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Introduction

What is a living tissue ? A mechanistic view

Sans force Avec force

B Physicists
Benamar, Drasdo, Preziosi,
Joanny-Prost-Jiillicher,
E. Farge
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B Mathematical models
Byrne-Chaplain-Preziosi,
Lowengrub et al, Friedman, Maini,
MONC (Bordeaux) — Colin, Benzékry

B Pressure, contact inhibition rather than carrying capacity
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Organisation of the talk Jil

1. Two kinds of models :
m cell density (compressible)
® Free boundary problem (incompressible)

2. The Hele-Shaw asymptotics
3. Nutrients/drugs
4. Active motion

5. Elastic or viscoelastic tissus



Models of cell number density Jil

Simplest model is mechanical only :

n(x, t) = population density of tumor cells at location x, time t,
v(x, t) = cell velocity at location x and time t,

p(x, t) = pressure in the tissue,

Change in number of cells
—~=
on . .
— = —dlv(nv) +divison — death
ot —_——

movement of cells



Models of cell number density Jil

Simplest model is mechanical only :

n(x, t) = population density of tumor cells at location x, time t,
v(x, t) = cell velocity at location x and time t,

p(x, t) = pressure in the tissue,

Change in number of cells
—~=
on . .
— = —dlv(nv) +divison — death
ot —_——
movement of cells

Darcy's law for friction (with ECM) dominated flow
v = —Vp(x.1),
Constitutive law (compressible fluid)

p(x,t)=M(n):=n", y>1



Models of cell number density Jil

n(x, t) = population density of tumor cells
1 — n(x, t) = healthy cells

{ %n+ div(nv) =n G(p(x, t)),
v(x,t) = =Vp(x,t), p(x,t)=MN(n):=n7, y>1

Contact inhibition : Byrne-Drasdo, Joanny-Prost-Jilicher...
'homeostatic pressure’ ppy




Models of cell number density Jil

n(x, t) = population density of tumor cells
1 — n(x, t) = healthy cells

{ %n+ div(nv) =n G(p(x, t)),
v(x,t) = =Vp(x,t), p(x,t)=MN(n):=n7, y>1

Contact inhibition : Byrne-Drasdo, Joanny-Prost-Jilicher...
'homeostatic pressure’ ppy
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Main property : 2:n(t) > —Xe et



Free boundary/incompressible models

Image based predictions : include

m Active cells

® Nutrients and vasculature

m Quiescent, necrotic, healthy cells

Credit for pictures : INRIA team Monc (Bordeaux)

DO NOT USE THIS FORMALISM



Free boundary/incompressible models

JiL
Tumor domain Q(t)
Evolve 0Q(t) with Darcy’s law

v(x,t) =

—Vp(x, t).




Free boundary/incompressible models Jil

Tumor domain Q(t)

Evolve 0Q(t) with Darcy’s law
v(x,t) = —=Vp(x,t).
using the pressure

~Bp=G(p)  xeQ)
p=0 on 09Q(t)



Free boundary/incompressible models Jil

Tumor domain Q(t)

Evolve 0Q(t) with Darcy’s law
v(x,t) = =Vp(x, t).
using the pressure

—Ap=G(p) xeQ(t)
p=0 on 09Q(t)
Surface tension is often included
p(x, t) = nk(x,t), on 9Q(t) Kk = the mean curvature

B Hele-Shaw free boundary problem
B Boundary is smooth



From cell densities to free boundary Jil

How to relate these two approaches
cell density and free boundary ?

%ny + div(nyvy) = nyG(py(x, 1)), x €RY
vy = =Vpy(x, t), py(x,t) = M(ny) :=n",

The stiff pressure law the limit, v — co



From cell densities to free boundary Jil

How to relate these two approaches
cell density and free boundary ?

gey + div(nyvy) = ny G (py(x, 1)),
Vy = _VP’Y(Xﬂ t), p’Y(Xv t) = n(nﬁ) =

The stiff pressure law the limit, v — oo
Hele-Shaw free boundary problem

Benilan, Igbida, Gil, Quiros, Vazquez, X. Chen et al, Caffarelli,
Friedman, Escher...etc



From cell densities to free boundary

2ony +div(nyvy) = nyG(py(x, ), x € RY
{ vy = =Vpy(x, t), py(x,t) =M(n,) :==n",
Theorem (Hele-Shaw limit) : As v — oo
Ny = Neo <1, Py = Poo < P
Vpy = Vpoo L2-w
%noo — div(noonoo) = nOOG(on),
{ Poo =0 for noo(x,t) <1

Theorem (complementary relation) : We also have
Poo[ Apos + G(POO)] =0,

Vpy — Vpso  strongly in L2((0, T) x RY),

JiL



From cell densities to free boundary Jil

The geometric form of the Hele-Shaw problem follows when
n’(x) = ILigoy,  Q°={p°>0}
Then
n(x, t) = Tiaey, Q(t) = { p(t) > 0},

And
Weak formulation <= Free boundary problem

&

Left: v=4 Center : v =40


file:///Users/perthame/Ex-Powerbook/images_bio/talk_HeleShaw/Hele_Shaw_movie.gif

From cell densities to free boundary Jil
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Cell culture data in vitro at two different times. From N. Jagiella PhD
thesis, INRIA and UPMC (2012)



From cell densities to free boundary Jil

The geometric form of the Hele-Shaw problem

theorem After a waiting time, the free boundary is smooth and
the weak form is equivalent to the Hele-Shaw problem.

But there are transient singularities.
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Organisation of the talk

4. Nutrients

JiL

5. Active motion

6. Viscoelastic model



Model with nutrient

Jil
%n +div(nv) = nG(p(x, t), c(x,t) ),

——
nutrients
v=-Vp, p=n’,
o) _
53¢ —Ac+  R(n)c=cp
————
\

nutrients consumption/release




Model with nutrient Jil

%n + div(nv) = nG(p(x, t), c(x,t) ),
nutrients
vV = —Vp, p = n’77
%C—Ac-i- R(n)c = cg
————
. nutrients consumption/release

Theorem (Hele-Shaw limit) As 7 — oo, we have
%noo + div (Moo Vo) = Moo G (Poss €, Voo = —V Poos
Poo(l — nso) =0, 0<ny <1,

Open question

poo[_ Aps — G(Pom Coo)] =07



Model with nutrient Jil

Zntdiv(av) = nG(p(x, ), c(x.t) ).

nutrients

vV = —Vp, p= n’Ya

%C—Ac+ R(n)c = cg
————

nutrients consumption/release

Necrotic core, instabilities

With nutrients tumor cells can die

eﬂ:eCt Of nutrient CO”SUmption. Credit for pictures M. Tang, N. Vauchelet



Model of with nutrient

Closely related to instability in thermo-chemical reactions

2
%u—aAu =X, temperature
Oy — Ay = Ly tant
EV vV = a0 reactan

Dynamical Turing instability (see M. Kowalckzyk, BP,
N. Vauchelet : Transversal instability of 1D traveling wave)

s
Credit for picture N. Vauchelet

JiL


file:///Users/perthame/Ex-Powerbook/images_bio/talk_HeleShaw/instab01.avi

Model with active movment

JiL
active movement
A~
%n—i—div(nv) — vAn = nG(p(x, t)),
p=n’,

Darcy’s law,



Model with active movment Jil

active movement

%n—i—div(nv) — /Z/JA\; = nG(p(x, t)),

v=-Vp p=n7, Darcy’s law,

Hele-Shaw limit : We still have

p (Ap+G(p) =0

Effect of active movement (cell density is smooth)




More complete models Jil

%n + div(nv) = nG(p(X, t)),
—vAv+v =-Vp, p=n7, visco-elastic fluid

Why tissues are under-going visco-elastic law ?
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Effect of viscosity (pressure jump)



More complete models Jil

%np + div(upnpv) = an(p(X, t)) — anp,
%HQ + diV(;LQnQV) = onp — an,

v=-Vp,  p=(np+nq)

B np = proliferative cells B ng = quiescent cells
nyt=T)
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Credit forxpicture A. Lorz, T. Lorenzi (Saffman—'faylor instability ? growth is important)



Ji

m Sophisticated mathematical models are effectively used in
biology and medicine

B They lead to various mathematical questions
B Asymptotic analysis arises naturally because of the many scales

m Systems of PDEs (unstability)
H Challenges
® Variability

m Adaptation



Thanks to my collaborators

F. Quiros, J.-L. Vazquez,
M. Tang, N. Vauchelet,
A. Lorz, T. Lorenzi,

D. Drasdo

JiL



Thanks to my collaborators

F. Quiros, J.-L. Vazquez, A. Mellet,
M. Tang, N. Vauchelet,
A. Lorz, T. Lorenzi,

D. Drasdo

THANK YOU

JiL



