Tensor Decompositions and their Applications

Ankur Moitra

Massachusetts Institute of Technology

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

eductive (adj): the ability to make sense out of complexity reproductive (adj): the ability to store and reproduce information

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

eductive (adj): the ability to make sense out of complexity reproductive (adj): the ability to store and reproduce information

He devised the following experiment to test his theory...

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

Hope: There is an interpretable, low-rank approximation

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

Factor analysis: Explain away observations using fewer latent (unobserved) variables

Charles Spearman (1904): There are two types of intelligence, eductive and reproductive

Factor analysis: Explain away observations using fewer latent (unobserved) variables

If it exists, how can we find an interpretable factorization?

If there is a **true** factorization:

If there is a **true** factorization:

Alternatively if there is a **true** factorization:

$$M = \sum_{i=1}^{\kappa} a^{(i)} b^{(i) \top}$$

Alternatively if there is a **true** factorization:

$$M = \sum_{i=1}^{R} a^{(i)} b^{(i)T}$$

it cannot be uniquely determined from just M

(without extra conditions on a⁽ⁱ⁾, b⁽ⁱ⁾)

Alternatively if there is a **true** factorization:

$$M = \sum_{i=1}^{R} a^{(i)} b^{(i)T}$$

it cannot be uniquely determined from just M

(without extra conditions on a⁽ⁱ⁾, b⁽ⁱ⁾)

Low-rank tensor decompositions are unique in ways that matrix decompositions are not!

Outline

The focus of this tutorial is on algorithms & applications

Part I: Tensor Decompositions

- The Rotation Problem
- A Primer on Tensors
- Jennrich's Algorithm

Part II: Applications

- Phylogenetic Reconstruction
- Pure Topic Models

...are collections of numbers indexed by triples (i,j,k)

...are collections of numbers indexed by triples (i,j,k)

T is rank one if there are vectors a, b and c s.t.

$$T_{i,j,k} = a_i b_j c_k \quad \forall_{i,j,k}$$

...are collections of numbers indexed by triples (i,j,k)

T is **rank** one if there are vectors a, b and c s.t.

$$T_{i,j,k} = a_i b_j c_k \quad \forall_{i,j,k}$$

Notation: $T = a \otimes b \otimes c$

...are collections of numbers indexed by triples (i,j,k)

T is **rank** one if there are vectors a, b and c s.t.

$$T_{i,j,k} = a_i b_j c_k \quad \forall_{i,j,k}$$

Notation: $T = a \bigotimes b \bigotimes c$ — i.e. $a \bigotimes b = ab^T$

T is **rank** at most R if there are vectors $a^{(1)}$, $b^{(1)}$, $c^{(1)}$, ...

$$T = \sum_{i=1}^{R} a^{(i)} \bigotimes b^{(i)} \bigotimes c^{(i)}$$

T is **rank** at most R if there are vectors $a^{(1)}$, $b^{(1)}$, $c^{(1)}$, ...

$$T = \sum_{i=1}^{R} a^{(i)} \bigotimes b^{(i)} \bigotimes c^{(i)}$$

Then any slice through it is a low-rank matrix

$$T_{(\bullet,\bullet,k)} = \sum_{i=1}^{R} \left[a^{(i)} \bigotimes b^{(i)} \right] c_k^{(i)}$$

T is **rank** at most R if there are vectors $a^{(1)}$, $b^{(1)}$, $c^{(1)}$, ...

$$T = \sum_{i=1}^{R} a^{(i)} \bigotimes b^{(i)} \bigotimes c^{(i)}$$

Then any slice through it is a low-rank matrix

$$T_{(\bullet,\bullet,k)} = \sum_{i=1}^{R} \left[a^{(i)} \bigotimes b^{(i)} \right] c_k^{(i)}$$

They all share the same row and column space too

T is **rank** at most R if there are vectors $a^{(1)}$, $b^{(1)}$, $c^{(1)}$, ...

$$T = \sum_{i=1}^{R} a^{(i)} \bigotimes b^{(i)} \bigotimes c^{(i)}$$

different scalings of same rank one terms

Then any slice through it is a low-rank matrix

$$T_{(\bullet,\bullet,k)} = \sum_{i=1}^{R} \left[a^{(i)} \bigotimes b^{(i)} \right] c_k^{(i)}$$

They all share the same row and column space too

Key Idea: Subtracting off scalings of the same rank one matrix

$$T_{(\bullet,\bullet,k)} - c_k \left[a \bigotimes b \right]$$

decreases the rank of each slice iff $a = a^{(i)}$, $b = b^{(i)}$, $c = c^{(i)}$ for some i

(under some natural conditions)

Key Idea: Subtracting off scalings of the same rank one matrix

$$T_{(\bullet,\bullet,k)} - c_k \left[a \bigotimes b \right]$$

decreases the rank of each slice iff $a = a^{(i)}$, $b = b^{(i)}$, $c = c^{(i)}$ for some i

(under some natural conditions)

This is what makes tensors more rigid than matrices

Key Idea: Subtracting off scalings of the same rank one matrix

$$T_{(\bullet,\bullet,k)} - c_k \left[a \bigotimes b \right]$$

decreases the rank of each slice iff $a = a^{(i)}$, $b = b^{(i)}$, $c = c^{(i)}$ for some i

(under some natural conditions)

This is what makes tensors more rigid than matrices

For matrices, there are many rank one terms we can subtract off to reduce its rank

Theorem [Hastad 1990]: Computing the rank of a tensor is NP-hard

Theorem [Hastad 1990]: Computing the rank of a tensor is NP-hard

Fact: There are rank three tensors that can be **arbitrarily** well-approximated by rank two tensors

Theorem [Hastad 1990]: Computing the rank of a tensor is NP-hard

Fact: There are rank three tensors that can be **arbitrarily** well-approximated by rank two tensors

Fact: The best rank k and the best rank k+1 approximations need not share **any** rank one factors in common

Theorem [Hastad 1990]: Computing the rank of a tensor is NP-hard

Fact: There are rank three tensors that can be **arbitrarily** well-approximated by rank two tensors

Fact: The best rank k and the best rank k+1 approximations need not share **any** rank one factors in common

Fact: Even for tensors with real entries, may need complex numbers to find lowest rank decomposition $(rank_R \neq rank_C)$

Theorem [Hastad 1990]: Computing the rank of a tensor is NP-hard

Fact: There are rank three tensors that can be **arbitrarily** well-approximated by rank two tensors

Fact: The best rank k and the best rank k+1 approximations need not share **any** rank one factors in common

Fact: Even for tensors with real entries, may need complex numbers to find lowest rank decomposition $(rank_R \neq rank_C)$

•

[Hillar, Lim] "Most Tensor Problems are NP-Hard"

Table I. Tractability of Tensor Problems

Problem	Complexity
Bivariate Matrix Functions over \mathbb{R} , \mathbb{C}	Undecidable (Proposition 12.2)
Bilinear System over \mathbb{R} , \mathbb{C}	NP-hard (Theorems 2.6, 3.7, 3.8)
Eigenvalue over $\mathbb R$	NP-hard (Theorem 1.3)
Approximating Eigenvector over $\mathbb R$	NP-hard (Theorem 1.5)
Symmetric Eigenvalue over $\mathbb R$	NP-hard (Theorem 9.3)
Approximating Symmetric Eigenvalue over $\mathbb R$	NP-hard (Theorem 9.6)
Singular Value over \mathbb{R}, \mathbb{C}	NP-hard (Theorem 1.7)
Symmetric Singular Value over $\mathbb R$	NP-hard (Theorem 10.2)
Approximating Singular Vector over \mathbb{R}, \mathbb{C}	NP-hard (Theorem 6.3)
Spectral Norm over $\mathbb R$	NP-hard (Theorem 1.10)
Symmetric Spectral Norm over $\mathbb R$	NP-hard (Theorem 10.2)
Approximating Spectral Norm over $\mathbb R$	NP-hard (Theorem 1.11)
Nonnegative Definiteness	NP-hard (Theorem 11.2)
Best Rank-1 Approximation	NP-hard (Theorem 1.13)
Best Symmetric Rank-1 Approximation	NP-hard (Theorem 10.2)
Rank over $\mathbb R$ or $\mathbb C$	NP-hard (Theorem 8.2)
Enumerating Eigenvectors over $\mathbb R$	#P-hard (Corollary 1.16)
Combinatorial Hyperdeterminant	NP-, #P-, VNP-hard (Theorems 4.1 , 4.2, Corollary 4.3)
Geometric Hyperdeterminant	Conjectures 1.9, 13.1
Symmetric Rank	Conjecture 13.2
Bilinear Programming	Conjecture 13.4
Bilinear Least Squares	Conjecture 13.5

Theorem [Jennrich 1970]: Suppose $\{a^{(i)}\}$ and $\{b^{(i)}\}$ are linearly independent and no pair of vectors in $\{c^{(i)}\}$ is a scalar multiple of each other. Then

$$T = \sum_{i=1}^{R} a^{(i)} \bigotimes b^{(i)} \bigotimes c^{(i)}$$

is unique up to permuting the rank one terms and rescaling the factors.

Theorem [Jennrich 1970]: Suppose $\{a^{(i)}\}$ and $\{b^{(i)}\}$ are linearly independent and no pair of vectors in $\{c^{(i)}\}$ is a scalar multiple of each other. Then

$$T = \sum_{i=1}^{R} a^{(i)} \bigotimes b^{(i)} \bigotimes c^{(i)}$$

is unique up to permuting the rank one terms and rescaling the factors.

There is a simple algorithm to compute the factors too!

Theorem [Jennrich 1970]: Suppose $\{a^{(i)}\}$ and $\{b^{(i)}\}$ are linearly independent and no pair of vectors in $\{c^{(i)}\}$ is a scalar multiple of each other. Then

$$T = \sum_{i=1}^{R} a^{(i)} \bigotimes b^{(i)} \bigotimes c^{(i)}$$

is unique up to permuting the rank one terms and rescaling the factors.

There is a simple algorithm to compute the factors too!

Rediscovered in [Chang], [Leurgans et al.], [Anandkumar et al.], [Goyal et al.] ...

Compute T(• , • , x)

$$\sum x_i T_{(i,\bullet,\bullet)}$$

Compute T(• , • , x)

$$\sum x_i T_{(i,\bullet,\bullet)}$$

If
$$T = a \otimes b \otimes c$$
 then $T(\bullet, \bullet, x) = \langle c, x \rangle a \otimes b$

Compute T(• , • , x)

$$\sum x_i T_{(i,\bullet,\bullet)}$$

Compute T(•,•,x) =
$$\sum \langle c^{(i)}, x \rangle a^{(i)} \otimes b^{(i)}$$

$$\sum x_i T_{(i,\bullet,\bullet)}$$

Compute T(•,•,x) =
$$\sum \langle c^{(i)}, x \rangle a^{(i)} \otimes b^{(i)}$$

i.e. add up matrix slices

$$\sum x_i T_{(i,\bullet,\bullet)}$$

(x is chosen uniformly at random from Sⁿ⁻¹)

Diag(
$$\langle c^{(i)}, x \rangle$$
)

i.e. add up matrix slices

$$\sum x_i T_{(i,\bullet,\bullet)}$$

(x is chosen uniformly at random from Sⁿ⁻¹)

Compute $T(\bullet, \bullet, x) = A D_x B^T$

- Compute $T(\bullet, \bullet, x) = A D_x B^T$
- Compute $T(\bullet, \bullet, y) = A D_y B^T$

- Compute $T(\bullet, \bullet, x) = A D_x B^T$
- Compute $T(\bullet , \bullet , y) = A D_y B^T$
- Diagonalize $T(\bullet, \bullet, x) T(\bullet, \bullet, y)^{-1}$

- Compute $T(\bullet, \bullet, x) = A D_x B^T$
- Compute $T(\bullet, \bullet, y) = A D_y B^T$
- Diagonalize T(\bullet , \bullet ,x) T(\bullet , \bullet ,y)⁻¹

$$A D_x B^T (B^T)^{-1} D_y^{-1} A^{-1}$$

- Compute $T(\bullet, \bullet, x) = A D_x B^T$
- Compute $T(\bullet , \bullet , y) = A D_y B^T$
- Diagonalize $T(\bullet, \bullet, x) T(\bullet, \bullet, y)^{-1}$

$$A D_x D_y^{-1} A^{-1}$$

- Compute $T(\bullet, \bullet, x) = A D_x B^T$
- Compute $T(\bullet, \bullet, y) = A D_y B^T$
- Diagonalize T(, , x) T(, , y)-1

$$A D_x D_y^{-1} A^{-1}$$

Claim: whp (over x,y) the eigenvalues are distinct, so the Eigendecomposition is unique and recovers $a^{(i)'}$ s

- Compute $T(\bullet, \bullet, x) = A D_x B^T$
- Compute $T(\bullet , \bullet , y) = A D_y B^T$
- Diagonalize $T(\bullet, \bullet, x) T(\bullet, \bullet, y)^{-1}$

- Compute $T(\bullet , \bullet , x) = A D_x B^T$
- Compute $T(\bullet , \bullet , y) = A D_v B^T$
- Diagonalize T(\bullet , \bullet ,x) T(\bullet , \bullet ,y)⁻¹
- Diagonalize $T(\bullet, \bullet, x)^{-1} T(\bullet, \bullet, y)$

- Compute $T(\bullet , \bullet , x) = A D_x B^T$
- Compute $T(\bullet , \bullet , y) = A D_y B^T$
- Diagonalize T(, , x) T(, , y)-1
- Diagonalize $T(\bullet, \bullet, x)^{-1} T(\bullet, \bullet, y)$
- Match up the factors (their eigenvalues are reciprocals) and find $\{c^{(i)}\}$ by solving a linear system

Outline

The focus of this tutorial is on algorithms & applications

Part I: Tensor Decompositions

- The Rotation Problem
- A Primer on Tensors
- Jennrich's Algorithm

Part II: Applications

- Phylogenetic Reconstruction
- Pure Topic Models

"Tree of Life"

If we've aligned sequences... $X \to \mathbb{R}^+$ "initial distribution" $Y \to \mathbb{R}^+$ "initial distribution" $Y \to \mathbb{R}^+$ = extinct $Y \to \mathbb{R}^+$ $Y \to \mathbb{R}^+$ $Y \to \mathbb{R}^+$ "initial distribution" $Y \to \mathbb{R}^+$ = extinct $Y \to \mathbb{R}^+$ = extinct $Y \to \mathbb{R}^+$ = extinct $Y \to \mathbb{R}^+$ = alphabet

In each sample, we observe a symbol (Σ) at each extant (\bigcirc) node where we sample from π for the root, and propagate it using $R_{x,v}$, etc

O = hidden

= observed

In each sample, we observe a symbol (Σ_o) at each obs. (\bigcirc) node where we sample from π for the start, and propagate it using $R_{x,v}$, etc (Σ_s)

Usually, we assume $R_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

Usually, we assume $R_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

[Steel, 1994]: The following is a distance function on the edges

$$d_{x,y} = -\ln |\det(P_{x,y})| + \frac{1}{2} \ln \prod_{\sigma \text{ in } \Sigma} \pi_{x,\sigma} - \frac{1}{2} \ln \prod_{\sigma \text{ in } \Sigma} \pi_{y,\sigma}$$

where $P_{x,v}$ is the joint distribution

Usually, we assume $T_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

[Steel, 1994]: The following is a distance function on the edges

$$d_{x,y} = -\ln |\det(P_{x,y})| + \frac{1}{2} \ln \prod_{\sigma \text{ in } \Sigma} \pi_{x,\sigma} - \frac{1}{2} \ln \prod_{\sigma \text{ in } \Sigma} \pi_{y,\sigma}$$

where $P_{x,y}$ is the joint distribution, and the distance between leaves is the sum of distances on the path in the tree

Usually, we assume $T_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

[Steel, 1994]: The following is a distance function on the edges

$$d_{x,y} = -\ln |\det(P_{x,y})| + \frac{1}{2} \ln \prod_{\sigma \text{ in } \Sigma} \pi_{x,\sigma} - \frac{1}{2} \ln \prod_{\sigma \text{ in } \Sigma} \pi_{y,\sigma}$$

where $P_{x,y}$ is the joint distribution, and the distance between leaves is the sum of distances on the path in the tree

(It's not even obvious it's nonnegative!)

Usually, we assume $R_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

Usually, we assume $T_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel's distance function and quartet tests

to reconstruction the topology

Usually, we assume $T_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel's distance function and quartet tests

to reconstruction the topology, from polynomially many samples

Question: Can we reconstruct just the topology from random samples?

Usually, we assume $T_{x,y}$, etc are full rank so that we can re-root the tree arbitrarily

[Erdos, Steel, Szekely, Warnow, 1997]: Used Steel's distance function and quartet tests

to reconstruction the topology, from polynomially many samples

For many problems (e.g. HMMs) finding the transition matrices is the main issue...

[Chang, 1996]: The model is identifiable (if R's are full rank)

Joint distribution over (a, b, c):

$$\sum_{\sigma} \Pr[z = \sigma] \Pr[a | z = \sigma] \bigotimes \Pr[b | z = \sigma] \bigotimes \Pr[c | z = \sigma]$$

Joint distribution over (a, b, c):

$$\sum_{\sigma} \Pr[z = \sigma] \Pr[a | z = \sigma] \bigotimes \Pr[b | z = \sigma] \bigotimes \Pr[c | z = \sigma]$$

$$\text{columns of } R_{z,b}$$

Question: Is the full-rank assumption necessary?

Question: Is the full-rank assumption necessary?

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the parameters of a general HMM

Question: Is the full-rank assumption necessary?

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the parameters of a general HMM

Noisy-parity is an infamous problem in learning, where O(n) samples suffice but the best algorithms run in time $2^{n/\log(n)}$

Due to [Blum, Kalai, Wasserman, 2003]

Question: Is the full-rank assumption necessary?

[Mossel, Roch, 2006]: It is as hard as noisy-parity to learn the parameters of a general HMM

Noisy-parity is an infamous problem in learning, where O(n) samples suffice but the best algorithms run in time $2^{n/\log(n)}$

Due to [Blum, Kalai, Wasserman, 2003]

(It's now used as a hard problem to build cryptosystems!)

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

$$\sum_{\sigma} \Pr[z = \sigma] \Pr[a | z = \sigma] \bigotimes \Pr[b | z = \sigma] \bigotimes \Pr[c | z = \sigma]$$

topics (r)

• Each topic is a distribution on words

topics (r)

Each topic is a distribution on words

Each document is about only one topic

(stochastically generated)

topics (r)

Each topic is a distribution on words

Each document is about only one topic

(stochastically generated)

 Each document, we sample L words from its distribution

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure topic models from polynomially many samples (A is full rank)

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure topic models from polynomially many samples (A is full rank)

Question: Where can we find three conditionally independent random variables?

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure topic models from polynomially many samples (A is full rank)

[Anandkumar, Hsu, Kakade, 2012]: Algorithm for learning pure topic models from polynomially many samples (A is full rank)

The first, second and third words are independent conditioned on the topic t (and are random samples from A_t)

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

$$\sum_{\sigma} \Pr[z = \sigma] \Pr[a | z = \sigma] \bigotimes \Pr[b | z = \sigma] \bigotimes \Pr[c | z = \sigma]$$

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

$$\sum_{\sigma} \Pr[z = \sigma] \Pr[a | z = \sigma] \bigotimes \Pr[b | z = \sigma] \bigotimes \Pr[c | z = \sigma]$$

[Pure Topic Models/LDA]: (joint distribution on first three words)

$$\sum_{j} Pr[topic = j] A_{j} \otimes A_{j} \otimes A_{j}$$

[Phylogenetic Trees/HMMS]: (joint distribution on leaves a, b, c)

$$\sum_{\sigma} \Pr[z = \sigma] \Pr[a | z = \sigma] \bigotimes \Pr[b | z = \sigma] \bigotimes \Pr[c | z = \sigma]$$

[Pure Topic Models/LDA]: (joint distribution on first three words)

$$\sum_{i} Pr[topic = j] A_{j} \otimes A_{j} \otimes A_{j}$$

[Community Detection]: (counting stars)

$$\sum_{i} Pr[C_{x} = j] (C_{A}\Pi)_{j} \otimes (C_{B}\Pi)_{j} \otimes (C_{C}\Pi)_{j}$$

Any Questions?

Summary:

- Spearman's Hypothesis, factor analysis and the rotation problem
- Jennrich's Algorithm
- Applications to phylogenetic trees and topic models
- Are there algorithms for third order tensor decomp. that work with $R = (1+\epsilon)n$?