Tensor Decompositions
and their Applications

Ankur Moitra

Massachusetts Institute of Technology

Spearman’s Hypothesis

Charles Spearman (1904): There are two types of intelligence,
eductive and reproductive

Spearman’s Hypothesis

Charles Spearman (1904): There are two types of intelligence,
eductive and reproductive

eductive (adj): the ability to make sense out of complexity
reproductive (adj): the ability to store and reproduce information

Spearman’s Hypothesis

Charles Spearman (1904): There are two types of intelligence,
eductive and reproductive

eductive (adj): the ability to make sense out of complexity
reproductive (adj): the ability to store and reproduce information

He devised the following experiment to test his theory...

Spearman’s Hypothesis

Charles Spearman (1904): There are two types of intelligence,
eductive and reproductive

students g
|

tests

test score

Spearman’s Hypothesis

Charles Spearman (1904): There are two types of intelligence,
eductive and reproductive

students g
7
o~
o~

tests

Spearman’s Hypothesis

Charles Spearman (1904): There are two types of intelligence,
eductive and reproductive

students g
7
~
~

tests

Hope: There is an interpretable, low-rank approximation

Spearman’s Hypothesis

Charles Spearman (1904): There are two types of intelligence,
eductive and reproductive

students g

tests

N
N

How much does it test educt/ve. reasoning?
reproductive

Spearman’s Hypothesis

Charles Spearman (1904): There are two types of intelligence,
eductive and reproductive

students g

tests

N
N

Student’s aptitude for educt/ve. reasoning?
reproductive

Spearman’s Hypothesis

Charles Spearman (1904): There are two types of intelligence,
eductive and reproductive

students g

tests

N
N

Factor analysis: Explain away observations using fewer
latent (unobserved) variables

Spearman’s Hypothesis

Charles Spearman (1904): There are two types of intelligence,
eductive and reproductive

students g

tests

N
N

Factor analysis: Explain away observations using fewer
latent (unobserved) variables

[If it exists, how can we find an interpretable factorization? }

The Rotation Problem

The Rotation Problem

If there is a true factorization:

M

(given)

BT

(hidden)

The Rotation Problem

If there is a true factorization:

BT
M —_— | A
(given) (hidden)
any rotation (R) of it is valid too
¢ ™
R [R
M g

- S

The Rotation Problem

Alternatively if there is a true factorization:

R
M) =Z 9(0))T
i=1

The Rotation Problem

Alternatively if there is a true factorization:

R
M) =Z 9(0))T
i=1

it cannot be uniquely determined from just M

(without extra conditions on al!, b(")

The Rotation Problem

Alternatively if there is a true factorization:

R
M) =Z 9(0))T
i=1

it cannot be uniquely determined from just M

(without extra conditions on al!, b(")

Low-rank tensor decompositions are unique in ways
that matrix decompositions are not!

Outline

The focus of this tutorial is on algorithms & applications

Part I: Tensor Decompositions
* The Rotation Problem
* A Primer on Tensors

* Jennrich’s Algorithm

Part Il: Applications
* Phylogenetic Reconstruction

* Pure Topic Models

Third-Order Tensors

...are collections of numbers indexed by triples (i,j,k)

)
K
()
.....“

N Y

)
Y

’

(00
..%.. R 77722777
(X) oo&‘l..i.iiii\

0

'

LR Y
I ERNRRERN

0

N ATY A NN NN

Third-Order Tensors

...are collections of numbers indexed by triples (i,j,k)

b and c s.t.

T =a;b; ¢ Vi,j,k

T is rank one if there are vectors a

Third-Order Tensors

...are collections of numbers indexed by triples (i,j,k)

L
RN
RN
.“..s RN
NOO0000

OO0
Wl 7
W) c.l“ll\li\\
AR 777 77T
i S

b and c s.t.

)

T =a;b; ¢ Vi,j,k

Notation: T = 3 ® b®C

T is rank one if there are vectors a

Third-Order Tensors

...are collections of numbers indexed by triples (i,j,k)

b and c s.t.

T =a;b; ¢ Vi,j,k

T is rank one if there are vectors a

Notation: T = 3 ®b®c — |.e. a ®b = ab’

Low Rank Tensors

T is rank at most R if there are vectors alt), b() ¢ ..

R
T = Z al) @ b cli
i=1

Low Rank Tensors

T is rank at most R if there are vectors alt), b() ¢ ..
R
T = Z all @ bl cli
i=1

Then any slice through it is a low-rank matrix
R

Tieuyg = Z [a(i) ® bm] c{)

i=1

Low Rank Tensors

T is rank at most R if there are vectors alt), b() ¢ ..
R
T = 2 all @ bl cli
i=1

Then any slice through it is a low-rank matrix
R

Tieuyg = Z [a(i) ® bm] c{)

i=1

LThey all share the same row and column space too }

Low Rank Tensors

T is rank at most R if there are vectors alt), b() ¢ ..

R
= (i) (i) (i)
T Z d ® b ® ¢ different scalings of
i=1

same rank one terms
Then any slice through it is a low-rank rix
R

Tieuyg = Z [a(i) ® b(i)] c{)

i=1

LThey all share the same row and column space too }

Low Rank Tensors

Key Idea: Subtracting off scalings of the same rank one matrix

Tee- ck[a®b]

decreases the rank of each slice iffa = al), b = b ¢ = cl) for some i

(under some natural conditions)

Low Rank Tensors

Key Idea: Subtracting off scalings of the same rank one matrix

Tee- ck[a®b]

decreases the rank of each slice iffa = al), b = b ¢ = cl) for some i

(under some natural conditions)

[This is what makes tensors more rigid than matrices}

Low Rank Tensors

Key Idea: Subtracting off scalings of the same rank one matrix

Tee- ck[a®b]

decreases the rank of each slice iffa = al), b = b ¢ = cl) for some i

(under some natural conditions)

[This is what makes tensors more rigid than matrices}

For matrices, there are many rank one terms we can subtract
off to reduce its rank

The Trouble with Tensors

Theorem [Hastad 1990]: Computing the rank of a tensor is
NP-hard

The Trouble with Tensors

Theorem [Hastad 1990]: Computing the rank of a tensor is
NP-hard

Fact: There are rank three tensors that can be arbitrarily well-
approximated by rank two tensors

The Trouble with Tensors

Theorem [Hastad 1990]: Computing the rank of a tensor is
NP-hard

Fact: There are rank three tensors that can be arbitrarily well-
approximated by rank two tensors

Fact: The best rank k and the best rank k+1 approximations
need not share any rank one factors in common

The Trouble with Tensors

Theorem [Hastad 1990]: Computing the rank of a tensor is
NP-hard

Fact: There are rank three tensors that can be arbitrarily well-
approximated by rank two tensors

Fact: The best rank k and the best rank k+1 approximations
need not share any rank one factors in common

Fact: Even for tensors with real entries, may need complex
numbers to find lowest rank decomposition (rank # rank_)

The Trouble with Tensors

Theorem [Hastad 1990]: Computing the rank of a tensor is
NP-hard

Fact: There are rank three tensors that can be arbitrarily well-
approximated by rank two tensors

Fact: The best rank k and the best rank k+1 approximations
need not share any rank one factors in common

Fact: Even for tensors with real entries, may need complex
numbers to find lowest rank decomposition (rank # rank_)

[Hillar, Lim] “Most Tensor Problems are NP-Hard”

Table I. Tractability of Tensor Problems

Problem

Complexity

Bivariate Matrix Functions over R, C

Undecidable (Proposition 12.2)

Bilinear System over R, C

NP-hard (Theorems 2.6, 3.7, 3.8)

Eigenvalue over R

NP-hard (Theorem 1.3)

Approximating Eigenvector over R

NP-hard (Theorem 1.5)

Symmetric Eigenvalue over R

NP-hard (Theorem 9.3)

Approximating Symmetric Eigenvalue over R

NP-hard (Theorem 9.6)

Singular Value over R, C

NP-hard (Theorem 1.7)

Symmetric Singular Value over R

NP-hard (Theorem 10.2)

Approximating Singular Vector over R, C

NP-hard (Theorem 6.3)

Spectral Norm over R

NP-hard (Theorem 1.10)

Symmetric Spectral Norm over R

NP-hard (Theorem 10.2)

Approximating Spectral Norm over R

NP-hard (Theorem 1.11)

Nonnegative Definiteness

NP-hard (Theorem 11.2)

Best Rank-1 Approximation

NP-hard (Theorem 1.13)

Best Symmetric Rank-1 Approximation

NP-hard (Theorem 10.2)

Rank over R or C

NP-hard (Theorem 8.2)

Enumerating Eigenvectors over R

#P-hard (Corollary 1.16)

Combinatorial Hyperdeterminant

NP-, #P-, VNP-hard (Theorems 4.1 , 4.2, Corollary 4.3)

Geometric Hyperdeterminant

Conjectures 1.9, 13.1

Symmetric Rank

Conjecture 13.2

Bilinear Programming

Conjecture 13.4

Bilinear Least Squares

Conjecture 13.5

Theorem [Jennrich 1970]: Suppose {al} and {b'"} are linearly
independent and no pair of vectors in {c"} is a scalar multiple
of each other. Then

R
T = Z all) @ b cli
i=1

is unique up to permuting the rank one terms and rescaling
the factors.

Theorem [Jennrich 1970]: Suppose {al} and {b'"} are linearly
independent and no pair of vectors in {c"} is a scalar multiple
of each other. Then

R
T = Z all) @ b cli
i=1

is unique up to permuting the rank one terms and rescaling
the factors.

[There is a simple algorithm to compute the factors too! }

Theorem [Jennrich 1970]: Suppose {al} and {b'"} are linearly
independent and no pair of vectors in {c"} is a scalar multiple
of each other. Then

R
T = Z all) @ b cli
i=1

is unique up to permuting the rank one terms and rescaling
the factors.

[There is a simple algorithm to compute the factors too! }

Rediscovered in [Chang], [Leurgans et al.], [Anandkumar et al.], [Goyal et al.] ...

JENNRICH’S ALGORITHM

B» ComputeT(e*,*,x)

l.e. add up matrix slices

JENNRICH’S ALGORITHM

B» ComputeT(e*,*,x)

l.e. add up matrix slices

<, x>a®@b

a®@b®c then T(s,*,x)

If T =

JENNRICH’S ALGORITHM

B» ComputeT(e*,*,x)

l.e. add up matrix slices

JENNRICH’S ALGORITHM

,%> all@ b

Z Gl

l.e. add up matrix slices

B» ComputeT(e*,e*,x)

)
M
(O
o

Eewaatuuw
o"”’!ﬂ!ﬂ!ﬂ!ﬂ!ﬂ.

QOGN

o
(N

....".“...:.
X0
o

JENNRICH’S ALGORITHM

Z <ch), X> all® bl

B» ComputeT(e*,e*,x)

l.e. add up matrix slices
X

””‘!ﬂiﬂ
O RRRRR

(x is chosen uniformly at random from S™1)

Diag(<c(‘), x>)
4

JENNRICH’S ALGORITHM
#» ComputeT(e,*,x) = AD, BT

l.e. add up matrix slices

(x is chosen uniformly at random from S™1)

JENNRICH’S ALGORITHM

#» ComputeT(e,*,x) = AD, BT

JENNRICH’S ALGORITHM

B» ComputeT(e*,e*,x)

AD, BT

B ComputeT(®,*,y) AD, B'

JENNRICH’S ALGORITHM

B» ComputeT(e*,e*,x)

AD, BT
#» ComputeT(e,*,y) = AD B'

B» Diagonalize T(*,*,x) T(*,°*,y)?

JENNRICH’S ALGORITHM

B» ComputeT(e*,e*,x)

AD, BT
#» ComputeT(e,*,y) = AD B'

B» Diagonalize T(*,*,x) T(*,°*,y)?

AD,BT(B")1D, 1Al

JENNRICH’S ALGORITHM

B» ComputeT(e*,e*,x)

AD, BT
#» ComputeT(e,*,y) = AD B'

B» Diagonalize T(*,*,x) T(*,°*,y)?

AD,D, A"

JENNRICH’S ALGORITHM

B» ComputeT(e,*,x) AD, BT
#» ComputeT(e,*,y) = AD B'

B» Diagonalize T(*,*,x) T(*,°*,y)?

AD,D, A"

Claim: whp (over x,y) the eigenvalues are distinct, so the
Eigendecomposition is unique and recovers alV’s

JENNRICH’S ALGORITHM

B» ComputeT(e*,e*,x)

AD, BT
#» ComputeT(e,*,y) = AD B'

B» Diagonalize T(*,*,x) T(*,°*,y)?

JENNRICH’S ALGORITHM

B» ComputeT(e*,e*,x)

AD, BT
#» ComputeT(e,*,y) = AD B'
B» Diagonalize T(*,*,x) T(*,°*,y)?

B® Diagonalize T(*,*,x) 1 T(e*,*,y)

JENNRICH’S ALGORITHM

B» ComputeT(e*,e*,x)

AD, BT
#» ComputeT(e,*,y) = AD B'
B» Diagonalize T(*,*,x) T(*,°*,y)?

B® Diagonalize T(*,*,x) 1 T(e*,*,y)

B®» Match up the factors (their eigenvalues are
reciprocals) and find {c"} by solving a linear system

Outline

The focus of this tutorial is on algorithms & applications

Part I: Tensor Decompositions
* The Rotation Problem
* A Primer on Tensors

* Jennrich’s Algorithm

Part Il: Applications
* Phylogenetic Reconstruction

* Pure Topic Models

PHYLOGENETIC RECONSTRUCTION

extinct

extant

“Tree of Life”

PHYLOGENETIC RECONSTRUCTION

extinct

extant

PHYLOGENETIC RECONSTRUCTION

If we’ve aligned
seguences...

extinct

extant

PHYLOGENETIC RECONSTRUCTION

(x) root:m:2->R"
“initial distribution”

If we’ve aligned
seguences...

O = extinct
(O = extant

> = alphabet

PHYLOGENETIC RECONSTRUCTION

(x) root:m:2->R"
“initial distribution”

If we’ve aligned
seguences...

O = extinct
(O = extant

> = alphabet

“conditional
distribution”

PHYLOGENETIC RECONSTRUCTION

(x) root:m:2->R"
“initial distribution”

If we’ve aligned
seguences...

O = extinct
(O = extant

> = alphabet

“conditional
distribution”

In each sample, we observe a symbol (2) at each extant

(O) node where we sample from 1t for the root, and
propagate it using R, ,, etc

HIDDEN MARKOV MODELS

hidden

observed

HIDDEN MARKOV MODELS

hidden

observed

n:2 ->R* O
O

“initial distribution”

HIDDEN MARKOV MODELS

: = hidden

n:2.->R* O

“initial distribution” O = observed
N \ ny “transition matrices”

“obs. matrices

HIDDEN MARKOV MODELS

e 3 > R O = hidden
* 7S

“initial distribution” O observed

‘,,/

R, y “transition matrices”

“obs. matrices

In each sample, we observe a symbol (Z_) at each obs.
(O) node where we sample from rt for the start, and
propagate it using R, ,, etc (2,)

Xy’

Question: Can we reconstruct just the topology from
random samples?

Question: Can we reconstruct just the topology from
random samples?

Usually, we assume R, ., etc are full rank so that we can re-root

the tree arbitrarily

X,y?

Question: Can we reconstruct just the topology from
random samples?

Usually, we assume R, ., etc are full rank so that we can re-root

the tree arbitrarily

X,y?

[Steel, 1994]: The following is a distance function on the edges

d. =-In|det(P,)| +%In[In,, -%inlln,

oinX oin2

where P, is the joint distribution

Question: Can we reconstruct just the topology from
random samples?

Usually, we assume T, , etc are full rank so that we can re-root

the tree arbitrarily

Xy’

[Steel, 1994]: The following is a distance function on the edges

d. =-In|det(P,)| +%In[In,, -%inlln,

ogins oin2

where P, . is the joint distribution, and the distance between
leaves is the sum of distances on the path in the tree

Question: Can we reconstruct just the topology from
random samples?

Usually, we assume T, , etc are full rank so that we can re-root

the tree arbitrarily

Xy’

[Steel, 1994]: The following is a distance function on the edges

d. =-In|det(P,)| +%In[In,, -%inlln,

oinX oin2

where P, . is the joint distribution, and the distance between
leaves is the sum of distances on the path in the tree

(It’s not even obvious it’s nonnegative!)

Question: Can we reconstruct just the topology from
random samples?

Usually, we assume R, ., etc are full rank so that we can re-root

the tree arbitrarily

X,y?

Question: Can we reconstruct just the topology from
random samples?

Usually, we assume T, , etc are full rank so that we can re-root

the tree arbitrarily

Xy’

[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel’s distance
function and quartet tests

© ® o © 9 or

© o L ©

to reconstruction the topology

Question: Can we reconstruct just the topology from
random samples?

Usually, we assume T, , etc are full rank so that we can re-root

the tree arbitrarily

Xy’

[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel’s distance
function and quartet tests

© ® o © 9 or

© o L ©

to reconstruction the topology, from polynomially many samples

Question: Can we reconstruct just the topology from
random samples?

Usually, we assume T,,, etcare full rank so that we can re-root
the tree arbitrarily

[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel’s distance
function and quartet tests

© ® o © 9 or

© o L ©

to reconstruction the topology, from polynomially many samples

For many problems (e.g. HMMs) finding the transition matrices is
the main issue...

[Chang, 1996]: The model is identifiable (if R’s are full rank)

[Chang, 1996]: The model is identifiable (if R’s are full rank)

[Chang, 1996]: The model is identifiable (if R’s are full rank)

[Chang, 1996]: The model is identifiable (if R’s are full rank)

[Chang, 1996]: The model is identifiable (if R’s are full rank)

Joint distribution over (a, b, c):

> Priz = o] Prlalz = o] @Prlb|z = o] ® Pric|z = o]

[Chang, 1996]: The model is identifiable (if R’s are full rank)

Joint distribution over (a, b, c):
' Pr(z = o] Prlalz = o]@Pr[b]|z = 6] ® Pric|z = o]
0]

columns of R,

[Mossel, Roch, 2006]: There is an algorithm to PAC learn a
phylogenetic tree or an HMM (if its transition/output matrices
are full rank) from polynomially many samples

[Mossel, Roch, 2006]: There is an algorithm to PAC learn a
phylogenetic tree or an HMM (if its transition/output matrices
are full rank) from polynomially many samples

[Question: Is the full-rank assumption necessary? }

[Mossel, Roch, 2006]: There is an algorithm to PAC learn a
phylogenetic tree or an HMM (if its transition/output matrices
are full rank) from polynomially many samples

[Question: Is the full-rank assumption necessary? }

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the
parameters of a general HMM

[Mossel, Roch, 2006]: There is an algorithm to PAC learn a
phylogenetic tree or an HMM (if its transition/output matrices
are full rank) from polynomially many samples

[Question: Is the full-rank assumption necessary? }

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the
parameters of a general HMM

Noisy-parity is an infamous problem in learning, where O(n)
samples suffice but the best algorithms run in time 27/log(n)

Due to [Blum, Kalai, Wasserman, 2003]

[Mossel, Roch, 2006]: There is an algorithm to PAC learn a
phylogenetic tree or an HMM (if its transition/output matrices
are full rank) from polynomially many samples

[Question: Is the full-rank assumption necessary? }

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the
parameters of a general HMM

Noisy-parity is an infamous problem in learning, where O(n)
samples suffice but the best algorithms run in time 27/log(n)

Due to [Blum, Kalai, Wasserman, 2003]

(It’s now used as a hard problem to build cryptosystems!)

THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

Z Pr(z = o] Pr[a]z = 6]@Pr[b|z = 0] Pr[c|z = o]

PURE TOPIC MODELS

topics (r)

* Each topic is a distribution on words

words (m)

PURE TOPIC MODELS

topics (r)

* Each topic is a distribution on words

* Each document is about only one topic

words (m)

(stochastically generated)

PURE TOPIC MODELS

topics (r)

* Each topic is a distribution on words

* Each document is about only one topic

words (m)

(stochastically generated)

* FEach document, we sample L words
from its distribution

PURE TOPIC MODELS
A W

PURE TOPIC MODELS
A W

PURE TOPIC MODELS
A W

|
-

PURE TOPIC MODELS
A W

-::q

PURE TOPIC MODELS
A

W

:

3

-::q

PURE TOPIC MODELS
A

W

:

3

PURE TOPIC MODELS
A

W

:

3

0

<D

PURE TOPIC MODELS
A W

’
3

<D

0

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure
topic models from polynomially many samples (A is full rank)

PURE TOPIC MODELS
A W

’
3

<D

0

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure
topic models from polynomially many samples (A is full rank)

Question: Where can we find three conditionally
independent random variables?

PURE TOPIC MODELS
A W

’
3

<D

0

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure
topic models from polynomially many samples (A is full rank)

PURE TOPIC MODELS
A W

’
3

<D

0

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure
topic models from polynomially many samples (A is full rank)

The first, second and third words are independent conditioned
on the topic t (and are random samples from A,)

THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

Z Pr(z = o] Pr[a]z = 6]@Pr[b|z = 0] Pr[c|z = o]

THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)
Z Pr(z = o] Pr[a]z = 6]@Pr[b|z = 0] Pr[c|z = o]
O

[Pure Topic Models/LDA]: (joint distribution on first three words)

Z Prltopic =j] A X A A
]

THE POWER OF CONDITIONAL INDEPENDENCE

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)
Z Pr(z = o] Pr[a]z = 6]@Pr[b|z = 0] Pr[c|z = o]
o
[Pure Topic Models/LDA]: (joint distribution on first three words)
Z Pritopic=j] A QAR A
J
[Community Detection]: (counting stars)

D PriC, =il (C,N); @ (CsN), @ (C),
J

Any Questions?

Summary:

* Spearman’s Hypothesis, factor analysis and the rotation
problem

* Jennrich’s Algorithm
* Applications to phylogenetic trees and topic models

* Are there algorithms for third order tensor decomp.
that work with R = (1+€)n?

