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Splines on triangulations RAGS Homogeneous geometry Examples Final

Bivariate splines on planar triangulations

∆

Sm
n (∆) := {f ∈ Cm(∆); f |T ∈ πn,T ∈ ∆}

I Sm
n (∆) is a linear space of Cm (scalar or parametric) piecewise polynomial

functions of degree n (typically n has to be sufficiently large compared to m for
the space to be useful)

I well-developed theory [ Lai, Schumaker ’07]
– dimension results

– local/stable bases

– approximation of functions in Sobolev spaces

I a plethora of available methods based on such splines for data fitting, geometric
modeling, finite elements, etc.

I our objective is to define a generalization of Sm
n (∆) for 3D triangulations ∆
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– Spline spaces Sm
n (∆) are effective in the problem of interpolating/approximating

functional data (xi , yi , zi ), where (xi , yi ) ∈ Ω, Ω ⊂ R2, i.e. in finding a spline
s ∈ Sm

n (∆) such that s(xi , yi ) = zi ∈ R

scalar functions f : Ω→ R, i.e., s ≈ f on Ω.

– Spaces Sm
n (∆) are also effective in the setting where one wants to

interpolate/approximate 3D data (xi , yi , zi ) ∈ R3 that are known to belong to a
surface that is homeomorphic to a planar domain Ω ⊂ R ⇒ parametric splines
(e.g. triangular parametric Bézier- or quadrilateral patches, NURBS)

– What if the sought-for surface cannot be parameterized by a planar domain?

– Classical problem in CAGD [mainly ’80s and ’90s]: given 3D points, find a
free-form smooth interpolating/approximating spline surface (a composite
surface consisting of triangular/quadrilateral polynomial/rational patches)

– Alternative methods such as implicit surfaces, manifold splines, subdivision
surfaces, T-splines, ambient B-splines, . . .
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Splines on 3D triangulations of arbitrary genus
∆

Sm
n (∆) := {f ∈ Cm(∆); f |T ∈ ρTn ,T ∈ ∆}

Sm
n (∆) := {f ∈

??

; f |T ∈

??

,T ∈ ∆}

I To define Cm(∆), first equip ∆ with a Cm- (or even C∞-) structure, i.e. define
how triangles of ∆ are “glued” together

I for all pairs of adjacent triangles, T ,T ′, define Cm-transition maps φT ′,T that
are compatible around each vertex of ∆

I define the space of functions Cm(∆) as a space of geometrically continuous
functions f : ∆→ R (or Rd , d > 1), such that for all such pairs T ,T ′, f |T ′ and
f |T ◦ φT ′,T join with ordinary Cm continuity along common edge
[ DeRose ’85, Haas ’89, Peters 2002, etc.]

I for fixed transition maps, Cm(∆) is a linear space, hence so is Sm
n (∆), assuming

ρTn are chosen as linear spaces [ DeRose ’85, Höllig-Mogerle ’90, Goodman
’91, Prautzsch ’97, Reif ’98, Peters ’02, papers on manifold splines, etc.]
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RAGS - rational geometric splines [ B., Gonsor, Neamtu ’14]

Sm
n (∆) := {f ∈ Cm(∆); f |T ∈ ρTn ,T ∈ ∆}

I φT ′,T are defined as linear rational transformations:

φT ′,T : b′(v ′) 7→ b(v) =
ΛT ′,Tb

′(v ′)

1ΛT ′,Tb′(v ′)
, ΛT ′,T =

 1 0 λ1

0 1 λ2

0 0 λ3

, 1 := (1, 1, 1),

λ1,λ2,λ3 ∈ R, λ3 < 0, such that they define a C∞ differentiable structure on ∆
(i.e. the φT ′,T have to be compatible around each vertex.)

I ρTn are defined as spaces of rational functions of type n/n:

rT =

∑
i+j+k=n c

T
ijkB

n
ijk∑

i+j+k=n w
T
ijkB

n
ijk

=

∑
i+j+k=n d

T
ijkw

T
ijkB

n
ijk∑

i+j+k=n w
T
ijkB

n
ijk

I composition of rational functions of type n/n with a linear rational
transformation of type 1/1 is again of type n/n.
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Why RAGS?

I the RAGS space generalizes the classical space of piecewise polynomials on
planar triangulations (i.e. space obtained by taking λ1,λ2,λ3 to be the
barycentric coordinates of v ′

3 w.r.t. v1, v2, v3.)

I if we want the generalized spline space Sm
n (∆) to mimic basic properties of the

standard bivariate space (such as the Bernstein-Bézier representation for
functions in ρTn or refinability), the RAGS space is the only reasonable choice

I continuity conditions between rational patches rT , rT
′

are formally the same as
for planar splines:

I standard interpolation/approximation methods can be extended to 3D
triangulations (no need to invent brand new methods)
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for planar splines:

c021

c111

T

c201

c ′021

c ′111

T ′

c ′201

c030

c300

c210

c120

c ′ij1 = λ1ci+1,j ,0 + λ2ci ,j+1,0 + λ3ci ,j ,1

w ′
ij1 = λ1wi+1,j ,0 + λ2wi ,j+1,0 + λ3wi ,j ,1

C 1 conditions (i + j = n − 1):

λ1 + λ2 + λ3 is not necessarily 1

I standard interpolation/approximation methods can be extended to 3D
triangulations (no need to invent brand new methods)
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Why RAGS?
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Construction of RAGS via homogeneous geometry

1 Construct a triangulation ∆H in one of the three homogeneous geometries
(spherical, affine, hyperbolic), which is combinatorially equivalent to ∆ (the
type of geometry will depend on the genus of ∆)

2 ∆H gives rise to linear rational transition maps φT ′,T , corresponding to
parameters λ1,λ2,λ3, given by [ B. & Neamtu ’16]

λ1 =
sin(α2 + α′

2) sinα1 sinα′
1

sinα′
3 sinα1 sinα2

λ2 =
sin(α1 + α′

1) sinα2 sinα′
2

sinα′
3 sinα1 sinα2

λ3 = − sinα3 sinα′
1 sinα′

2

sinα′
3 sinα1 sinα2

3 Define spaces of homogeneous splines:

Sm
n (∆H) := {s ∈ Cm(∆H) : s|T ∈ πn|T , T ∈ ∆H}

πn|T – trivariate homogeneous polynomials of total degree ≤ n, restricted to
triangle T ∈ ∆H .
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Construction of RAGS via homogeneous geometry

Sm
n (∆H) := {s ∈ Cm(∆H) : s|T ∈ πn|T , T ∈ ∆H}

4 function p ∈ πn|T can be written in terms of (homogeneous) barycentric
coordinates w.r.t. T :

p(u) =
∑

i+j+k=n

cijkB
n
ijk(u), u ∈ T , Bn

ijk(u) =
n!

i !j!k!
bi

1(u)bj
2(u)bk

3 (u),

where b = (b1(u), b2(u), b3(u)) are the homogeneous barycentric coordinates of
u w.r.t. vertices of T .

5 Parametrize Sm
n (∆H) by ∆ to obtain Sm

n (∆). For T ∈ ∆↔ T ∈ ∆H ,
v ∈ T ↔ u ∈ T :

rTH (b(u)) =

∑
cTijkB

n,T
ijk (u)∑

wT
ijkB

n,T
ijk (u)

=

∑
cTijk(b1 + b2 + b3)nBn,T

ijk (v)∑
wT

ijk(b1 + b2 + b3)nBn,T
ijk (v)

=

∑
cTijkB

n,T
ijk (v)∑

wT
ijkB

n,T
ijk (v)

=: rT (b̄(v)),
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Parametrization - determining ∆H

Since elements of ∆H are equivalence classes of congruent triangles, we can
represent ∆H as a collection of triples of angles:

∆H = {〈αT
1 ,αT

2 ,αT
3 〉,T ∈ ∆}, αT

1 ,αT
3 ,αT

3 ∈ (0,π)

Any triple αT
1 ,αT

2 ,αT
3 ∈ (0,π) gives rise to a unique triangle (up to congruence)

in one of the three homogeneous geometries:

αT
1 + αT

2 + αT
3 < π (hyperbolic)

αT
1 + αT

2 + αT
3 = π (affine)

αT
1 + αT

2 + αT
3 > π (spherical)

Necessary and sufficient conditions for a consistent triangulation ∆H :

• the sum of angles around each vertex is 2π;

• common sides of adjacent triangles have equal lengths:

cosαT
1 cosαT

2 + cosαT
3

sinαT
1 sinαT

2

=
cosαT ′

1 cosαT ′
2 + cosαT ′

3

sinαT ′
1 sinαT ′

2
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Weights and control points

I Instances of RAGS have been obtained before:
[ Liu, Schumaker ’96, Wallner ’96, Pottmann, Wallner ’97, He, Gu, Qin ’06]

I Fixing appropriate weights wijk :

– for a quadratic polynomial

w =
∑

i+j+k=2

wijkB
2
ijk ≡ 1

yields:

w200 = w020 = w002 = 1

w011 =
cosα2 cosα3 + cosα1

sinα2 sinα3
, w101 =

cosα1 cosα3 + cosα2

sinα1 sinα3
, w110 =

cosα1 cosα2 + cosα3

sinα1 sinα2

– for any other (even) degree, use the identity 1 ≡ wn/2

w002 w200

w020

u3 u1

u2

α3 α1

α2

w200

w020

w002

w110w011

w101

I Specific interpolation methods can be implemented as a direct extension of
bivariate methods. Examples are:

– Powell-Sabin macro-element methods (local and global)

– energy-minimizing interpolating splines
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Example: S1
2 (∆PS) local interpolation

mesh ctrl net patches

surface Gauss zebra
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Example: S1
2 (∆PS) interpolation & energy min.

mesh ctrl net patches

surface Gauss zebra
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Example: S2
6 (∆) interpolation & energy min.

mesh ctrl net patches

surface Gauss zebra
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Example: S2
6 (∆) interpolation & energy min.

mesh ctrl net patches

surface Gauss zebra
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Example: S4
10(∆) interpolation & energy min.

mesh ctrl net patches

surface Gauss mean



Thank
you!
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