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Metastasis (MeTd = change, oTacif = place)

Contrast-enhanced X-ray computed tomographies of the liver with multiple metastatic tumors.
Interval : 127 days.

+ some of the metastases are not visible

Iwata et al., J Theor Biol, 2000



Metastasis

- “Metastasis remains the cause of 90% of deaths from solid cancers" Gupta and
Massagué, Cell, 2006
- Exciting biological findings amenable to dynamical/mathematical descriptions at

the systemic scale in recent years:

Distant inhibition of angiogenesis by endogenous agents (endostatin,...) O’'Reilly, Folkman et
al., Cell, 1994

Self-seeding Norton and Massagué, Nat Med, 2006

Pre-metastatic niche Kaplan et al., Nature 2005

- Clinical challenges

What is the burden of occult micro-metastases at diagnosis?
What should be the extent of post-surgery (“adjuvant”) therapy?

What is the differential effect of therapies on the primary tumor and the metastases?
(AA therapies might accelerate mets? Ebos et al., Cancer Cell, 2009)

How to optimize the scheduling and sequence of anti-cancer agents?
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Breast cancer epidemiology

- Most common invasive cancer in women (14% of new cancer cases)

* Overall 5-year survival: 89.2%

+ However, about 28% will relapse within 15 years Brewster et al, J Nat/ Cancer Inst, 2008

- 20 year survival is (only) 44% Litiere et al., Lancet Oncol, 2012
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Clinical questions

- For early breast cancer (non-metastatic)

Q1: How to estimate the amount of residual distant disease at

diagnosis in order to personalize the adjuvant (chemo)-therapy?

- For metastatic breast cancer, no consensus on the utility of surgery.

Ongoing clinical trials. Thomas et al., JAMA Surg, 2 dec 2015

Q2: What is the quantitative impact of PT resection on the
time-course of the post-surgical metastatic burden?
(Q3: How to optimize the scheduling of systemic anti-cancer

agents (cytotoxic therapies, bio-therapies)?)



Metastatic biology 101

Secondary growth of disseminated
cancer cells (from a primary location)

Metastatic process
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Talmadge and Fidler, Cancer Res, 2010
Valastyan and Weinberg, Cell, 2011



Model scheme

Injection (or first cell) Surgery
Pre-surgical Post-surgical

Primary
Tumor
(PT)

Metastases




Mathematical formalism t — 18 years

Primary tumor

===

- Primary tumor V), grows with rate gp 100
d 0 108}
EVP =gp(Vp), Vp(t=0)=V, §10“»
§ 0% Diagnosis
- Population of metastases represented by a |
density p(t,v) structured in volume v P e e % B
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Iwata et al., J Theor Biol, 2000



Simulation

t=40.3 days
i Metastases
I?rlmary tum—o;r_ . 1000 : : |
o Imaging detection limit
100 +
= 10°} 2
g =
® ; 10
E o
S =
> =
1 L,
100 . . . . ) 0 ) | .
0 5 10 . 15 20 25 30 100 105 1010
Time (years) Volume (cells)

Tumor size at diagnosis: 4.32 cm

Stochastic and discrete version of metastatic emission employed for the simulation
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Ortho-surgical animal models of metastasis

PR + Necessary to consider surgery of the
- Metastasis is hard to study ry gery

primary tumor (PT) for clinical relevance

experimentally (intra-vital process)
+ Role of the immune system: 2 animal

- Spontaneous metastases models (syngeneic and xenograft)
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Individual fits
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Statistical procedure: nonlinear mixed effects modeling

- Usual fitting methods consider each time series independently

yl = M(t],0)) +¢] Individual 7<j<N

MLE o - 2 Time ¢
—  P=mind (- M)

- When only sparse data are available from subjects in the same

population, one can fit parameters distribution all-in-once

yl = M@t,67)+<, 0., 0N ~N(6,,60,), 6,cRP 6,cRP*P

- Reduces the number of parameters from pxN to p+p2



Population fit and prediction of bioluminescence data
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Predicted versus experimental survival
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Best model structure

- Mechanistic assumptions

Various structures tested for relationship of the PT and mets growth for optimal
trade-off between goodness-of-fit and identifiability

Same growth between PT and mets

Growth model = Gomp-Exp Gomp(v) =(a-BIn(v)) v
ge(v) = g(v) = min(Gomp(v), Av)

A = in vitro proliferation rate (measured)

- Statistical assumptions

PT and mets fitted together (3 parameters)
Proportional statistical error model

Lognormal population distribution of the parameters

* Fast computation of the total metastatic burden using the FFT algorithm
Hartung, 2015



Fits to breast cancer clinical dataset

20 year follow-up of 2648 patients

Koscielny et al., Br J Cancer, 1984

Diameter of Prop. of Prop. of

PT (cm) relapse relapse

(Data) (Model)
1<D<25 27.1 27.3
25<D<L35 42.0 43.1
3.5<D <45 56.7 56.6
45<D <55 66.5 65.6
5.5 <D <6.5 72.8 74.0
6.5<D<T75 83.8 80.1
7.5 <D <85 81.3 84.5

p =0.0157

Pearson’s x? test for goodness-of-fit

+ Assume Gompertz growth of PT,
doubling time at 1 gram = 7 months

and carrying capacity K = 10" cells
+ Recover cancer inception time -T;

from PT volume at diagnosis

+ Lognormal distribution of m and
fixed populational y for inter-

individual variability

- Probability of developing a met =
probability of having one at

diagnosis

P (Mets) =P (M/OTI Vo(t) > 1)



Parameters: quantification of metastatic

Data Growth model Location | Par. Unit Estimate (CV) 95 % CI
In vitro (Breast) Exp. A day~! 0.837 (-) (0.795 - 0.879)
V; cell 1.00 x 10° (-) -
PT a day ™! 1.9 (5.73) (1.84 - 1.96)
B day 1 0.0893 (21.3) (0.0791 - 0.101)
Preclinical Breast Gomp-Exp.
h / 4N /)
MY /e AW/
Met m cell ™ - day™?! 4.43 x 10~ (176) (2.70 x 10~ -7.27 x 10711
Vi p/s 1.63 x 10° (45.5) (9.40 x 10* - 2.83 x 10°)
PT ap day " 0.21 (60.3) (0.151 - 0.292)
Preclinical Kidney Exp. Vo p/s 0() -
Met a day ™! 0. 0307 (201) (0.0133 - 0.0707)
pw cell™' - day? 0.0415 (397) (0.0181 - 0.0948)
Vi cell 1(-)
PT a day~?! 0.013 (-)
Jé] day 1! 0.000471 (-)
Clinical Breast Gomp.
Met \ cell 1 (-)
© m cell™t - day™?! 7.00 x 10712 (1.04 x 10%)

Benzekry, Ebos et al., Cancer Res, 2015




Diagnosis personalization
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Nonlinear impact of PT size at surgery on survival
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Summary

- A biologically-based, minimally parameterized, mathematical model for

metastatic development links pre-surgical tumor growth and post-surgical

metastatic burden dynamics
- Validation against preclinical and clinical data sets

- Same growth law between PT and mets, equal probability among the PT cells of
successful establishment of a distant colony and no secondary dissemination

was a sufficient theory to explain the data

- Inter-animal/individual metastatic propensity can be reduced to variability of one

critical (patient-specific?) parameter y

- Nonlinear dependence of survival on primary tumor size at diagnosis suggests

existence of a threshold for efficacy of surgery and provides a way to estimate

its value



Comparison with the Marseille study without
surgery (remember Niklas’s talk)

- Quantitative comparison was hampered by several technical aspects
(different number of cells injected, different mice strain, different

bioluminescence quantification method)

- Keeping these flaws in mind, when using the same framework (d(V) =

uVv?3_ different growth rates for PT and mets and a different

parameterization of the Gompertz g(v)=avin(b/v)), we found:

- A significantly larger value of a (4.91x1072 day™"' + 2.02x107° versus
7.9x1073 day™' £ 2.5 x 10-3, median * se), possibly indicative of
post-surgery accelerated growth

- But also a significantly smaller metastatic emission parameter y = 7.24
x 1073 + 8.5 x 1073 cell™??- day ' versus y=6.31 x 107" £ 4.42 x
107" cell™?- day™



2. Concomitant tumor
resistance

T



Concomitant tumor resistance

- Inhibition of secondary growth by a primary mass
- Evidenced more than 100 years ago Ehriich, 1906
- Primary hypothesis: athrepsia (deprivation of nutrients)

+ Other hypothesis: immune enhancement from the primary.

“‘Concomitant immunity”
- 1980’s: it happens in immune-deprived mice Gorelik,, Cancer Res 1983

- 1990’s: Folkman’s work on systemic inhibition of angiogenesis

(SIA) O'Reilly, Folkman et al., Cell, 1994

- Others also proposed direct distant inhibition of proliferation



Post-surgery metastatic acceleration

* Clinically evidenced from:

- Patients cases reports Coffey et al., Excisional surgery for cancer cure: therapy at a

cost, Lancet Oncology, 2003

- Bimodal relapse hazard (breast) Retsky et al., Surgery triggers outgrowth of latent

distant disease in breast cancer: an inconvenient truth?, Cancers 2010

Reported in numerous animal experiments since more than 100 years

Marie and Clunet, 1910

Could be due to the surgical trauma itself

Experiments suggested other hypothesis, linked with metastatic dormancy

Concomitant resistance



Tumor Present Tumor Removed

Whole
Lung
(Day 14)
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Section
(Ab to von
Willebrand's )
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Figure 2. The Presence of a Primary Tumor Is Associated with an Inhibition of Neovascularization and Growth of Its Metastases

O’Reilly, Folkman et al., Angiostatin: A Novel Angiogenesis Inhibitor That Mediates te Suppression of
Metastases by a Lewis Lung Carcinoma, Cell 1994



Objectives

- Are we able to give a mathematical description of the dynamics of

concomitant resistance?

- Minimally parameterized, biologically and data-based mathematical

model(s) of the process

- Test different biological hypotheses by confronting the

(mathematical) theories to the empirical data



Experiment

Bets

Injection s.c. of two tumors of
106 LLC cells in C57/BL6 mice

Two groups
— Control: only one tumor

- Group S: simultaneous
injection of cells in two

different sites

Record tumor growth in time

at the two sites




A mouse with two tumors
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Statistical confirmation

- We want to test: is the couple (Ls(t),
Rs(t)) statistically different from a
couple of two tumors growing

independently?

- Generate an artificial group of
double independent tumors by
randomly dividing the control group
(n=20) in 2 and pairing couples of

growth curves from each subgroup

- Compare the large/small tumors of
group S to the large/small tumors of

the virtual control group
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Single-tumor growth models
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Two-tumors models

« Asymmetric inhibition

dt \%
2 = aVaIn (&) — eI(V1,12), Va(t=0)=1

[

{ Vi — 4V In (K) , Vit=0)=1 was able to fit the data

N



Two-tumors models

« Asymmetric inhibition

“Was able to fit the data
but biologically unrealistic



Two-tumors models

« Asymmetric inhibition

“Wwas able to fit the data
but biologically unrealistic

- Symmetric direct inhibition

D = aViln (£) — e (i, V2), Vi(t=0) =
G =alzln (%) —elr(V1,V2), Va(t=0) =TV

» Same growth and inhibition parameters for V; and V,
» Symmetry: I1(V3,Vi)=15(V1,V>)

» Three possibilities for the shape of /;(V,,V,) shown here: V,V, (1), V, (2), (V+V2)V; (3)

Hypothesis for the origin of dissymmetry between V1and V2

= comes from the initial number of cells that « take »



Two-tumors models

- Indirect (angiogenesis-related) inhibition

(G =aViln(5), Vi(t=0) =1
: dé? =b\; —de/ K1 —eli(V1,Vo), Ki(t=0)= K

Gt = aValn (i), Valt = 0) = Vo
| G =% —dVyP Ky — ely(Vi, Vo) Ka(t = 0) = Ky

Competition (athrepsia hypothesis)

N———

dVl—aVlln( v ), Vit=0)=1
dv2_CLV21Il( IfVQ), Vo(t=0) =Vyo

- Based on the Hahnfeldt model

Hahnfeldt et al., Cancer Res, 1999 With

dynamic carrying capacity K

- Parameters d and Ky were fixed

+ One parameter (degree of freedom)

less than the other models
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Models able to fit

- Criterias for rejection of a model:

Inaccurate visual goodness-of-fit

Yielding biologically unrealistic behavior when e = 0

Index 1 2 3
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I ViVa | Vi | (Vi +We)Vs
Direct Inhibition X 0 X
Indirect Inhibition X 0 X
Competition 0

1600

1400 +
1200 +

“E 1000

=]
© 600F
>

400 +

200

1600

1400 -
1200 +

“E 1000

=
© 600F
>

400 -

200

o 800f

20

© 800}

20




Goodness-of-fit metrics

Model SSE AIC RMSE R2 p>005 #

Direct 2 0.183(0.102 - 0.388)[1] -17.6(-31.2 - -6.08)[1] 0.428(0.324 - 0.63)[1] 0.973(0.934 - 0.991)[1] 100

Competition  0.241(0.102 - 0.398)[2] “15.8(-33 - -3.96)[2] 0.492(0.326 - 0.635)[2] 0.956(0.871 - 0.99)[3] 100

Indirect 2 0.273(0.151 - 0.506)[3] -10.9(-24.1 - -1.58)[3]  0.523(0.393 - 0.715)[3]  0.967(0.934 - 0.986)]2] 100

SSE = Sum of Squared Errors, AIC = Akaike Information Criterion, RMSE= Root Mean Squared Errors

2f : .

—
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Q

|
—
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Direct 2 Competition Indirect 2



Parameter values/identifiability

Model Par. Unit Median value (CV) NSE (%)
a i 0.0957 (21.9) 11.3
. K - 1.02¢-+04 (90.2) 46.5
Direct 2 Voo - 0.58 (64.4) 8.9
e - 0.048 (91.5) 2.35
a i 0.0988 (28.8) 11.2
Competition K - 8.52e+03 (82.2) 42.1
Voo - 0.402 (63.1) 12.5
a - 0.206 (35.8) 7.81
. b i 18.7 (32.1) 13.2
Indirect 2 Voo - 0.685 (45.3) 11.8
e i 4.07 (57.8) 1.36

NSE = Normalized Standard error

CV = Coefficient of Variation

95% ClI

(0.044, 0.052)

(3.96, 4.18)



Summary

- In mice bearing two tumors implanted simultaneously, tumor growth is

suppressed in one of the two tumors

- New quantitative and identifiable mathematical models of tumor-tumor growth

interactions were developed and able to match the data.
- Possible explanation of dissymmetry: difference in number of cells that take

- Based only on tumor growth kinetics we could not clearly discriminate between

three possible theories: competition, direct or indirect (angiogenesis) inhibition

- But we could discriminate the shape of the inhibition term: /1(V1,V2) = V>

Perspective: integrate this model for tumor-tumor interactions into the

organism-level for the dynamics of the metastatic population
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