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The Cancer Problem

Emerging Hallmarks

Deregulating cellular Avoiding immune
energetics destruction

Genome instability [ Tumor-promoting
and mutation Inflammation

Enabling Characteristics

Hanahan and Weinberg 2011, Cell 144:646-674.



Cancer Cell Network

Anti-growth factors
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We can find inhibitors for almost all targets

Optimization
or Lead

/ Shape based
hopping

screeing

But how do we select targets?

» synthetizable




Introduction

Overall Goal: To look at cancer and chemotherapy in a
different way and to ultimately improve treatment.

Investigate a quantitative measure of the robustness of
cancer signaling pathways.

Cell biology normally focuses on individual components
and processes.

Network biology focuses on the interaction of all
components of a biological system.

Chemotherapy traditionally focuses on single targets.
Cellular processes are more complex than this.

We want to find a way to evaluate the effectiveness of
chemotherapeutics on a network level.



Information available

Data bases of drugs approved and investigational,
their mode of action, targets, applications in
cancer

Biochemical pathways (identify where drugs
inhibit them)

List of “druggable targets”
Methods of modeling networks and pathways



Key Databases for these Studies

Database of pathway networks for cancer (and other stuff)
KEGG (Kyoto Encyclopedia of Genes and Genomes)
http://www.genome.jp/kegg/

Database of statistical information on survival.
SEER (Surveillance Epidemiology and End Results)
http://seer.cancer.gov/

Database of protein-protein interaction networks
BioGrid
http://www.biogrid.org

Database of cancer data
TCGA (The Cancer Genome Atlas)
http://cancergenome.nih.gov/

Database of drugs, both approved and investigational
Drugbank.ca



Organization vs. Randomness
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Networks in nature and technology differ from “random networks”
In many aspects.




Biological pathways are complex networks

METABOLIC PATHWAYS
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Networks may be analyzed using graph theory
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. 6 Topological properties of networks

Global analyses of these properties over an entire network provide
insights into its organization

P P Many networks display small

. . world / scale free behaviour (many
nodes with few connections; few
(::) nodes with many connections)
O
. (K N 5) log P(k) A - . }
() NodeA / P(k)~k’
interacts with E‘
five other S
nodes = >
8
& %
One of the more <
commonly used is S
Node Degree or rank -

log k
order log(Degree)

Scale free networks are thought to be more resistant
to disruntion



Shortest path

length

o

(L=2)

The shortest path

between A and B is via 2
links

Mean path length
offers a measure
of a networks
overall
navigability

Topological properties of networks

™ Cluster

. Betweenness
coefficient

(C=1/6) (B=13/15)

Of the six possible 13 out 15 shortest
connections between the paths in the network
neighbours of A, only one is go through node A
actually made:
nl/2t (n-2):=6; r=1 Nodes with high
Average cluster betweenness are
coefficient ‘central’ to the
characterizes the network
overall tendency
of the network to

form clhiicterce



General cancer pathway
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g N
G2
]
]
]
]
]
|
I
]
.

(i) (o) (“owen ) (oo ) (rmzzr) () (o ) Cooem ) (22 ) (oo ) (oo ) (onommons) ez ) (Ot




Molecular Pathway Networks

A network 1s an undirected graph G = (V, £ ) with vertex and edge
sets V' and E , respectively. The vertices are proteins and two

vertices are connected by an edge 1f there 1s a known interaction of
the two partners, either by direct binding or by enzymatic catalysis.

We obtain the cancer pathways from KEGG

http://www.genome.jp/kegg/

with the open source software packages KEGGgraph and

cytoscape. g
J Bioconductor

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

x‘gjbCytoscape

http://bioconductor.org http://cytoscape.orq




Chemotherapeutic agents’
interactions with targets

larget : a molecule whose interaction with

an anticancer agent will induce a cytotoxic effect

Targets are key bio- molecules involved or
required for cell mitosis and/or survival

Conventional chemotherapy acts on dividing
cells only, but does not distinguish normal and
abnormal dividing cells

Targeted agents are designed to act on targets
which are specific for tumor cells



fumagillin, TNP-470
., ecteinascidin 743 PRIMA-1, pifithrin a
KEY TARGETS wortmannin UCN-01, SB-218078

nitrogen mustards caffeine debromohymenialdisine
nitrosoureas isogranulatimide
mitomycin C menadione (K3)
53/MDM2 .
hydroxyurea ATM/ATR P (R)-roscovitine (CYC202)

cytarabine paullones, indirubins

. nucleotide excision Chk1
5 ﬂantlfolate-s; repair Chk2 e Vinca alkaloids*
-fluorouraci
. DNA synthesis PD0166285 |taxol/taxotere
6-mercaptopurine CDC2s / halichondrin®
FK317 —> HMGA okt wees spongistatin*
ee . N
camptothecin———>topoisomerase | rhizoxin*
pinq Aurora cryptophycin
podophyllotoxin,doxorubicinI'CO/Poiiomerase I tubulin | «——— sarcodictyin
i i polymerisation/ .
etoposide, mitoxantrone CDK2 At l eleutherobin
(R)-roscovitine (CYCZOZ)I/CdC7 depolymerisation epothilones
paullones, indirubins CDK4 kinesin Eg5 discodermolide
/ ODC/SAMDC actin D-24851 ?*
flavopirido! / o Pint ggrlglitraet':tl:statin*
. ARR
polyamine analogues / MEK1/Erk-1/2 monastrol
paullones, indirubins Raf ROCK cytochalasins
latrunculin A
DF203 farnesyl transferase .
PD98059. U0126 tyrosine kinases ZC)[totE)hs{C1?S1
) olastatin
PS-341 —> protea.some. BAY-43-9006 jasplakinolide
CT-2584 ———> choline kinase V-27632
rapamycin —> mTOR/FRAP - R115777  gleevec
bryostatin, PKC412 —> pKc SCH66336 iressa
geldanamycin, 17-AAG —> HSP90 0SI1774
ATK, MAFP ——> cytosolic phospholipase A2 :
trichostatin, FK228 —— histone deacetylase ~80 drugs and drug candidates

hexadecylphosphocholine — phospholipase D
okadaic acid, fostreicin, calyculin A —> phosphatases

Source: Cell cycle laboratory, L. Meijer, Roscoff, France



Drug Binding: Inhibition of Protein-
Protein Interactions

Drug / Ligand

Protein \

Cavity



Robustness of Biological Networks

We want to know how resilient these pathways are to
chemotherapy.

How does the inhibition of an interaction effect function
of the entire network?

Robustness is the measure of how well networks
function under random perturbation.

Network robustness can be quantified as entropy.

Barakat (March 2009) PHYS 699



Graph Theory and Entropy

. A graph is a collection of nodes and edges.

- In this case nodes represent proteins and genes
while edges represent interactions between
them.

- The degree of a node is a count of how many
edges lead to or from it.

- Pathways were converted into graphs using R
and KEGGgraph.

. The entropy of these graphs is then given by
H = -2 p(k)*In(p(k))

- where p(k) is the probability that a node has
degree k.

Barakat (March 2009 Y PHYS 699



Analysis of Pathways

. The next step was to calculate the entropy of
each pathway.

- This was done using both R and Excel.

. After that, to draw useful information from
these entropies.

- We hypothesized that there should be a
correlation between entropy and lethality.

- The most lethal cancers should be the most
robust.

9999999



Acute myeloid leukemia

| acuteE MyvELOID LEUKEMIA |

Hematopoietic progenitors

Hematopoietic
cell lineage

v

Acute myeloblastic leukemia
with minimal differentiation {IM0})

Acute myeloblastic leukemia
without matoration (M 1)

Acute myeloblastic leukemia
with matration (M2}

Acute promyelocytic levkemia (M3)
Acute myelomonocytc levkemia (M4)

Acute myelomonocytic leukemia
with abnormal eosinophils (M4Eo)

Acute monocytic leukemia (IMS)
Erythrolevkemia (M6)
Acute megakaryocytc levkemia (M7)
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Basal cell carcinoma

BASAL CELL CARCINOMA
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Bladder cancer
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Chronic myeloid leukemia
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Colorectal cancer
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Endometrial cancer
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melanoma

MELANOMA

Normal melanocyte Melanocyte
| MAPK signaling
| [ ER&F] Pa“‘“y
| -
linD 1
| Ref |MEK}—>| -3 »O — — Prolifersti
_— roliferation
| P *P CDKA
DN&
|
| | oF }—» RTK |-—m Res
\d FIP3
Benign nevus O—»[PKBlsklf- —— ————— — — — —— — — >0 ———p Survival
| =) DN&
| D — Survivel
|
| _/1MDM2 | p14*]
| Apopto
| 153
|
| ] ] O DN& Cell cycle
| Genetic alterations
+_ Oncogenes : BERAF,NRAS,CDK4
Dysplastic nevus MITF - +p
| CyelinD1 .
| Tumor suppressors . PTEN, INK4a/ARF, pS3 CDK46 *_ Rb
* i DN&
Redial-growth phase _ L ——% GUS progression
| _~ Dovmregulation
-
| [ EcaD Iﬁ/ _____ > Disyuption of the — —p Invasion
: keratinocyte-melanocyte adhesion
| P53 signaling DN& _ Genomic instability
. . pS3 O— — —p= Impaired G1 cycle amrest
¥ Adherens junction pathway damage D& Reduced apoptosis
Vertical-growth phase
| ] )
| Melanogenesis o Tergetgenes — —pn eSISICE 10 chemotherapy
Metastatic melanoma

05218 1/26/09
{c) Kanehisa Laboratories




Non-small cell lung cancer

| NON-SMALL CELL LUNG CANCER |

. Alveolar and bronchiolar epithelial cell
Alveolar and bronchiolar {Bronchial epithelial cell

epithelial cells

| Bronchial epithelial cells RAR
RXRﬁ O — — — = Tumour progression
Retinoic acid DN&

FHIT ? — — g _Reduced apoptosis
Cell-cycle progression

MSTL | — —pme Reduced apoptosis Cell cytle

‘._________________

—— — —p= Proliferation “oeaEl o
-
e
BAD DN&
CA&SP9 |— — e Antiapoptosis E2F O — —m G1/3 progression
¥ Forkhead
A typical adenomatous
hyperplasia +p +p DN&

| Bronchial dysplasia Raf |—w[ MEK |—»[ ERK |-————#O—»[CeliD1|— — - poliferation

|

| | ER MAPK signaling

| Cal+ th

| | — patey

| | P3

| | L_EGF EGFR [ PLCy | Caleium siznaling

| DN& Impaired G1 and G2 arrest
| | [ToF ERBEZ \ PKC b damage ——™[_053 |#O——W  Reduced apopiosis
| : \ N DN& Genomic instability
| | AN "2{[BaD

l I Overex\l}ression CASPY [— — = Antiapoptosis P?:%ﬁn’:];ng

Primary adenocarinoma * ErbB signaling +p

| Primary squamous pathvay -

| cell carcinoma Cell cyele

|

| : Genetic alterations

I I Oncogene : K-Ras

Tumor suppressors : RAR[I, FHIT, RASSF1,
INK4a/ARF, pS3

IMetastatic adenocarcinoma

Metastatic squamous
cell carcinoma

05223 1/26/09
{c) Kanehisa Laboratories




Pancreatic cancer

| pancreEaTIC cancer |

Chromosome Unstable (CIN) pathway Pancreatic ductel cell . Cymskeleton
Normal duct [ Rec | 7 remodeling
| RacGEF
»O——— nti-apopotic genes
| » O ot i
| DHN&
|
: PKBlAKY Bad || [ Belxl |— ¥ Cell survival
|
CASP9 — — M Suppressed apoptosis
PanIN-14 (Pancrg;aeli]cal PP POP
intraepi
| neoplacia) +
! (o0EE |
* — — = Proliferative genes
1
PanIN-1B :
' |
' Ral |
} I
| |
|
| —ttr— -
|
| PIP: Bcel-xl — = Inhibition of apoptosis O— — —p= Anti-apoptotic genes
I PI3K PKEIAK DNa
—w»[ EGFR |7 ™~ ¥EGF signling
' e bty
: Jakl +p
¥ ErbB signaling -— — — —= Angiogenesis
PanIN-2 pathway Jak-STAT signaling DNA
I pathway
| [pie ] Cell oyl
| e T
| inD1
+ Genetic alterations
PanIN-3 Oncogenes: K-Ras, HERZ{nen E2F D; —#= G1IS progression
|
| Tumor suppressors: plé, pS3, Smadd,
| BRCAZ P53 signaling DN& O———p Aryotypic instability
| pathway damagé ’- 7. Impamed G1 cyrle amrest
I DN& Reduced apoptosis
|
| lTGFﬁRII P Loss of growth inhibitory
I 2L > [rorpeg] *{Smadzid > O, T ™ effecof TOF
I Smsdd TGE- [y signaling [BrCaz]
| s od Rad51 O— — — p Failed repair
+ DHN& of genes
Adenocarcinoma (dsDN& breaks)

0sziz 213109
{c) Kanehisa Laboratories




Prostate cancer
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Renal cell carcinoma
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Thyroid cancer
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Small cell lung cancer
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Glioma Carcinoma Protein-Protein
Interaction Network




Calculating Betweenness-Centrality

Betweenness centrality, or just betweenness, is a network topological metric and a
measure of the centrality of a node, v,. Specifically, it is the sum of the fractions of

shortest paths that pass through v. . The relation is given by

ey = 3 L) (1)

O

S#EVEL st

where o, is the number of shortest paths between two nodes (s,7) and o_,(v) is the

number of those paths passing through v, (Newman, 2010). In other words,

betweenness centrality is a measure of the extent that a node lays on the paths
between other nodes. This is important because it may indicate the influence within
the network that this node plays in controlling information transfer between other
nodes.



Calculating Degree Entropy

The second network topology metric we explored, for which we did find correlation
with 5-year survival probability, was network entropy, specifically degree-entropy,
which is simply stated as:

H =-Y pblogp(h
2)

where N is the total number of nodes in the network and p(k) is the degree (number
of incident lines) of node k (Wang, et al. 2006). In words, the degree-entropy
provides a measure of the network’s heterogeneity and complexity.



cancer SEER nodes edges degree Bl B2 B3

AML 23.6 2.0998 60 170 5.533 2322 6688 3728
CML 55.2 2.1607 73 185 5.041 2885 4193 9846
colorectal 63.6 1.7994 62 104 3.3548 3845 5900 1499
glioma 33.4 2.2646 65 189 5.8154 1956 3480 5159
melanoma 91.2 1.6761 71 281 7.4648 4893 5604 5595
NSCL 18 2.3584 54 124 4.6481 3845 11186 595
renal 69.5 1.7691 70 109 3.1143 2549 5981 5594
SCL 6.2 2.212 84 219 5.2262 4792 5747 595
thyroid 97.2 1.4798 29 49 3.379 3265 4893 3845
bladder 78.1 1.668 42 46 2.1905 5605 5604 5595
endometral 68.6 1.8352 52 87 3.2308 2885 105 5170
basal 91.4 1.8768 55 310 11.273 2932 1499 2735
pancreatic 5.5 2.0501 70 137 3.9143 3845 10928 3716
prostate 99.4 2.4025 89 295 6.6292 2885 2932 207

Table 1. Cancer, survival probability, network statistics. Here,

H stands for degree-entropy; nodes for the number of nodes;
edges for the number of edges; degree for the average degree.
The symbols B1, B2, B3 indicate the Entrez ID’s for the top

three betweenness centrality nodes, respectively.




Table 1. Cancer survival probabilities and network statistics for 14 cancer types. The columns B1, B2, and B3 give the HGNC gene
symbols19 for the top three betweenness centrality nodes. Table reproduced from Breitkreutz et al 2

Cancer Type Bl B2 B3

Acute myeloid leukemia FLT3 SPI1 JUP
Basal cell carcinoma GSK3B CTNNB1  GLI1
Bladder cancer MAP2K2 MAP2K1 MAPK3
Chronic myeloid leukemia ~ GRB2 MDM2 GAB2
Colorectal cancer KRAS RALGDS CTNNBI
Endometrial cancer GRB2 ADARB2 PDPKI
Glioma EGFR IGFIR PDGFRB
Melanoma NRAS MAP2K1 MAPK3
Non small-cell lung cancer ~ KRAS RASSFI  CCNDI
Pancreatic cancer KRAS RALBP1  JAKI
Prostate cancer GRB2 GSK3B  AKTI
Renal cell carcinoma GABI RFC1 MAPK]
Small cell lung cancer NFKBIA  PTK2 CCNDI
Thyroid cancer HRAS NRAS KRAS
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Degree-Entropy of PPI Networks is Correlated with percent 5-yr
Survival

Molecular signaling network complexity is correlated
with cancer patient survivability

/) Dylan Breitkreutz®®, Lynn Hlatky*, Edward Rietman®, and Jack A. Tuszynski®®' PMID 2 26 1 5 392

PNAS, June 5, 2012, 9209-9212

*  Compute degree-entropy on each KEGG cancer 2.6 0.0004
network and then plot with survival. )

+ To confirm that the correlation was not an artifact we
computed the entropy of a population of 1,000
Erdos-Rényi similar-sized random networks and
1,000 similar-sized Barabasi scale-free networks for
each of the cancer networks. We found statistically

Degree-entropy
&
= v
‘—ﬁfl
|

no correlation with survival. 1.6 I
. _ _ 1.4 i
« Considering that we are correlating two highly
unrelated databases it is remarkable that we got 1.2
such a good correlation. 0%k 20% 40% ©O0% B80% 100%

S-year survival probability



A possible correlation between entropy and lethality is seen.

These survival rates however, take into account all methods
of treatment.

To improve both the reliability and clarity of this correlation a
few things are being done:

Survival statistics of patients who refused treatment and
those that only received chemotherapy will be used.

Check how the random deletion of edges affects the entropy
of each pathway.



Tumor consumes vast amounts of
glucose to fulfill energy requirements

~100% aerobic 25% anaerobic 75% aerobic

100 mol glucose 375 mol glucose | 75 mol glucose

Tumor: 3000
mol ATP

Brain:
3000 mol ATP

100 mol glucose 450 mol glucose

Aerobic: 1glucose =30 ATP
Anaerohic: 1glucose =2 ATP



Preliminary Work in Progress:
Metabolic Entropy-Warburg Effect
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Possible Targets

Glucose
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Tennant et al., Nature Review Cancer 10:267-277, 2010. Nature Reviews | Cancer




Randomly “Drugged” Signhaling
Pathways

Went through each of the pathways and altered them depending on the
drugs that inhibited certain interactions.

Inhibition was represented as the removal of certain parts of the graph
that could only be reached by the inhibited interaction.

The results were less than extraordinary, only a few pathways were
altered by more than about AH=0.4



Change in Entropy of the Prostate Pathway due to Random Removal of
Edges
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Change in Entropy of AML Pathway due to Random Edge Removal
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Change in SCL Entropy due to Random Removal of Edges
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Change in Entropy of CML Patway due to Random Edge Removal
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Implications for Chemotherapy

Three main avenues of application:

The standard chemotherapeutic treatments can be
investigated for target inhibition of pathway nodes

Important nodes of the graphs may be ideal targets for new
drugs.

Combinations of several nodes can be selected for inhibition
(subject to non-overlapping side effects)

An accurate model of drug inhibition would allow for the
development of new synergistic chemotherapy regimens.



Breatst cancer subtypes
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MOWkVIB-231 vs. MCF-10A
CliclfA)ere to download Figure: Figure_2.pdf

(B8)




Calculated patient benefit on the
use of top 5 inhibitors
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Triple-Negative Breast Cancer Top Five targets
 Epidermal growth factor receptor EGFR

* Heat shock protein HSP 90-beta HSP90AB1
 Mitogen-activated protein kinase 13 MAPK13
* 14-3-3 protein beta/alpha YWHAB

* Protein mago nashi homolog MAGOH



Gibbs Free Energy:The Basic Idea and the Math

* The interaction energy between two molecules 1s known as
the chemical potential

* A cell 1s a massive network of molecular species

* We can represent the cell as a PPI network with scalar
numbers associated with each protein — the Gibbs free-
energy

* The Gibbs free-energy for a particular protein is given by

energy landscape view

network view

Shading represents G, =c¢;In L
Gibbs energy Zj¢j . .
where ¢, = normalized expression



Gibbs Free-Energy on PPI Networks from mRNA Expression

Figure 1: Example of a small PPl network. The
nodes (A-F) represent individual proteins, the

C.
G =cIns-

C.
Ej=i J

where c¢; = normalized expression, representing concentration

e Log2 transformed mRNA expression data are rescaled to
be between 0 and 1.

* The most negative value would thus be rescaled to 0 and
the most positive value would be rescaled to 1.

* These rescaled values are surrogates for protein

lines, called the edges, represent protein-protein .
interactions. No information about the directionality concentration.

of the interaction is shown.

TCGA name cancer type N % 5-yr Gibbs
KIRC kidney renal clear cell 72 68 -5687
KRIP kidney relan papillary cell 16 68 -4944
LGG low grade glioma 27 50 -6411
GBM glioblastoma multiforme 483 2 -5668
BRCA breast invasive carcionma 590 88 -6674
UCEC uterin corpus endometrial 54 84 -6310
ov serous cystadenocarcinoma 562 45 -6233

COAD colon adenocarcinoma 174 65 -6099
READ rectum adenocarcinoma 72 64 -5861
LUAD lung adenocarcinoma 32 17 -5916
LUSC lung squamous cell 155 40 -6212




. ) R correlation is -0.72 without KIRC, KRIP
5 yrsurvival vs. Gibbs free energy g correlation is -0.21 with KIRC, KRIP

on TCGA cancers (KIRC, KRIP not shown)
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Filtration of Energy Landscape As the “filtration plain” moves up
(another view of persistent homology) from the bottom, more-and-more
nodes become exposed and larger-
and-larger pathway networks come

landscape to be “filtered into view.

medium level threshold




Gibbs Free-Energy Conclusion

Using mRNA expression data as a surrogate for protein concentration we can
calculate the Gibbs free-energy for each node in a PPl network

Gibbs free-energy for different cancers correlates with cancer patient 5-yr
survival.

Gibbs free-energy also correlates with an ordinal scale representing cancer
stage.

These facts suggest the calculation of Gibbs free energy has captured a real
thermodynamic measure of cancer.

A Gibbs scalar function on each node allows us to calculate the Gibbs-
homology for individual patients and thereby produce unique pathway
networks for each patient at each stage in the cancer development.

How to utilize this unique set of information is an ongoing research project.



Future Projects:

build a mathematical model with the presence of
both bio-molecules and their inhibitors

simulate the action of individual drugs as well as
their combinations by setting coupled ODE’s with
respect to time (find parameter values!)

show why some drug combinations are not effective
in stopping cancer due to parallel pathways and
redundancies

predict the optimum efficacy of drug combinations
as a function of scheduling and amplitudes



Persistent homology

The problem with the degree-entropy correlation is that
removal of a node from the network (targeted inhibition) only
changed the degree-entropy in the second decimal.

Small changes in the dependent variable (e.g. entropy) will
result in small changes in the independent variable (survival)
— not a big improvement.

We propose a different measure of complexity of the network
based on topological properties of the graph: the Betti
number

Targeting a protein has an impact on the pathway that can be
guantified by this number



Persistent homology

* Graph -> filtrated simplicial complex -> Betti number

* k-dimensional homology group persisting from i to j
i,j _ r7i i j i i :
H’=Z [(Z NB;), Z =cycles, B, =boundaries
B = dim(H')

* The homology measure is called the Betti number.

* In network theory, homology measures the cycles in the
network (rings of nodes).



Betti number in graph theory

* |n topological graph theory the first Betti number
of a graph G with n vertices, m edges and k
connected components equals m-n+k

* The "zero-th" Betti number of a graph is simply
the number of connected components k.

* |In graph theory, a connected component of an
undirected graph is a subgraph in which any two
vertices are connected to each other by paths,
and which is connected to no additional vertices
in the supergraph




Betti Numbers:
A Topological Measure of Network Complexity

The Betti measure can be best thought of with respect to
holes in the network — or cycles.

{T: /..;\‘5\}6“]

The Jplex algorithm (http://www.math.duke.edu/~hadams/jplex/index.html )builds
potentially rather large matrices of edges and vertices that are operated on to find rings.
The software was originally developed to study “point clouds” of data in hyperspace.
The algorithm is designed for “generic” “topological objects” not just networks.

As we walk around the ring and drop in “virtual” edges we see that the largest ring now
gets smaller. Until finally we have no more ring.

How much connectivity is required to “kill” the ring?
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Betti number
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Equivalent Targets

aml | bladder cml colorectal |endometrial| glioma nscl [pancreatic| renal scl thyroid
SEER 23.6 78.1 55.2 63.6 68.6 334 18 5.5 69.5 6.2 97.2
nominal betti 107 20 114 51 45 128 50 38 51 149 24
best betti 95 15 101 41 35 109 37 29 34 131 17
HRAS | MAPK3| AKT1 AKT3 PDPK1 HRAS KRAS KRAS HIF1A ITGA3 HRAS
FLT3 | MAPK1l{ AKT2 AKT2 ILK NRAS EPAS1| ITGA6 NRAS
equivalent NRAS AKT3 AKT1 KRAS ITGA2B KRAS
targets KRAS ITGB1
ITGA2

ITGAV




Suggested Drug Targets

aml bladder cml colorectal |endometrial| glioma nscl pancreatic renal scl thyroid
SEER 23.6 78.1 55.2 63.6 68.6 334 18 5.5 69.5 6.2 97.2
nominal betti 107 20 114 51 45 128 50 38 51 149 24
IKBKB/103 | EGFR/20 |HDAC1/113[ JUN/49 EGFR/38 |PDGFRB/113| EGFR/42 | EGFR/38 [ JUN/50 | IKBKB/146 | RET/22
AKT1/96 RAF1/16 |HDAC2/113|( AKT1/41 AKT1/41 |[PDGFRA/113 AKT1/47 IKBKB/38 AKT1/44 AKT1/139 | NTRK1/22
RAF1/103 | MAPK3/15 | IKBKB/111 RAF1/50 RAF1/41 EGFR/115 RAF1/43 AKT1/36 RAF1/50 | NFKB1/136 [ MAPK3/23
FLT3/95 MAPK1/15 | AKT1/101 | MAPK3/48 | MAPK3/43 | RAF1/124 | MAPK3/48 | RAF1/37 MAPK3/47 | PTGS2/148 | MAPK1/23
suggested RARA/105 | ERBB2/20 | ABL1/102 | MAPK1/48 | CCND1/42 |MAPK1/127| MAPK1/48 | STAT1/33 | MAPK1/47 | CCND1/145| RXRG/23
drug targets | MAPK3/106| CCND1/18 | RAF1/110 | CCND1/49 | MAPK1/43 [ MAPK3/127( ERBB2/42 | MAPK3/38 | BRAF/50 RXRA/23
and Betti NFKB1/105| BRAF/16 |[MAPK1/113| BRAF/50 BRAF/41 AKT1/128 | CCND1/47 | MAPK1/38 RXRB/23
number result | MAPK1/106 MAPK3/113| BCL2/51 CCND1/126| BRAF/43 NFKB1/30 CCND1/21
CCND1/107 NFKB1/114 BRAF/124 ERBB2/38 BRAF/21
KIT/96 CCND1/112 CCND1/38
STAT5B/103 STAT5B/112 BRAF/37
BRAF/103 BRAF/110




Double Inhibition Allows for Further Reduction
in Betti Number and thus Complexity

AML Bladder CML Colorectal Endometrial
SEER 23.6 78.1 55.2 63.6 68.6
Nominal Betti 107 20 114 51 45
Min single 95 15 101 41 35
Min double 83 11 88 31 26

HRAS FLT3 HRAS MAPK3| AKT1 AKT2 AKT1 AKT2 ILK PDPK1
HRAS NRAS | ARAF MAPK3| AKT1 AKT3 AKT1 AKT3
FLT3 NRAS RAF1  MAPK3| AKT2 AKT3 AKT2 AKT3
HRAS KRAS NRAS  MAPK3
FLT3 KRAS HRAS MAPK1
NRAS KRAS | ARAF MAPK1
RAF1  MAPK1
NRAS MAPK1
MAPK3  KRAS
MAPK1  KRAS
MAPK3  BRAF
MAPK1 BRAF

Double targets




Double Inhibition Allows for Further Reduction
in Betti Number and thus Complexity

(continued)
Glioma NSCL Pancreatic Renal SCL Thyroid
SEER 334 18 5.5 69.5 6.2 97.2
Nominal Betti 128 50 38 51 149 24
Min single 109 37 29 34 131 17
Min double 90 29 21 26 113 10
NRAS HRAS EGFR KRAS | NFKB1 KRAS HIF1IA  GAB1 ITGA2 ITGA3 | HRAS NRAS
NRAS KRAS | ERBB2  KRAS RELA KRAS GAB1 EPAS1 | ITGA2 ITGA6 | HRAS KRAS
HRAS KRAS ITGA3 ITGA6 | NRAS KRAS
ITGA2 ITGA2B
ITGA3 ITGA2B
Double targets ITGA6  ITGA2B
ITGA2 ITGB1
ITGA3 ITGB1
ITGA6 ITGB1
ITGA2B ITGB1
ITGA2 ITGAV
ITGA3 ITGAV




Betti suggests targets for AML

AML
SEER 23.6
nominal betti 107
Target 1 HRAS/95
Target 2 FLT3/95 : :
Foreet 3 NRAS/95 Betti suggestions
Target 4 KRAS/95
drug targets IKBKB/103
drug targets AKT1/96
drug targets RAF1/103
drug targets FLT3/95
drug targets RARA/105 s .
drug targets MAPK3/108 Existing drugs for this cancer
drug targets NFKB1/105
drug targets MAPK1/106
drug targets CCND1/107
drug targets KIT/96
drug targets STAT5B/103
drug targets BRAF/103
double knockouts |HRAS ,FLT3/83 Drug combination, via Betti
double knockouts |NRAS, FLT3/83
double knockouts IKRAS FLT3/83



Example: Targeting the AML
network

am RPssKBF
EIF4EBP1 ©

The protein-protein interaction network (PPI) for AML
reveals a complex single component network (Panel A)
* The network breaks into two separate components by
targeted elimination of the connecting FLT3 protein
(Panel B).
* The effect of simultaneous elimination of NRAS and
FLT3 (shown in Panel B) leads not only to break down
| of the network into two separate components, but also
(b) - o [\ R to thinning of the main network.

B =107
1,2
AB* =83

By interpolation .... About 7% improvement in survival.



AML Network Breakup by
Targeting

" Pwang O

* Analysis of the RAS family of proteins (Panel A)
indicates that each of respective proteins (HRAS,
KRAS and NRAS) 1s equivalent in importance and
interconnected with similar neighbors.

* Thus the elimination any one of the RAS proteins leads
a thinning of the major component (as shown in the
previous slide).




Persistent-Homology Summary

Persistent-homology, i.e. Betti number quantifies complexity of a
cancer protein-protein interaction network

Betti number correlates with survival
Sensitive to protein inhibition
|dentifies already known targets for a given cancer.

Could suggest use of existing drugs approved for a given cancer in a
different one, as well as new drugs development

Drug combination

Could yield a powerful numerical tool for clinical use. Rationalize
which targeted therapy to try first

We are currently undertaking a retrospective clinical study of
pediatric patients who have had biological-agent therapies.



