimates for Finite Elements

Quality measure:  Approximation in norm lly — _thLZ(Q) < e
A—priori error estimates: Q C RY dimV, =N~ h~¢ uniform grid
ly = yallip@) < b lylies@ yh € Vi 0<s<p+1
= Iy =yl < N ylls(

N degrees of freedom <—> accuracy O(N’("“)/d)
Approximation rate determined by

(i) (piecewiese polynomials of degree p ~») approximation order p + 1 of Vj,
(ii) space dimension d

(iii) amount of smoothness of y in L,

Target:
Realize discretization error accuracy £ ~ h?*1 ~ 27 (P for fine grid with spacing h ~ 277

Problem complexity: For h ~ 277 a total of N ~ 2’ unknowns

Optimal complexity for iterative solver:  Minimal amount of work is O(N)

Multilevel setting:
Vhp +— Vy h~27 J finest resolution level

Multiresolution Vjy C Vjj41 C ... C V; C ... C V, C Hy(Q)
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Multilevel Preconditioners

Asymptotically optimal preconditioner C; such that cond>(C;A;) ~ 1 and
setup and application of C; in optimal linear complexity O(N)

Schwarz iterative schemes based on subspace corrections
~> Multilevel schemes yielding optimal preconditioners:

» Multiplicative schemes ~» multigrid methods Brandt, Braess, Bramble, Hackbusch . ..

» Additive schemes (~ BPX preconditioner [Bramble, Pasciak, Xu '90])

Wavelet discretizations/Preconditioner based on Fast Wavelet Transform
[Jaffard '92], [Dahmen, Kunoth '92], [Oswald '92]

Relevant idea from Approximation Theory: Multilevel characterization of function spaces;
Isomorphism HAVHH,,(Q) ~ |||l Hr(q) combined with norm equivalences (NE)

Ingredients for reaching goal to reach discretization accuracy in optimal complexity:

(i) Multilevel preconditioner Cj
multigrid methods, BPX preconditioner, wavelet discretizations ~» condy(C,A) ~ 1

(ii) Nested iteration
optimal condition of system matrix C;A; for each j ~~ fixed amount of iterations on each
level to reach discretization error accuracy on that level;
spaces nested and N ~ 2 9 and geometric series argument
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Multilevel Preconditioners

Asymptotically optimal preconditioner C; such that cond>(C;A;) ~ 1 and
setup and application of C; in optimal linear complexity O(N)

Schwarz iterative schemes based on subspace corrections
~> Multilevel schemes yielding optimal preconditioners:

» Multiplicative schemes ~» multigrid methods Brandt, Braess, Bramble, Hackbusch . ..

» Additive schemes (~ BPX preconditioner [Bramble, Pasciak, Xu '90])

Wavelet discretizations/Preconditioner based on Fast Wavelet Transform
[Jaffard '92], [Dahmen, Kunoth '92], [Oswald '92]

Relevant idea from Approximation Theory: Multilevel characterization of function spaces;
Isomorphism HAVHH,,(Q) ~ |||l Hr(q) combined with norm equivalences (NE)

Ingredients for reaching goal to reach discretization accuracy in optimal complexity:

(i) Multilevel preconditioner Cj
multigrid methods, BPX preconditioner, wavelet discretizations ~» condy(C,A) ~ 1

(ii) Nested iteration
optimal condition of system matrix C;A; for each j ~~ fixed amount of iterations on each
level to reach discretization error accuracy on that level;
spaces nested and N ~ 2 9 and geometric series argument

Beyond point of view of finite elements:
wavelets can represent infinite-dimensional and implicitly given objects . ..
~> (elliptic) PDEs well-conditioned in (properly scaled) wavelet bases
and allow for adaptivity for non-smooth solutions . . .
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Paradigm of Adaptive Wavelet Method for One Stationary (Elliptic) PDE

[Cohen, Dahmen, DeVore '01/'02]

(i) Well-posed variational problem: given f € Q' B:Y — Q' findy € Y such that

‘ (MP) 1Bw|lgr ~ [lw]ly  forallw e Y mapping property ‘

(i) WY, W< wavelet bases for I, O :

‘ (NE) W' Wiy ~ flwlle,  forallw=(wi)rei € 2 ‘

Bw = (¥, Bw))xer  f:= (%Y, ))rer

Theorem By =f <= By=1f well-posedin /3 (B:ty — £r)

(MP) + (NE) <= IBwlle, ~ [wlle, forallw et

i ractical solution schemes for By = t:
iii) P ical soluti h for B f
(A) Perturbed Richardson iteration (for symmetric B):
(A1) y" =y"+(f=By") n=0,1,2,... |y —ylle, < ply"=ylle, o<1
(A.2) Approximate realization: adaptive evaluation of By” in SOLVE [, B, f] — y.
(A.3) Coarsening (thresholding) of the iterands (for complexity)
(B) Adaptive wavelet Galerkin method and bulk chasing strategy

Angela Kunoth — 25+ Years of Wavelets for PDEs



Extension to a Single Parabolic Evolution PDE in Space-Time Variational Form
[Ladyshenskaya et al. 1967, [Wioka '82], [Dautray, Lions '92], [Schwab, Stevenson '09] ...

y' )+ A y(t) = f(t) ae tel
0 =

i) Variational space-time form of (PDE
(i) p (PDE) y "

solution space: Lebesgue-Bochner space I := (L(/) ® Y) N (H}(I) ® Y')
with norm HWH%, = Hw||i2(,)®y + ”W,Hf.]l(/)®yl

test space Q= L(1;Y) X L(R2) with norm Hv||29 = HV1H2L2(/)®V + HVZ”ZLQ(Q)

bilinear form b(+,-) : ¥ x Q = R
b(y, (v1,v2)) ==

/I' [/ (8, ), vt ) + CA®)Y(E, ), (e, )] dt+ (10, ), va) =: (By, v)

right hand side
(Fov)i= [1F(E ) () de+ (o,v)
1

(PDE) ~sgiven f € Q', findy € I: By =f
Theorem (MP) [1Bw|lgr ~ [w]ly forallw ey mapping property
(i) WY, WS wavelet bases for V,Q ~+ By := (¥, By))act  f:=((¥2, Mre

Theorem By=f <= By=f B: ¢, — ¢ and By =f well-posed in #>

(MP) + (NE) = (IBvlle, ~ |lvlle,, VvE&%£ B unsymmetric
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Complexity Analysis

Based on benchmark:
decay rate s for (wavelet-)best N term approximation A i={velr:|v-wy|]| S N7}

Work/accuracy balance of best N term approximation:

Target accuracy € (~ N7°) <«+— Work gm1/s (~ N)

Convergence and Complexity

For solution routine (A): (Idealized) iteration (for symmetric B)
vt =" 4 (f — Bv") update via REs[n,B,f,v] —r, ~»  SOLVE[e, B,f] — v,

Benchmark Theorem [Cohen, Dahmen, DeVore '01/'02]
Vanishing moments (CP) for wavelets =—> B is s*—compressible

= for variational problem satisfying (MP) scheme SOLVE can be designed with properties:

(I) For every target accuracy ¢ > 0 SOLVE produces after finitely many steps
approximate solution v. such that lv—v. <&

(I1) Exact solution v € A°> = suppv., # flops ~ e~ s N

Angela Kunoth — 25+ Years of Wavelets for PDEs
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Core Ingredient of SOLVE: Compressible Operators

(CP) ~ B s s*—compressible:
for every s € (0, s™) there exists B; with < «;2/
nonzero entries per row and column s.th. for j € Np

IB—Bjll <a;27?, > aj<oo
J€Ng
(B ‘close to’ sparse matrix)

“ 8 B B OB OB OB 2 8 8 g

Angela Kunoth — 25+ Years of Wavelets for PDEs

11



Core Ingredient of SOLVE: Compressible Operators

(CP) ~ B s s*—compressible:
for every s € (0, s™) there exists B; with < «;2/
nonzero entries per row and column s.th. for j € Np

IB—Bjll <a;27?, > aj<oo
J€Ng
(B ‘close to’ sparse matrix)

Application of (Non)Linear Operators in Wavelet Bases
Theory: [Dahmen, Schneider, Xu '00], [Cohen, Dahmen, DeVore '03] ...
Implementation with isotropic tensor-product wavelets: d = 2: [Vorloeper '10]  general d: [Stapel '11], [Mollet, Pabel '12], [Pabel '15]

Input: finitely supported vector v = (v, ),en A C I finite
Output: approximation of Bv with infinite-dimensional operator B : ¢,(I) — £»(I)

B:Y — Q' ~» expand Bv € Q’ in dual wavelet basis for Q" and v in primal wavelet basis for

By =(Bv) ¥ =3 " (Bv,vx) ¥x = D (B(O vitbus ¥a)) Ba = D > vu (B, ¥a) da

A€l A€l HEN AET peEN

~>  compute (B, ,1y) for given p € A (finite) and all A € I

Compressibility of B:  [(B,, ¥a)| < Cpyy  sup 27 YM=IeDy 1y s gy
pi S35 #0 follows from wavelet property (CP)
Essential data structure (for nonlinear operators): tree-type index sets
input v ~» prediction of tree index set based on suppv and properties of B
~» computation of (Bv) after transformation to piecewise polynomials
~»  application of B in optimal linear complexity
Angela Kunoth — 25+ Years of Wavelets for PDEs 11



Numerical Example for One Parabolic Linear PDE

[Chegini, Stevenson '11], [Stapel '11]
Compute y = y(t, x) such that
ye(t, x) — yxx(t, x)

g(t) ® (—=?)sin(mx) in 1 xQ:=(0,1)>

y(t,0) = y(t,1) = 0 fort >0
y(0,x) =0 for x € (0,1)
1 telo, i
and g(t) ::{ 5 ‘e {% 31])

Problem formulation and implementation:
» Modified problem with zero initial conditions ~»
solution space Y = (L»(1) ® HI(Q)) n (H(lo(l) ® Hfl(Q)) and test space Q =L (I)®Y
» Inhomogeneous initial data: homogenization of initial conditions ~» modification of r.h.s.
> Implementation based on AWM Toolbox by [Vorloeper '10]

biorthogonal isotropic wavelets of order m = 2, m = 4
> lterative solution by GMRES

Plot of Solution, Refined Grid and Residual Error Reduction

gy

W‘E A
e

e

o

w7
E)

B 25

T 5
sesvees rneceen e

8526 degrees of freedom Expected rate in H* (isotropic wavelets): 1/2  red: after coarsening
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Application of Nonlinear Operator in Wavelet Bases: Numerical Example

[Mollet, Pabel '12], [Pabel '15]

“Ay+y* = f in Q:=(0,1)2
PDE with nonlinear term y =0 on 9Q

12

0.8
0.6
0.4
0.2

right hand side f solution y (with Richardson scheme and residual error bound 10~3)
2.45e-02 T . - —
§=31D ——
10
s
7 Ft
0.01
6
5‘ 0.001 | -
i . . . .
#7 1000 10000 100000 1e+06 1e+07
45 6 T 6.90e-11 number of cells.

distribution of 7177 active wavelet coefficients ~ Runtime (seconds) for evaluating y® for d < 4
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Application: Optimal Control Problem Constrained by a Parabolic PDE

Given y.(t,-) f w>0 end time T >0 initial condition yo
T 2 T 2
minimize J(y,u) = %/ lly(t, ) — ye(t, )% dt + %/ [Ju(t, )3 dt
0 0
subject to ' (t) + A(t)y(t) = f(t)+ u(t) ae. t€(0,T)=:1 (PDE)
y(0) =y
y =2y y = y(t, x) state u = u(t, x) control

Y = Hj(RQ) state space  Z = Y = Hy(f2) observation space U = Y’ = H™}() control space

Alt): Y = Y’ (A(t)v(t, ), w(t,-)) = /n [Vv(t,x) - Vw(t,x) + v(t,x)w(t,x)]dx on Q C RY

A(t) 2nd order linear selfadjoint coercive & continuous operator on Y
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Application: Optimal Control Problem Constrained by a Parabolic PDE

Given y.(t,-) f w>0 end time T >0 initial condition yo
T 2 T 2
minimize J(y,u) = %/ lly(t, ) — ye(t, )% dt + %/ [Ju(t, )3 dt
0 0
subject to ' (t) + A(t)y(t) = f(t)+ u(t) ae. t€(0,T)=:1 (PDE)
y(0) =y
y =2y y = y(t, x) state u = u(t, x) control

Y = Hj(RQ) state space  Z = Y = Hy(f2) observation space U = Y’ = H™}() control space

Alt): Y = Y’ (A(t)v(t, ), w(t,-)) = /n [Vv(t,x) - Vw(t,x) + v(t,x)w(t,x)]dx on Q C RY

A(t) 2nd order linear selfadjoint coercive & continuous operator on Y

PDE-constrained control problem  ~» requires repeated solution of (PDE)

Y () +Ay(t) = f(t)+u(t)

y(0) =
~» requires fast solver as core ingredient

Conventional time discretizations (e.g., Crank-Nicolson method) ~»
requires fast solver for elliptic PDE
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Necessary and Sufficient Conditions for Optimality

Optimal control problem constrained by parabolic PDE

~ System of parabolic PDEs coupled globally in time (and space)

y'(1) + A(t) y(1)
¥(0)

wR™u(t) + p(t)
—p/(6) + AT p(t)
p(T)

Riesz operator R defined by

Angela Kunoth — 25+ Years of Wavelets for PDEs

f(t) + u(t) ae. tel
Yo
0 ae tel

R(y.(t) — y(t)) ae tel
0

(v, R’W>Y><Y’ = (v,w)y forallv,w e Y
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Necessary and Sufficient Conditions for Optimality

Optimal control problem constrained by parabolic PDE

~ System of parabolic PDEs coupled globally in time (and space)
Y (&) +AR)y(t) = f(t)+ u(t) ae tel
y(0) =y
wR™Mu(t)+p(t) = 0 ae tel
P O+ARTP(E) = Ra(t)—y(t) ae tel
p(T) = 0

Riesz operator R defined by (v, Rw)y v/ := (v, w)y for all v,w € Y

Obstructions for numerical solution:

e convential time discretizations: time-marching methods
~>  need storage of y(t;), u(t;), p(t;) for all discrete times 0 =ty,..., T =ty

e in each time step: solve elliptic PDE ~» large linear system of equations
~» iterative solver ~» need preconditioning in (conjugate) gradient method

e singularities in data/domain: adaptive (FE) mesh(es) for y(t;), u(t;), p(t;) for all t;
one mesh for all variables, refinement/coarsening ? ... [Oeltz '06], [Meidner, Vexler '07], ...

convergence ? complexity 77
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Necessary and Sufficient Conditions for Optimality

Optimal control problem constrained by parabolic PDE

~ System of parabolic PDEs coupled globally in time (and space)
Y (&) +AR)y(t) = f(t)+ u(t) ae tel
y(0) =y
wR™Mu(t)+p(t) = 0 ae tel
P O+ARTP(E) = Ra(t)—y(t) ae tel
p(T) = 0

Riesz operator R defined by (v, Rw)y v/ := (v, w)y for all v,w € Y

Obstructions for numerical solution:

e convential time discretizations: time-marching methods
~>  need storage of y(t;), u(t;), p(t;) for all discrete times 0 =ty,..., T =ty

e in each time step: solve elliptic PDE ~» large linear system of equations
~» iterative solver ~» need preconditioning in (conjugate) gradient method

e singularities in data/domain: adaptive (FE) mesh(es) for y(t;), u(t;), p(t;) for all t;
one mesh for all variables, refinement/coarsening ? ... [Oeltz '06], [Meidner, Vexler '07], ...

convergence ? complexity 77

Solution Ansatz here: full weak space-time form of parabolic PDE constraint and setup of
control problem in (infinite) wavelet coordinates
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PDE-Constrained Optimal Control Problem in Wavelet Coordinates

Iy, u) = FIRYVA(y —y)IP + £IIR™V2u|
B : ¢, — £, automorphism

minimize
=11 lley

subject to By=f+u

Necessary and Sufficient Conditions — Karush-Kuhn-Tucker (KKT) system

L(y,u,p) = J(y,u) + (p, By — (f +u))

By = f+u
B'p = R(y« —y)
0 B* y Ry..
= 0 wR™! —E ul| = 0 (SPP) Q : ¢, — £, automorphism
—E 0 p f
Q = B *RB™'+wR™!
where
g := B *(Ry. — RB7!f)

Angela Kunoth — 25+ Years of Wavelets for PDEs
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Convergence and Complexity Analysis for Control Problem

with Elliptic or Parabolic PDE Constraints

Essential ideas: REs for SOLVE[...,Q,...] reduced to RES for SOLVE[...,B,...]

applied to normal equations

and KKT system <— condensed system Qu =g

Theorem [Dahmen, Kunoth '05], [Gunzburger, Kunoth '11]

For any target accuracy € > 0  SOLVE [, Q, g] — u. converges in finitely many steps

lu—uff<e Jly—vyell S e llp—pell £ & uc,ye,pe finitely supported
uy,peA =
1/s

(#suppu.) + (#suppy.) + (#supppe) < e = (ullfs + IS + lplls)

llucllas + llyellas + llpcllas S llullas + llyllas + lIpllas

#flops ~ e~ 1/®

Angela Kunoth — 25+ Years of Wavelets for PDEs
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Numerical Example for Elliptic Control Problem (2D)

type e = (1,0)
1.69-03
7
6
- -—
5 ==
4 0. 00e+00

. 08e- 01
. 00e+00
N 4.34e-03
7 < | _F
6 = i
5
4 0. 00e+00

type e = (0,1)

Angela Kunoth — 25+ Years of Wavelets for PDEs

-

o

. 69e- 03

i

. 00e+00

. 08e- 01

i

. 00e+00

34e-03

i

. 00e+00

target state y.

[Burstedde '05]
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Summary: PDE-Constrained Control Problems

» Control problem constrained by parabolic PDE
Full weak space-time formulation of evolution PDE
~~ saddle point system of PDEs coupled globally in time and space
» For smooth solutions: multilevel/wavelet preconditioners + nested iteration
~» numerical solution scheme with optimal complexity

» For non-smooth solutions:
proofs of convergence and optimal complexity based on adaptive wavelets

Beyond Wavelets

» Optimal preconditioning: multilevel and multigrid methods (for normal equations);
fast iterative solvers on (non)uniform grids

(A posteriori) error estimates for PDE constrained control problems [Livetal ...etal...]

Convergence theory of adaptive (finite element) method for control problem
with linear elliptic PDE constraints ?
One or different meshes for all variables ? Refinement / coarsening of meshes ?

Complexity estimates ?  Optimal complexity 7  Application of PDE operator ?

Convergence theory of adaptive (FE/DG) methods for control problems
constrained by linear evolutionary PDE ?
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