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He devised the following experiment to test his theory...
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Hope: There is an interpretable, low-rank approximation
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[If it exists, how can we find an interpretable factorization? }
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Alternatively if there is a true factorization:

R
M) =Z 9(0) )T
i=1

it cannot be uniquely determined from just M

(without extra conditions on al!, b(")

Low-rank tensor decompositions are unique in ways
that matrix decompositions are not!




Outline

The focus of this tutorial is on algorithms & applications

Part I: Tensor Decompositions
* The Rotation Problem
* A Primer on Tensors

* Jennrich’s Algorithm

Part Il: Applications
* Phylogenetic Reconstruction

* Pure Topic Models
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...are collections of numbers indexed by triples (i,j,k)

b and c s.t.

T =a;b; ¢ Vi,j,k

T is rank one if there are vectors a

Notation: T = 3 ®b®c — |.e. a ®b = ab’
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Low Rank Tensors

Key Idea: Subtracting off scalings of the same rank one matrix

Tee- ck[a®b]

decreases the rank of each slice iffa = al), b = b ¢ = cl) for some i

(under some natural conditions)

[This is what makes tensors more rigid than matrices}

For matrices, there are many rank one terms we can subtract
off to reduce its rank
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[Hillar, Lim] “Most Tensor Problems are NP-Hard”

Table I. Tractability of Tensor Problems

Problem

Complexity

Bivariate Matrix Functions over R, C

Undecidable (Proposition 12.2)

Bilinear System over R, C

NP-hard (Theorems 2.6, 3.7, 3.8)

Eigenvalue over R

NP-hard (Theorem 1.3)

Approximating Eigenvector over R

NP-hard (Theorem 1.5)

Symmetric Eigenvalue over R

NP-hard (Theorem 9.3)

Approximating Symmetric Eigenvalue over R

NP-hard (Theorem 9.6)

Singular Value over R, C

NP-hard (Theorem 1.7)

Symmetric Singular Value over R

NP-hard (Theorem 10.2)

Approximating Singular Vector over R, C

NP-hard (Theorem 6.3)

Spectral Norm over R

NP-hard (Theorem 1.10)

Symmetric Spectral Norm over R

NP-hard (Theorem 10.2)

Approximating Spectral Norm over R

NP-hard (Theorem 1.11)

Nonnegative Definiteness

NP-hard (Theorem 11.2)

Best Rank-1 Approximation

NP-hard (Theorem 1.13)

Best Symmetric Rank-1 Approximation

NP-hard (Theorem 10.2)

Rank over R or C

NP-hard (Theorem 8.2)

Enumerating Eigenvectors over R

#P-hard (Corollary 1.16)

Combinatorial Hyperdeterminant

NP-, #P-, VNP-hard (Theorems 4.1 , 4.2, Corollary 4.3)

Geometric Hyperdeterminant

Conjectures 1.9, 13.1

Symmetric Rank

Conjecture 13.2

Bilinear Programming

Conjecture 13.4

Bilinear Least Squares

Conjecture 13.5
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Theorem [Jennrich 1970]: Suppose {al} and {b'"} are linearly
independent and no pair of vectors in {c"} is a scalar multiple
of each other. Then

R
T = Z all) @ b cli
i=1

is unique up to permuting the rank one terms and rescaling
the factors.

[There is a simple algorithm to compute the factors too! }

Rediscovered in [Chang], [Leurgans et al.], [Anandkumar et al.], [Goyal et al.] ...
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JENNRICH’S ALGORITHM

Z <ch), X> all® bl

B» ComputeT(e*,e*,x)

l.e. add up matrix slices
X
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(x is chosen uniformly at random from S™1)



Diag(<c(‘), x>)
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B» ComputeT(e,*,x) AD, BT
#» ComputeT(e,*,y) = AD B'

B» Diagonalize T(*,*,x) T(*,°*,y)?

AD,D, A"

Claim: whp (over x,y) the eigenvalues are distinct, so the
Eigendecomposition is unique and recovers alV’s
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JENNRICH’S ALGORITHM

B» ComputeT(e*,e*,x)

AD, BT
#» ComputeT(e,*,y) = AD B'
B» Diagonalize T(*,*,x) T(*,°*,y)?

B® Diagonalize T(*,*,x) 1 T(e*,*,y)

B®» Match up the factors (their eigenvalues are
reciprocals) and find {c"} by solving a linear system
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The focus of this tutorial is on algorithms & applications

Part I: Tensor Decompositions
* The Rotation Problem
* A Primer on Tensors

* Jennrich’s Algorithm

Part Il: Applications
* Phylogenetic Reconstruction

* Pure Topic Models



PHYLOGENETIC RECONSTRUCTION

extinct

extant

“Tree of Life”



PHYLOGENETIC RECONSTRUCTION

extinct

extant




PHYLOGENETIC RECONSTRUCTION

If we’ve aligned
seguences...

extinct

extant




PHYLOGENETIC RECONSTRUCTION

(x) root:m:2->R"
“initial distribution”

If we’ve aligned
seguences...

O = extinct
(O = extant

> = alphabet



PHYLOGENETIC RECONSTRUCTION

(x) root:m:2->R"
“initial distribution”

If we’ve aligned
seguences...

O = extinct
(O = extant

> = alphabet

“conditional
distribution”



PHYLOGENETIC RECONSTRUCTION

(x) root:m:2->R"
“initial distribution”

If we’ve aligned
seguences...

O = extinct
(O = extant

> = alphabet

“conditional
distribution”

In each sample, we observe a symbol (2) at each extant

(O) node where we sample from 1t for the root, and
propagate it using R, ,, etc
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HIDDEN MARKOV MODELS

e 3 > R O = hidden
* 7S

“initial distribution” O observed

‘,,/

R, y “transition matrices”

“obs. matrices

In each sample, we observe a symbol (Z_) at each obs.
(O) node where we sample from rt for the start, and
propagate it using R, ,, etc (2,)

Xy’
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[Steel, 1994]: The following is a distance function on the edges

d. =-In|det(P, )| +%In[In,, -%inlln,

oinX oin2

where P, . is the joint distribution, and the distance between
leaves is the sum of distances on the path in the tree

(It’s not even obvious it’s nonnegative!)
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Question: Can we reconstruct just the topology from
random samples?

Usually, we assume T,,, etcare full rank so that we can re-root
the tree arbitrarily

[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel’s distance
function and quartet tests

© ® o © 9 or

© o L ©

to reconstruction the topology, from polynomially many samples

For many problems (e.g. HMMs) finding the transition matrices is
the main issue...
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[Chang, 1996]: The model is identifiable (if R’s are full rank)

Joint distribution over (a, b, c):
' Pr(z = o] Prlalz = o]@Pr[b]|z = 6] ® Pric|z = o]
0]

columns of R,
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[Mossel, Roch, 2006]: There is an algorithm to PAC learn a
phylogenetic tree or an HMM (if its transition/output matrices
are full rank) from polynomially many samples

[Question: Is the full-rank assumption necessary? }

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the
parameters of a general HMM

Noisy-parity is an infamous problem in learning, where O(n)
samples suffice but the best algorithms run in time 27/log(n)

Due to [Blum, Kalai, Wasserman, 2003]

(It’s now used as a hard problem to build cryptosystems!)



THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

Z Pr(z = o] Pr[a]z = 6]@Pr[b|z = 0] Pr[c|z = o]
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PURE TOPIC MODELS

topics (r)

* Each topic is a distribution on words

* Each document is about only one topic

words (m)

(stochastically generated)

* FEach document, we sample L words
from its distribution
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[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure
topic models from polynomially many samples (A is full rank)

Question: Where can we find three conditionally
independent random variables?
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’
3

<D

0

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure
topic models from polynomially many samples (A is full rank)

The first, second and third words are independent conditioned
on the topic t (and are random samples from A,)
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THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)
Z Pr(z = o] Pr[a]z = 6]@Pr[b|z = 0] Pr[c|z = o]
o
[Pure Topic Models/LDA]: (joint distribution on first three words)
Z Pritopic=j] A QAR A
J
[Community Detection]: (counting stars)

D PriC, =il (C,N); @ (CsN), @ (C ),
J



Any Questions?

Summary:

* Spearman’s Hypothesis, factor analysis and the rotation
problem

* Jennrich’s Algorithm
* Applications to phylogenetic trees and topic models

* Are there algorithms for third order tensor decomp.
that work with R = (1+€)n?



