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Introduction
RBF Approximation

1 Data: Ω ⊂ Rn, X ⊂ Ω, test function f
X = {x1, . . . , xN} ⊂ Ω
f1, . . . , fN , where fi = f(xi)

2 Approximation setting: kernel Kε, NK (Ω), NK (X) ⊂ NK (Ω)

kernel K = Kε, positive definite and radial
examples:

globally supported: Kε(x, y) = e−(ε‖x−y‖)2
(gaussian),

locally supported: Kε(x, y) = (1 − ε2‖x − y‖2)4
+[4ε

2‖x − y‖2 + 1]
(C2(R2) Wendland )

native space NK (Ω) (where K is the reproducing kernel)
finite subspace NK (X) = span{K(·, x) : x ∈ X} ⊂ NK (Ω)

Aim
Find Pf ∈ NK (X) s.t. Pf ≈ f
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The rescaled RBF interpolant
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The rescaled interpolant

Deparis, Forti and Quarteroni [DFQ14, SISC 36(6)], proposed a new
consistent Rescaled Localized RBF (RL-RBF) interpolant for large-scale
problems based on Compactly Supported RBF (CSRBF) (with parallel
implementation on 2d-3d non cartesian unstructered meshes).

Construction
On X , let us consider the constant function g(x) = 1 and let Pg(x) be the
corresponding kernel-based interpolant. Letting Pf (x) the interpolant of f ,
then the rescaled interpolant is

P̂f (x) =
Pf (x)

Pg(x)
=

∑N
i=1 ciK(x, x i)∑N
i=1 diK(x, x i)

. (1)

OBS: obviuosly

P̂f (X) = f(X).
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Properties

The interpolant is smoother even for small radii of the support
(↪→ next slide)

Thanks to the normalization, for each xm they provide a
strategy to select locallythe shape parameter ε that considers
the data distribution (↪→ i.e the local radius of the CSRBF
gives constant neighbor points) (cf. [DFQ14]).

When points are uniformly distributed the previous strategy
falls in a priori selection of the radius.

When points are not uniformly distributed the previous
strategy gives better results (using different circles diameters
and neighbor points).

Remark

No theoretical study of the properties of the new interpolant were
provided!
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First example

As starting simple illustrative example we want to interpolate f(x) = x on
the interval [0, 1] by using the W2 function at the points set
X = {1/3, 1/2, 5/6}, ε = 5. Here the radius of the corresponding radial
basis function is δ = 1/ε so that on [0, 1] the rescaled interpolant never
vanishes

Figure: (left) interpolants and (right) the abs error
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Second example

Again, f(x) = x on [0, 1] by using W2 at the points set
X = {0, 1/6, 1/3, 1/2, 2/3, 5/6, 1}, ε = 5 (ε = 1/δ).

Figure: (left) interpolants and (right) the abs error

For more results see [DFQ14, Idda15].
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An example on 2d

Figure: RMSE behavior at 30 values of the shape parameter in [0.1, 10]
for interpolation of the 2d Franke function (stationary) on a grid 5 × 5,
again with W2.
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The rescaled kernel
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The rescaled kernel

1 Assume that Pf (x) and Pg(x) be constructed by using the kernel K
(with associate native space NK ).

2 Writing

P̂f (x) =
Pf (x)

Pg(x)
=

N∑
j=1

cj
K(x, x j)∑N

i=1 diK(x, x i)
, (2)

since Pg(x j) = 1, we have

P̂f (x) =
N∑

j=1

cj


K(x, x j)

N∑
i=1

diK(x, x i)
N∑

i=1

diK(x j , x i)


But Pg(x) =

∑N
i=1 diK(x, x i) then

{
K(x, x j)

Pg(x) · Pg(x j)
, j = 1, . . . ,N

}
can be

interpreted as a (new) basis for the rescaled interpolant.
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The rescaled kernel (cont’)

Theorem (Aronszajn50)

Let K : Ω × Ω→ R be a (strictly) positive definite kernel. Let s : Ω→ R a
continuous and nonvanishing function on Ω. Then

Ks(x, y) = s(x)s(y)K(x, y) (3)

is (strictly) positive definite.

Setting s = 1/Pg, which is continuous, non-vanishing on Ω, the rescaled
kernel is then

KR(x, y) =
1

Pg(x)

1
Pg(y)

K(x, y) (4)

which turns out to be (strictly) positive definite and then we can consider
its associate native space NKR .
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Native space (ideas)

Definition
A function m ∈ NK is called a multiplier of NK if the product
m · f ∈ NK , ∀ f ∈ NK .

This definition provide the inclusion NKR ⊂ NK (since 1/Pg is a
multiplier). The other inclusion could come from the following

Theorem (Aronszajn50)

Let K1 and K2 be two kernels on Ω × Ω. Then NK1 ⊂ NK2 if and only if for
any N ∈ N, c ∈ RN and points x1, . . . , xN of Ω we have

cT A1c ≤ cT A2c

with (Ai)j,k = Ki(x j , xk ), i = 1, 2.

The Theorem in our case means to show that (or the reverse inequality)

cT AK c ≤ cT AKR c , (5)
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Rescaling gives a Shepard method
We start by writing the interpolant of a function f ∈ NK using the

cardinals uj(xi) = δi,j , Pf =
N∑

j=1

f(x j)uj , so that for g ≡ 1 we get

Pg =
N∑

j=1

uj .

The rescaled interpolant is then

P̂f =

∑N
j=1 f(x j)uj∑N

k=1 uk
=

N∑
j=1

f(x j)
uj∑N

k=1 uk
=:

N∑
j=1

f(x j)ûj ,

where we introduced the new cardinal functions ûj :=
uj∑N

k=1 uk
.

Corollary

The rescaled interpolation method is a Shepard’s method, where the
weight functions are defined as ûj = uj/

(∑N
k=1 uk

)
, {uj}j being the

cardinal basis of span{K(·, x), x ∈ X}.
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Stability estimate

With the usual notation, we can define the Lebesgue function and
constant for the rescaled interpolant

Λ̂N(x) :=
N∑

j=1

|ûj(x)|, λ̂N := ‖Λ̂N‖∞,Ω,

getting the stability bound

‖P̂f‖∞,Ω ≤ λ̂N‖f‖∞,X . (6)

Hence, to quantify the stability gain of the rescaled interpolation
process over the standard one, we can then compare the behavior
of λ̂N and λN (↪→ see experiments)
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Applications and numerical experiments
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A first test

Comparison of RMSE for the classical and the rescaled interpolant on
varying ε by Trial&Error

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3
x 10

−3

 

 
Classic
Rescaled

The stair behaviour of the rescaled interpolant is due to the “patching”
algorithm used to avoid that Pg(x) = 0
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Application to PUM
Ω = ∪n

k=1Ωk and compactly supported functions, supp(wk ) ⊆ Ωk ,

n∑
i=1

wi(x) = 1 , ∀x ∈ Ω . (7)

The application of the rescaling to every local interpolant gives a global
rescaled interpolant of the form

Pf (x) =
n∑

i=1

P̂i(x)wi(x), x ∈ Ω , (8)

with

P̂i(x) =
ni∑

j=1

c(i)
j

K (i)(x, x j)

P(i)
g (x)

=
ni∑

j=1

c(i)
j

K (i)(x, x j)∑ni
l=1 d(i)

l K (i)(x, x l)
,with ni = #(X∩Ωi)

where the coefficients d(i)
l are chosen so that∑ni

l=1 d(i)
l K (i)(x, x l) = 1, ∀x ∈ Ωi . 18 of 35



Rescaled PU (RPU): example
Consider the 2d Askley’s test function [R15]

f(x, y) = −20 e−0.2
√

0.5(x2+y2) − e−0.5(cos(2πx)+cos(2πy)) + 20 + e (9)

interpolated on 1000 Halton points on the disk centered in (0.5, 0.5) and
radius 0.5 with W2. As evalution points we took 10000 uniformly
distributed points of the disk.

Figure: RMSE (Left) and MAXERR (Right) for the classical (blue) and the
rescaled PU (green) for ε ∈ [0.01, 2].
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Remarks

Some numerical evidences

RPU reaches the same precision of PU, but using a “thinner”
point set X

The evaluation time heuristically is TRPU < cTPU with c ≈ 1.05

Pf and Pg share the same collocation matrix, so that the linear
systems differ only by constant terms. Hence one can use
specific algorithms to speed-up the evaluation step
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Variably Scaled Kernels

VSK, introduced in [BLRS, IMA JNA15], are intended to give more
flexibility to RBF approximations.

Let c : Rd → (0,∞) be a scale function. A VSK on Rd is

Kc(x, y) = K((x, c(x)), (y, c(y))

If Φ is radial, the new kernel takes the form

Kc(x, y) := Φ(‖x − y‖2 + (c(x) − c(y))2)

21 of 35



VSK (cont’)

The scale function transforms a problem with data x j ∈ R
d to data

location (x j , c(x j)) ∈ Rd+1 and then use a fixed-scale kernel on
Rd+1.

Letting σ : x → (x, c(x)) map from Rd into a d-dimensional
submanifold σ(Rd) of Rd+1

Kc(x, y) = K( (x, c(x))︸    ︷︷    ︸
σ(x)

, (y, c(y))︸    ︷︷    ︸
σ(y)

)

Hence the interpolant satisfies

Pσ,f ,X (x) = P1,f ,σ(X)(x, c(x)) = P1,f ,σ(X)(σ(x)) . (10)
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Example: Classical vs VSK vs Rescaled
Franke test function, W2 sampled on 200 e.s.points of half unit sphere
centered in (0, 0, 0). The nodes in R2 are the projections on the unit disk,

i.e. c(x) =
√

1 − x2
1 − x2

2 . The evaluation points in R2 are obtained by

restricting the grid 100 × 100 of the square [−1, 1]2 to the unit disk, while
the points in R3 are obtained by the map σ(x) = (x, c(x)) (in Figure 5 we
show only 100 points). The shape parameter is ε = 5

Figure: The points of the VSK example
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Example (cont’)

Figure: Classical, VSK and Rescaled method for W2 on varying the
shape parameter

Standard +R Cond(A)
Standard 2.2e − 01 5.1e − 02 ≈ 102

+VS 1.5e + 00 9.6e − 02 ≈ 100

Table: RMSE with/without rescaling applied to VSK 24 of 35



Comparison to accurate PUM

In the recent work [CDeRP, DRNA16] a accurate PUM (A-PUM),
combined with an optimal local RBF approximation via a priori error
estimates (cf. DRWA15 poster) has been presented.

The a method enables to select both suitable sizes of the different
PU subdomains and shape parameters, i.e. the optimal couple
(r∗j , ε

∗
j ) for the subdomain Ωj .

the method uses a Bivariate LOOCV strategy.

the method is suitable for data with non-homogeneous density.

#DataP #EvalP Method RMSE CPU time (sec)
289 1600 A-PUM 5.72e-4 3.44

PU 4.34e-2 0.32
RPUM 1.50e-2 0.32

1024 2500 A-PUM 1.32e-4 13.66
PU 1.54e-2 0.63

RPUM 7.55e-3 0.66
2500 6400 A-PUM 6.67e-5 32.42

PU 6.14e-3 1.32
RPUM 2.89e-3 1.30

Table: Comparison between A-PUM, PUM and RPUM with ε = 5 with W2, on various grids on the square [0, 1]2 , for
interpolation of f(x1 , x2) = (x2

1 + x2
2 − 1)9 .
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Lebesgue functions

Domain: cardiod contained in [−1, 1]2. Data set: grid of 5 × 5 points.

Figure: Comparison between the Lebesgue function with standard basis
(Left) and the rescaled one (right) for the C2 Wendland kernel on the
cardiod with ε = 3.
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Lebesgue functions (cont’)

Figure: As in the previous slide with ε = 3.85.

Notice: for values of ε ≥ 2εM (in the example εM ≈ 2) the cardinal
functions have disjoint supports. 27 of 35



Lebesgue constants
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Figure: Comparison between the standard Lebesgue function (solid line)
and the rescaled Lebesgue function (dotted line) for the C2 Wendland
kernel. From top left to bottom right, ε = 0.5, 1, 2, 4.
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Generalized Rescaled Interpolant

Kr (x, y) := s(x)s(y)K(x, y)

preserves the properties of the original Kernel.
Define s such that

s(x) = sγ(x) :=
1

Pg(x)γ
=

1

(
∑N

j=1 cjK(x, xj))γ
,

γ is an ”oscillation parameter”.
The generalized rescaled kernel takes the form

Kr ,γ(x, y) :=
1

(
∑N

j=1 cjK(x, xj))γ
1

(
∑N

j=1 cjK(y, xj))γ
K(x, y) =

=
1(∑N

j=1 cjK(x, xj)
∑N

j=1 cjK(y, xj)
)γ K(x, y) .

Notice: Kr ,0 = K .
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An example
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Figure: X = { 15 ,
1
2 ,

5
6 }, y = x (green), Classic Interpolant (Blue),

Generalized Interpolants (Red)
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Curiosity

Figure: X=linspace(-1,1,150), polynomial degree 1..50, ε = 3,
γ=linspace(0,2*deg,100). Test repeated for any degree for 500
polynomials with random coefficients in [−1, 1].
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Summary

Done

rescaled kernel and its properties

rescaled kernel interpolation as a Shepard method

rescaled kernel interpolant in cardinal form: Lebesgue constant
behaviour

application to PUM and SVK

To do

error and stability analysis

apply stable bases [DeMS13,15 and CDeMDeR+16] to RPUM?

understanding the generalized kernels
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merci pour votre attention!
thanks for your attention!
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