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a  b  s  t  r  a  c  t

Oncology  has  benefited  from  an  increasingly  growing  number  of  groundbreaking  innovations  over  the
last  decade.  Targeted  therapies,  biotherapies,  and  the  most  recent  immunotherapies  all  contribute  to
increase  the  number  of  therapeutic  options  for cancer  patients.  Consequently,  substantial  improvements
in  clinical  outcomes  for  some  disease  with  dismal  prognosis  such  as  lung  carcinoma  or melanoma  have
been  achieved.  Of note,  the latest  innovations  in targeted  therapies  or  biotherapies  do  not  preclude the  use
of standard  cytotoxic  agents,  mostly  used  in  combination.  Importantly,  and  despite  the rise of  bioguided
(a.k.a.  precision)  medicine,  the administration  of chemotherapeutic  agents  still  relies  on  the  maximum
tolerated  drug  (MTD)  paradigm,  a concept  inherited  from  theories  conceptualized  nearly  half  a  century
ago. Alternative  dosing  schedules  such  as metronomic  regimens,  based  upon  the repeated and  regular
administration  of low  doses  of chemotherapeutic  drugs,  and  adaptive  therapy  (i.e. modulating  the  dose
and frequency  of cytotoxics  administration  to  control  disease  progression  rather  than  eradicate  it at  all
cost)  have  emerged  as possible  strategies  to  improve  response  rates  while reducing  toxicities.  The  recent
changes  in paradigm  in the  way  we theorize  cancer  biology  and  evolution,  metastatic  spreading  and  tumor
ecology,  alongside  the  recent  advances  in  the field of  immunotherapy,  have  considerably  strengthened
the  interest  for these  alternative  approaches.  This  paper  aims  at reviewing  the recent  evolutions  in  the
field of theoretical  biology  of  cancer  and  computational  oncology,  with  a  focus  on the consequences
these  changes  have  on  the  way we administer  chemotherapy.  Here,  we  advocate  for  the development
of  model-guided  strategies  to refine  doses  and  schedules  of  chemotherapy  administration  in order  to
achieve  precision  medicine  in  oncology.

© 2015  Elsevier  Ltd. All rights  reserved.

1. Introduction

Innovative technologies have dramatically changed the way we
treat cancer. From crude surgery for centuries, to the introduc-
tion of radiotherapy in the 1930s and that of chemotherapy in the
1950s [1], we  can now envision the development of personalized
treatments for cancer patients, thanks to the advances made in
biology, chemistry, physics, mathematics and engineering (Fig. 1).

∗ Corresponding author at: SMARTc, Pharmacokinetics Unit, Faculté de Pharmacie
de  Marseille, 27 Bd Jean Moulin, 13385 Marseille 05, France.

E-mail address: joseph.ciccolini@univ-amu.fr (J. Ciccolini).

Immune checkpoint inhibitors, anti-angiogenics and targeted ther-
apies have already entered the clinic with various level of success,
and innovative technologies in imaging, PK/PD modeling and the
omics are helping clinicians in their decision making on a daily basis.
Yet, chemotherapy is still administered today almost the exact
same way it was  fifty years ago. Why  is that?

Here we will try to address this question by looking back at
the early theoretical concepts that led to the development and
widespread use of what is now called “conventional chemother-
apy” – i.e. the administration of chemotherapy at or close to the
maximum tolerated dose (MTD), with drug-free breaks in between
cures to allow for the patient to recover from the treatment-
related toxicities. We will explain the limitations of these early
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Fig. 1. History of tumor models and associated optimal chemotherapy protocols. Chemotherapy protocols have been developed based on theoretical models of human
tumors.  Early models viewed tumors as simple aggregates of homogenous, exponentially-growing cancer cells. However, future models will need to take into account the
complexity of tumor biology, including various level of chemoresistance, heterogeneity, clonal evolution and impact of the tumor microenvironment, in order to develop
computer-based personalized chemotherapy protocols.

theoretical and mathematical models and discuss ways they can be
improved to better take into account the complexity and rapid evo-
lution of tumors and ultimately optimize treatment efficacy. This
will lead us to present innovative theoretical models that support
alternative ways of administering chemotherapy. These include
metronomic chemotherapy [2–4] – i.e. the frequent administra-
tion of chemotherapeutic drugs at relatively low, non-toxic doses,
without prolonged drug-free break – and adaptive therapy [5,6] –
i.e. modulating the dose and frequency of chemotherapy adminis-
trations in order to maintain a constant tumor volume. Metronomic
chemotherapy is expected to bring substantial benefit over existing

MTD  regimen by interfering with novel targets at the tumor level
or the tumor micro-environment level (Fig. 2). In many respects,
developing metronomic chemotherapy could pave the way for
implementing computational oncology at bedside, because opti-
mizing metronomic regimen should only be achieved thanks to
modeling support.

2. Historical concepts

Fifty years ago, Skipper, Schabel and Wilcox were the first
to introduce theoretical concepts for the optimal design of
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When we look critically at the history of clinical
trials that have brought us to our standard of care at the
bedside, that is, the more usual intermittent therapy
giving the MTD until DLT occurs, the dose, rather than
time was the parameter varied (Fig. 1). The early empiric
therapies were consistent with and a result of the clinical
realities of MTD, DLT dosing in the days before central
venous access, small infusion pumps and more potent
antiemetics, because of the impracticality of giving a
vesicant or highly emetogenic drug on a frequent
schedule. The model for DLT/MTD dosing, as pre-
viously discussed,13 made many assumptions, including:

nonadaptability, cell cycle nonspecific drugs, homoge-
nous, synchronous, and log phase growth of cells in
vitro.14 This model was a very important start to
analyzing therapy that was beginning to have some
empiric successes. The authors, 35 years ago, did caution
that it would be difficult to translate their laboratory
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FIGURE 1. Log-dose survival curve: surviving fraction
(SF) = e! kc where SF = survival fraction and c equals a drug
exposure. Because drug exposure is C" T (concentration"
time), time is clearly a variable that needs to be considered as
detailed in Ref. 13. As originally detailed by Skipper et al, it was
held constant in their model presented 35 years ago (Ref. 14).
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FIGURE 2. A, Representative curve for a chemotherapeutic
regimen. Cycles of drugs are given with the obligate wait
period as MTD /DLT dosing is achieved. B, Representative
curve if the dose is increased (amplitude modulation).
Increased doses will typically result in fewer cycles per unit
time. Using growth factors, some recent protocols have
attempted to maintain the same dose but with an increased
frequency, this is referred to as dose density.16 C, Representa-
tive curve if the frequency is increased, likely resulting in a
necessity to decrease the unit dose. The major issue discussed
here and reviewed by others in Ref. 8, is how to insure that an
effective dose (OBD or MEC) is used so that under dosing,
which would result in treatment failure but not toxicity could
be detected and hence avoided. D, Which is best? A summary
of the prior 3 pictures is combined here. As suggested in Ref. 6
and in the concept of dose density reviewed in Ref. 16 there
may be some need to merge our standard, time proven,
empiric successes with the new theme developed around the
notion that a tumor is complex, having multiple cells, thus
providing a number of different targets. These decisions will
be made through a better understanding of tumor biology,
cell-cell interactions and more facile ways of assaying for
MECs and OBDs, which by definition will increase the efficacy
of chemotherapy.

Kamen et al J Pediatr Hematol Oncol # Volume 28, Number 6, June 2006
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Fig. 2. Metronomic vs. MTD  chemotherapy. Alternative dosing and scheduling is expected to achieve higher antiproliferative efficacy via novel mechanisms of action such
as  anti-angiogenic effect, action on cancer stem cells or immuno-stimulating properties, in addition to direct cytotoxicity on tumor cells.

chemotherapy schedules [7]. Based on experimental studies involv-
ing L1210 leukemic cells – which exhibit exponential growth when
left untreated –, they introduced and demonstrated the log-kill
effect for several cytotoxic agents, including 6-mercaptopurine, 5-
fluoruracil and vinblastine [7]. This principle, based on an analogy
with the law of mass action for kinetic reactions in chemistry, states
that exposure to a given amount of drug kills a constant fraction of
a cancer cell population, hence reducing it of a constant amount in
logarithmic scale (Fig. 3). For instance, if a drug has a one log-kill
effect, then it will reduce a population of 106 cells to 105 cells and
a population of 102 cells to 101 cells. Further on, based on their
experimental work that demonstrated that the presence of as little
as one single leukemic cell was sufficient to lead to the host death,
they argued that the goal of the therapy should be to achieve com-
plete cure of the disease, i.e. eradication of all malignant cells. In
this context, they demonstrated that a large-dose/short time (single

administration) schedule was superior to a chronic (daily) low-dose
schedule (with similar or larger total dose) [8]. However, when this
view (that was  involved in the calculation of the number of cycles
required for cure) was applied to the adjuvant systemic treatment
of micrometastases (for breast cancer for instance), it did not lead
to the expected results [9]. Two  major criticisms were addressed
to the work of Skipper et al.: (1) they considered a homogeneously
sensitive population of cancer cells (i.e. no resistance was  explicitly
taken into account) and (2) the experimental system they employed
was limited to a single leukemic cell line and their conclusions
might not extend to solid tumors.

Regarding point (1), substantial efforts in the modeling of resis-
tance to cytotoxic agents have been provided by the work of Goldie
and Coldman [10]. The Goldie–Coldman model states that mutation
rates toward resistance are relatively high within a population of
tumor cells and that mutations develop spontaneously during the

Fig. 3. Left: Skipper–Schabel–Wilcox log-kill model. Tumor growth is exponential (linear in log-scale) and each cycle of chemotherapy results in removal of a constant fraction
of  the tumor volume (as opposed to a constant amount of cells). This is reflected by a constant log-kill. The simulation assumes a log-kill of three (i.e. reduction of 99.9% of the
tumor  mass) over six three-weeks cycles, for an initial total tumor load of 109 cells, the first cycle starting at Day-0. The dashed line represents the size of one cell, that classical
MTD  chemotherapy approaches consider as the goal to achieve for eradication of the disease. Right: Norton–Simon model. Untreated tumor growth is Gompertzian and
exhibits a decreasing specific growth rate. The Norton–Simon hypothesis implies a larger log-kill for smaller tumors and suggests to densify the chemotherapy administration
protocol. This is illustrated by comparison of a three-weeks regimen (black curve) and a densified two-weeks regimen (gray curve). The latter exhibits deeper drop of the
tumor  burden and thus larger probability of “cure”. However, note that when tumor regrows, both schedules have the same time to recurrence.
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Fig. 1. History of tumor models and associated optimal chemotherapy protocols. Chemotherapy protocols have been developed based on theoretical models of human
tumors.  Early models viewed tumors as simple aggregates of homogenous, exponentially-growing cancer cells. However, future models will need to take into account the
complexity of tumor biology, including various level of chemoresistance, heterogeneity, clonal evolution and impact of the tumor microenvironment, in order to develop
computer-based personalized chemotherapy protocols.

theoretical and mathematical models and discuss ways they can be
improved to better take into account the complexity and rapid evo-
lution of tumors and ultimately optimize treatment efficacy. This
will lead us to present innovative theoretical models that support
alternative ways of administering chemotherapy. These include
metronomic chemotherapy [2–4] – i.e. the frequent administra-
tion of chemotherapeutic drugs at relatively low, non-toxic doses,
without prolonged drug-free break – and adaptive therapy [5,6] –
i.e. modulating the dose and frequency of chemotherapy adminis-
trations in order to maintain a constant tumor volume. Metronomic
chemotherapy is expected to bring substantial benefit over existing

MTD  regimen by interfering with novel targets at the tumor level
or the tumor micro-environment level (Fig. 2). In many respects,
developing metronomic chemotherapy could pave the way for
implementing computational oncology at bedside, because opti-
mizing metronomic regimen should only be achieved thanks to
modeling support.

2. Historical concepts

Fifty years ago, Skipper, Schabel and Wilcox were the first
to introduce theoretical concepts for the optimal design of
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Antiangiogenic Scheduling of Chemotherapy Improves Efficacy against
Experimental Drug-resistant Cancer1

Timothy Browder, Catherine E. Butterfield, Birgit M. Kräling, Bin Shi, Blair Marshall, Michael S. O’Reilly, and
Judah Folkman2

Laboratory of Surgical Research [T. B., C. E. B., B. M. K., B. S., B. M., M. S. O., J. F.] and Division of Hematology/Oncology [T. B.], Children’s Hospital; Departments of
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[M. S. O.], Boston, Massachusetts 02115

ABSTRACT

To reveal the antiangiogenic capability of cancer chemotherapy, we
developed an alternative antiangiogenic schedule for administration of
cyclophosphamide. We show here that this antiangiogenic schedule
avoided drug resistance and eradicated Lewis lung carcinoma and L1210
leukemia, an outcome not possible with the conventional schedule. When
Lewis lung carcinoma and EMT-6 breast cancer were made drug resistant
before therapy, the antiangiogenic schedule suppressed tumor growth
3-fold more effectively than the conventional schedule. When another
angiogenesis inhibitor, TNP-470, was added to the antiangiogenic schedule
of cyclophosphamide, drug-resistant Lewis lung carcinomas were eradi-
cated. Each dose of the antiangiogenic schedule of cyclophosphamide
induced the apoptosis of endothelial cells within tumors, and endothelial
cell apoptosis preceded the apoptosis of drug-resistant tumor cells. This
antiangiogenic effect was more pronounced in p53-null mice in which the
apoptosis of p53-null endothelial cells induced by cyclophosphamide was
so vigorous that drug-resistant tumors comprising 4.5% of body weight
were eradicated. Thus, by using a dosing schedule of cyclophosphamide
that provided more sustained apoptosis of endothelial cells within the
vascular bed of a tumor, we show that a chemotherapeutic agent can more
effectively control tumor growth in mice, regardless of whether the tumor
cells are drug resistant.

INTRODUCTION

Since anticancer cytotoxic chemotherapy was first introduced over
50 years ago (1), the repertoire of drugs directed against tumor cells
has greatly increased. Despite these advances, the genetic instability
and high mutation rate of neoplastic cells ensure that chemotherapy
directed mainly or solely at the neoplastic cell still carries a high risk
of selection for drug resistance (2). Preclinical studies of experimental
cancer in mice conducted in the 1960s determined that one of several
chemotherapy schedules tested, the maximum tolerated dose, yielded
a higher percentage cure rate (3). This schedule, which consisted of
the highest survivable (minimum lethal) dose, was chosen for the
conventional administration of chemotherapy to cancer patients. How-
ever, such high, up-front doses required an extended treatment-free
period to permit recovery of normal host cells, e.g., rapidly growing
hematopoietic progenitors (4). Similar to hematopoietic progenitors,
the vascular endothelial cells in the tumor bed might also resume
growth during this treatment-free period. We hypothesized that endo-
thelial cell recovery occurring during this treatment-free period could
support regrowth of tumor cells. This could increase the risk of the
emergence of drug-resistant tumor cells.
Although tumor cells readily acquire resistance to cytotoxic chem-

otherapy, this would not be expected for vascular endothelial cells (5,

6). To more effectively suppress the proliferating endothelial cells in
the tumor bed, a dosing schedule was developed that administered
cyclophosphamide at shorter intervals without interruption. This an-
tiangiogenic schedule of cyclophosphamide: (a) increased apoptosis
of endothelial cells within the tumor bed; (b) secondarily increased
apoptosis of cyclophosphamide-resistant tumor cells; (c) demon-
strated long-term suppression of the growth of cyclophosphamide-
resistant Lewis lung carcinoma and EMT-6/CTX breast carcinoma
(7), a significant improvement over the conventional schedule; (d)
eradicated drug-sensitive Lewis lung carcinoma (8) and L1210 leu-
kemia (9) tumors by avoiding acquired drug resistance, an outcome
not possible with the conventional schedule; and (e) eradicated the
majority of drug-resistant Lewis lung carcinomas when combined
with another angiogenesis inhibitor, TNP-470 (10).

MATERIALS AND METHODS

Mouse Experiments. After the eighth cycle of selection for drug resistance
as detailed in “Results,” drug-resistant Lewis lung carcinoma was explanted
into tissue culture as described for the cyclophosphamide-resistant breast
cancer cell line EMT-6/CTX (7). The EMT-6/CTX breast cancer cell line (7)
was obtained as a generous gift from Dr. Beverly Teicher (Eli Lilly, Indian-
apolis, IN), and the drug-sensitive L1210 leukemia cell line (9) was obtained
from the American Type Culture Collection (Manassas, VA). All cancer cell
lines, including the original, drug-sensitive Lewis Lung carcinoma (8), were
screened for mouse hepatitis virus and other pathogens and frozen in aliquots
in liquid nitrogen. For tumor studies with Lewis lung carcinoma, cells were
thawed and passaged once in C57Bl6/J mice (Jackson Laboratories, Bar
Harbor, ME). When tumor volumes reached 200 mm3 (7.5 mm in diameter),
mice harboring drug-resistant Lewis lung carcinoma received cyclophospha-
mide (170 mg/kg) s.c. every 6 days for two cycles, and then the tumor was
allowed to grow for transfer. Tumor brei of drug-sensitive or drug-resistant
Lewis lung carcinoma (106 cells/0.1 ml) was inoculated s.c. and dorsally
between the scapulae in 28–30-g adult male C57Bl6/J or p53!/! C57Bl6/J
mice (Jackson Laboratories). Therapy was initiated 2–4 days after inoculation,
just as tumor volumes reached 100 mm3 (6 mm in diameter). Drug-resistant
EMT-6/CTX maintains in vivo drug resistance after up to 6 months of in vitro
culture (7). EMT-6/CTX cells expanded in culture for less than 2 weeks were
similarly injected (106 cells/0.1 ml) into male 28–30-g CByD2F1/J mice
(Jackson Laboratories), and treatment was also initiated as tumors reached 100
mm3 (6 mm in diameter). L1210 cells from in vitro culture (3 " 105 cells/0.1
ml) were implanted into the right posterior lateral flank of 28–30-g male
B6D2F1/J mice (Jackson Laboratories) because tumor growth in the midline
dorsum frequently resulted in early paraplegia. In separate experiments, treat-
ment of L1210 tumors was initiated as tumor volumes reached 100 (6 mm in
diameter), 200 (7.5 mm in diameter), 500 (10 mm in diameter), and 1000 mm3
(12.5 mm in diameter), respectively. Mice harboring drug-sensitive and drug-
resistant Lewis lung carcinoma received ondansetron (3 mg/kg) and dexam-
ethasone (1 mg/kg) s.c. 30 min before cyclophosphamide to ameliorate gas-
trointestinal dysfunction (11) and chronic weight loss. This therapy was
omitted in the CByD2F1/J mice harboring EMT-6/CTX because of a lethal
idiosyncratic toxicity and in therapy of L1210 leukemia because of a possible
direct antileukemic effect. Preparation of cyclophosphamide and measurement
of tumors were performed as described previously (6). For combination ex-
periments with TNP-470, all drugs were administered s.c. Mice in these
experiments were fed a “Western-type” diet with 42% of calories from fat (TD
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responding to 6-MP is the same as the percentage of patients having prolonged
remissions as a result of 6-MP maintenance. In figure 7, three remission curves
are presented; one for the 6-MP-maintained patients in Phase II, one for
placebo-maintained patients in Phase II and an “adjusted” placebo remission
curve. The adjustment to the placebo remission curve was made by sub-
stituting the total exposure times to 6-MP (remission induction time + re-
mission duration time) for placebo patients responding to 6-MP in Phase III
and by using the placebo remission times for patients not having a later re-
sponse to 6-MP. If the percentage of patients in the placebo group showing a
later response to 6-MP is the same as the percentage of patients in the 6-MP
group having prolonged remissions, the adjustment would bring the placebo
curve close to the 6-MP curve. (It has previously been established that the
lengths of 6-MP-maintained remissions in Phase II and III are not different.)
There is still a substantial difference between the two curves-suggesting
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mercaptopurin and weekly low-dose methotrexate for a 
period of time ranging from 2 to 3 years [1]. Interestingly, 
metronomic chemotherapy (MC), which relies on the 
frequent administration of chemotherapy at low doses, 

maintenance therapy in leukemia can be considered, in 
retrospect, as the early prototype of successful MC [5]. 

Angiogenesis plays a role in the pathogenesis and 
progression of hematological malignancies [6] including 
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Over the past decade, sophisticated techniques, such 
as those applied in molecular biology and genomics 
studies, have emerged from the combined efforts in the 
fields of physics, and the computational and biological 
sciences. These tools have fuelled progress in cancer 
research, and their use has increased our knowledge 
and understanding of cancer, leading to the current 
paradigm of molecularly targeted precision medicine1. 
Furthermore, the use of in silico analyses to extract 
clinically relevant information from the data gener-
ated using high-throughput technologies has given 
rise to the new field of computational oncology. The 
application of this concept to cancer systems biology 
(that is, computational and mathematical modelling 
of the biological networks underlying tumorigenesis), 
that exploits the constant improvements in comput-
ing resources, has contributed greatly to the analysis 
of large datasets relating to complex signalling net-
works2. Indeed, huge databases of diverse information 

on intracellular pathways are now being analysed to 
understand the inter-relationship between complex 
biological processes to improve tumour classification, 
to better understand tumour  progression, and to search 
for new druggable targets3.

Beyond cancer systems biology, an aspect of com-
putational oncology is focused on optimizing the dos-
ing and scheduling of anticancer therapies. In contrast 
to the clinical implications of cancer-systems-biology 
studies, to date, the application of computer-aided per-
sonalization of treatment regimens at the bedside has 
been limited. Considering the increasing number of 
potential drug combinations, and the variety of dosing 
schedules and sequences that might be used, identify-
ing the optimal treatment regimen among the countless 
possibilities seems an unreachable goal when using the 
standard empirical methods inherited from 20th cen-
tury medicine. Indeed, choosing the ideal treatment 
for any given patient is a far more complex task than 
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Computational oncology — 
mathematical modelling of drug 
regimens for precision medicine
Dominique Barbolosi1, Joseph Ciccolini1, Bruno Lacarelle1, Fabrice Barlési1,3,5 
and Nicolas André2,4,5

Abstract | Computational oncology is a generic term that encompasses any form of 
computer-based modelling relating to tumour biology and cancer therapy. Mathematical 
modelling can be used to probe the pharmacokinetics and pharmacodynamics relationships of 
the available anticancer agents in order to improve treatment. As a result of the ever-growing 
numbers of druggable molecular targets and possible drug combinations, obtaining an optimal 
toxicity–efficacy balance is an increasingly complex task. Consequently, standard empirical 
approaches to optimizing drug dosing and scheduling in patients are now of limited utility; 
mathematical modelling can substantially advance this practice through improved 
rationalization of therapeutic strategies. The implementation of mathematical modelling tools is 
an emerging trend, but remains largely insufficient to meet clinical needs; at the bedside, 
anticancer drugs continue to be prescribed and administered according to standard schedules. 
To shift the therapeutic paradigm towards personalized care, precision medicine in oncology 
requires powerful new resources for both researchers and clinicians. Mathematical modelling is 
an attractive approach that could help to refine treatment modalities at all phases of research 
and development, and in routine patient care. Reviewing preclinical and clinical examples, we 
highlight the current achievements and limitations with regard to computational modelling of 
drug regimens, and discuss the potential future implementation of this strategy to achieve 
precision medicine in oncology.
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A variety of mathematical models have been 
proposed to describe tumour growth, such as the 
Gompertz71, Mendelsohn72, Bertalanffy and logistic 
models73,74. Tumour growth is probably best described 
by Gompertzian law, whereby growth is sigmoidal — 
starting slow, then increasing to approach an exponen-
tial rate, before reaching a plateau75–77. The Gompertzian 
model of tumour growth involves two key para meters: 
the tumour-cell-proliferation rate; and the largest 
tumour mass that is achievable under the given circum-
stances (considering the available nutrients, for example). 
However, cell death resulting from exposure to anti cancer 
agents, used either alone or in combination, can affect 
tumour growth such that the growth curve plateaus at an 
early stage, or declines78. Thus, a disturbed Gompertzian 
tumour growth model can be used to describe tumour fate 
in the presence of anticancer agents79. Cytotoxic therapy 
is usually modelled using the ‘log-kill’ assumption, which 
hypothesizes that a cytotoxic drug kills a constant frac-
tion of the cancer-cell population over a defined period; 
the term used typically to describe cell-loss is propor-
tional to the effective concentration of drug within the 
tumour. Such Gompertzian and other related models are 
examples of the phenomenological (that is, descriptive) 
approach, and are not based on mechanistic or biological 
processes and parameters. By contrast, many models have 
been developed that additionally incorporate the influ-
ence of complex biological factors and processes, such as 
angiogenesis80, effects of the immune system on cancer81, 
influence of cancer stem cells on cell-growth pattern and 
therapy resistance82, or tumour heterogeneity (FIG. 1)83,84. 
Of note, limited preclinical and no clinical applications 
of such complex mechanistic models have been establish 
to date, and the available data reflect only in silico testing, 

with no correlation with experimental of clinical observa-
tions. In this respect, the reliability of such sophisticated 
models and whether or not they will be useful to drive 
the development of drug regimens in patients remains 
an open question. Conversely, simpler models proved 
to be able to forecast and describe experimental74,85 or 
clinical data86.

Most of the current computational oncology models 
study cancer at a single biological scale such as angio-
genesis or metastatic spreading80,85; however, modelling 
cancer across different biological scales has a growing role 
in helping to translate the complexity of cancer systems 
biology into clinical applications. By definition, a multi-
scale model encompasses at least two spatial scales and/or 
includes physical or biological processes that occur at two 
or more temporal scales. Temporal scales can encompass 
milliseconds for molecular interactions, days for tumour-
cell doubling times, and weeks to years for disease evolu-
tion87,88. Usually, multiscale modelling couples lower-level 
processes (that is, at the molecular and subcellular levels) 
with small spatial scales and fast dynamics, and higher- 
level processes, which generally occur at large spatial 
scales with slow dynamics (that is, at cellular and tissues 
levels). These models represent individual cells as discrete 
entities, and continuous models are often used when a 
larger number of cells (that is, tissues and organs) is being 
considered; models that integrate both continuous and 
discrete variables are regarded as hybrid. These models 
aim at articulating a variety of molecular, subcellular, cel-
lular, tissue, and whole-body processes combined even-
tually in a global therapeutic approach. Multiscale cancer 
modelling is, therefore, increasingly used to develop 
more-realistic models of tumour growth. The complexity 
of developing multiscale cancer models is substantially 
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Figure 2 | Multiscale modelling in oncology. Multiscale modelling can be used to simulate physical or physiological 
processes related to cancer development. Simulations can be performed at the level of molecules and their interactions, 
at the cellular level, the tissue level, the organ level, and/or the ultimately at the whole-body level, over different time 
frames. Then, the effects of several inputs, such as molecular or genetic profiling, or grading and staging of the tumours, 
can be modelled. Characteristics of the anticancer agents alone or combination can also be computed via a PK/PD model. 
The model can eventually predict different kinds of outcome at each level (survival, clinical and biological toxicities, 
decreases in tumour volume, target inhibition, and molecular pathway inhibition) and at different time points.
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Intermittent Metronomic
Drug Schedule Is Essential
for Activating Antitumor
Innate Immunity and Tumor
Xenograft Regression1,2

Chong-Sheng Chen3, Joshua C. Doloff3

and David J. Waxman

Division of Cell and Molecular Biology, Department
of Biology, Boston University, Boston, MA

Abstract
Metronomic chemotherapy using cyclophosphamide (CPA) is widely associated with antiangiogenesis; however,
recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce
major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug
schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered inter-
mittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA admin-
istered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of
metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate
immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an
unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of
innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished,
by a moderate (25%) reduction in CPA dose. Moreover, an ∼20% increase in CPA dose eliminated the partial tumor
regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus,
metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce
strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols
employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from
optimization designed to maximize antitumor immune responses.

Neoplasia (2014) 16, 84–96

Introduction
Metronomic chemotherapy involves the administration of cancer
chemotherapeutic drugs at regular intervals, without long breaks,
and is thought to yield improved antitumor activity through anti-
angiogenesis combined with conventional drug cytotoxicity [1–4].
Metronomic schedules investigated in preclinical studies include
intermittent drug dosing, e.g., the 6-day repeating metronomic
schedule empirically found to be most efficacious by Browder et al.
[1], as well as daily oral low-dose treatment regimens, which are pro-
posed to be even more effective in killing tumor endothelial cells [5,6].
Metronomic drug schedules have been evaluated in clinical trials,
primarily using daily dosing regimens, with promising results [7–9].
Recent studies have shown that other mechanisms, notably antitumor
immunity, may also be activated by metronomic chemotherapy. For
example, metronomic administration of gemcitabine and docetaxel

restores lymphocyte effector function by suppressing bone marrow–
derived suppressor cells [10,11], while paclitaxel, cyclophosphamide
(CPA), temozolomide and vinorelbine preferentially deplete regulatory
T suppressor cells (Tregs) [12–15]. Furthermore, CPA administration
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was administered by oral gavage at 11.65 mg/kg BW (n = 4 mice),
corresponding to 20% of the daily doses of 58.25 mg/kg BW
(2.5× p.o. dosing). Blood samples were obtained at t = 0 (before CPA
exposure) and at t = 5 to t = 240 minutes after CPA dosing by retro-
orbital bleeding (100 μl/mouse per time point × four mice), for both
the i.p. and the p.o. exposure routes. 4-OH–CPA levels were assayed,
and pharmacokinetic parameters were calculated usingWinNonlin soft-
ware [22]. Area under the curve (AUC) values, in units of (nmol/ml) ×
hour, were normalized to take into account the frequency of adminis-
tration of each regimen. Thus, “daily AUC” values (Figure 1C ) were
obtained by multiplying the measured AUC values for the 2.5× p.o.
group by 5 (cf., 20% of a daily dose given by gavage) and by dividing

themeasured AUCvalues of the 70mg/kg per 3-day i.p. and 140mg/kg
per 6-day i.p. groups by 3 and 6, respectively. The daily AUC of 9.8
(hour × nmol/ml) for 4-OH–CPA exposure measured here in SCID
mice given 1× p.o. CPA dosing is very similar to the daily AUC value
of 10.3 (hour × nmol/ml) for the same dosing regimen and route (20mg
CPA/kg per day, p.o.) reported by others in C57BL/6J mice [6] (the
56-day AUC value shown in Table 1 of that study was divided by 56
to obtain the daily AUC value).

Tissue Processing and Immunohistochemistry
Tumors were collected on day 6 after the second, third, and fourth

cycles of metronomic CPA based on the 6-day repeating schedule,

Figure 1. Impact of metronomic schedule on CPA-induced antitumor innate immunity and tumor regression. (A) Growth of 9L xenografts
in SCID mice, either untreated (UT) or given metronomic CPA treatment daily, through drinking water at 23.3 mg/kg BW (1× p.o.) or
70 mg/kg BW (3× po) or by i.p. injection every 3 days at 70 mg/kg BW or every 6 days at 140 mg/kg BW. X-axis, treatment day. Data are
themean±SE tumor volumes forn=5 to6mice per treatment group. *P< .05, **P< .01, and ***P< .001 compared toUTonday 24; &&P<
.01 and &&&P < .001 compared to 3× p.o. schedule on day 30; and #P < .05 compared to 70 i.p. schedule on day 30, by one-way ANOVA
with Bonferroni multiple comparison correction. (B) Pharmacokinetics of 4-OH–CPA (active metabolite of CPA) levels in plasma of tumor-
bearing SCID mice following metronomic CPA treatment using the schedules indicated. (C) Daily AUC for plasma 4-OH–CPA exposure in
SCID mice treated with the indicated metronomic CPA regimens, based on mean ± SE values for n = 4 mice per time point, based on the
data in B and normalized to adjust for the frequency of administration of each regimen, as described in Materials and Methods section.
(D) qPCR analysis of host (mouse) macrophagemarker CD68, dendritic cell marker CD74, and NK cell marker NKp46 in 9L tumor xenografts,
untreated or treated with the indicated metronomic CPA regimens. Tumors were excised on day 0, and on treatment days 12, 18, and
24 (based on A), corresponding to 6 days after two, three, and four cycles of 6-day repeating CPA treatment, as marked along X-axis. Bars,
mean ± SE for each treatment group and time point. *P < .05, **P < .01, and ***P < .001, for each CPA treatment schedule and time
point (n = 2-5 mice per group) versus UT controls (n = 10 mice). Data were analyzed by one-way ANOVA with Bonferroni multiple com-
parison correction for one tumor randomly selected from each mouse.
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Progressive disease was documented in 296 (92%) of the 323
women. PFS was similar in those assigned capecitabine intermittently
versus continuously (median, 6 months; HR, 0.97; 95% CI, 0.73 to
1.28; P ! .8) and in those assigned capecitabine versus CMF (median,
6 months; HR, 0.86; 95% CI, 0.67 to 1.10; P ! .20; Fig 2A). Poor PS
was the only baseline factor significantly associated with PFS, and
adjustment for it in a multivariable Cox model did not affect the size or
statistical significance of the effect of treatment on PFS (Table 3).
Quality-adjusted PFS, the primary end point for the trial, was similar
in those assigned capecitabine versus CMF (mean, 8.8 v 7.6 months;
95% CI for difference, "0.75 to 3.0; P ! .20).

OS analyses included 237 deaths (73%) among the 323 women. OS
was similar in those assigned capecitabine intermittently versus continu-
ously(HR,0.86;95%CI,0.62to1.12;P! .4).OSwassubstantially longer
in those assigned capecitabine versus CMF (median, 22 v 18 months; HR,
0.72; 95% CI, 0.55 to 0.94; P ! .02; Fig 2B). Longer survival was also
associated with presence of hormone receptors, good PS, and absence of
liver or brain metastases (Table 3). Adjustment for these baseline factors
did not materially alter the size or statistical significance of the survival
benefit associated with capecitabine. Weak interaction effects reflected
somewhat greater survival benefits for capecitabine over CMF in the
absence of previous adjuvant chemotherapy (P ! .07) or with a longer
interval from diagnosis to treatment (P ! .10).

Adverse events occurred equally frequently in those assigned cape-
citabine intermittently or continuously (Table 4). Hand-foot syndrome
was more frequent with capecitabine, whereas uncomplicated neutrope-
nia, febrile neutropenia, stomatitis, and miscellaneous other grade 3 or 4
adverse events were more frequent with CMF. Serious adverse events
occurred in significantly fewer patients assigned capecitabine than CMF
(21% v 35%; P! .02), particularly those related to neutropenia (Table 5).

Dose reductions were equally frequent with capecitabine admin-
istered intermittently and continuously. The dose of capecitabine was
reduced by one level (to 75% of starting dose) in 82 (38%) of 214
women and by two levels (to 50% of starting dose) in another 33
women (15%). Dose escalation of intermittent capecitabine (from
1,000 mg/m2 twice daily to 1,250 mg/m2 twice daily) was attempted in
11 (10%) of 107 women, six of whom experienced an adverse event
requiring a dose reduction within two cycles.

The average duration of chemotherapy was longer in those as-
signed capecitabine than in those assigned CMF (9 months, 12.1 cycles v
6 months, 5.5 cycles; Appendix Table A1, online only). Women as-

signed capecitabine rather than CMF were more likely to continue
chemotherapy beyond 6 months (40% v 21%; P ! .001) and beyond
12 months (18% v 6%; P ! .005). Chemotherapy was continued until
progression in significantly more women allocated capecitabine than
CMF (77% v 51%; P # .001; Appendix Table A2, online only).

Table 2. Tumor Response

Response

Capecitabine

CMF TotalIntermittent Continuous

No. % No. % No. % No. %

Total patients 107 100 107 100 109 100 323 100
CR 4 4 0 0 1 1 5 2
PR 19 18 21 20 18 17 58 18
SD, months

At 3 42 39 49 46 45 41 136 42
At 6 29 27 32 30 27 25 88 27

Progressive disease or inevaluable 42 39 37 35 45 41 124 38
Objective tumor response (CR $ PR) 23 22 21 20 19 18 63 20
Objective disease control (CR $ PR $ SD at 6 months) 52 49 53 50 46 42 151 47

NOTE. No prespecified comparison was statistically significant.
Abbreviations: CMF, cyclophosphamide, methotrexate, and fluorouracil; CR, complete response; PR, partial response; SD, stable disease.
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Fig 2. Progression-free and overall survival. CMF, cyclophosphamide, metho-
trexate, and fluorouracil.
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teria may have served to exclude patients with the
worst prognosis, who may not benefit from any
therapy. Moreover, most patients had undergone
debulking surgery. The relatively long survival after
disease progression (approximately seven months
in both groups) is also noteworthy. This extended
survival may reflect either patient selection or the
early detection of tumor progression by means of
regular radiographic assessment. Furthermore, 72

percent of patients in the radiotherapy group and
58 percent of patients in the radiotherapy-plus-tem-
ozolomide group received salvage chemotherapy at
the time of progression.

This trial was designed to determine whether the
addition of temozolomide to radiotherapy early in
the course of treatment prolongs survival among
patients with glioblastoma, but it was not designed
to distinguish between the effects of concomitant
therapy with radiotherapy plus temozolomide and
adjuvant treatment with temozolomide. At the time
the trial was conceived, it was deemed most impor-
tant to administer chemotherapy early in the course
of the disease, for a sufficiently long time, and con-
currently with radiotherapy. Temozolomide was
given concomitantly with radiotherapy on a contin-
uous schedule for several reasons. First, daily ad-
ministration of low doses makes possible an in-
crease by almost a factor of two in dose intensity, as
compared with the standard regimen, without an
increase in toxicity.

 

15

 

 Second, continuous adminis-
tration of an alkylating agent depletes MGMT,

 

16

 

 an
enzyme that may be induced by radiotherapy and
that is necessary for repair of damage to DNA caused
by alkylating agents.

 

29

 

 In a companion translation-
al study also reported in this issue of the 

 

Journal,

 

 we
observed that methylation of the 

 

MGMT

 

 promoter,
which results in gene silencing, is associated with a
striking survival benefit in patients treated with ra-
diotherapy plus temozolomide.

 

30

 

 Third, synergy
between temozolomide and radiotherapy has been
observed in vitro.

 

31-33

 

 The spontaneous conversion
of temozolomide into the active metabolite and its
ability to cross the blood–brain barrier also favors
this regimen.

 

34

 

 Finally, to ensure sufficient exposure
to the drug, we added six cycles of adjuvant temo-
zolomide after the completion of radiotherapy.

In the context of palliative care, chemotherapy-
induced toxic effects should be manageable. Nau-
sea was controlled with standard antiemetic agents.
Severe myelosuppression was observed in 16 per-
cent of patients, leading to the early discontinuation
of chemotherapy in 5 percent. Whether the addition
of chemotherapy increases the risk of radiotherapy-
induced cognitive deficits cannot be assessed at this
time. However, long-term monitoring and observa-
tional studies of late toxic effects will be important
to guide treatment recommendations in the future.
Furthermore, prolonged chemotherapy with alkyl-
ating agents has been associated with myelodys-
plastic syndromes and secondary leukemia occur-
ring years after therapy.

 

35

 

 In our trial, at a median

 

Figure 2. Kaplan–Meier Estimates of Progression-free Survival According to 
Treatment Group.

 

The hazard ratio for death or disease progression among patients treated 
with radiotherapy plus temozolomide, as compared with those treated with 
radiotherapy alone, was 0.54 (95 percent confidence interval, 0.45 to 0.64; 
P<0.001).
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Table 4. Grade 3 or 4 Hematologic Toxic Effects in Patients Treated
with Temozolomide.

Toxic Effect

Concomitant
Temozolomide 

Therapy
(N=284)

Adjuvant
Temozolomide 

Therapy 
(N=223)

Entire Study
Period*
(N=284)

 

number of patients (percent)

 

Leukopenia 7 (2) 11 (5) 20 (7)

Neutropenia 12 (4) 9 (4) 21 (7)

Thrombocytopenia 9 (3) 24 (11) 33 (12)

Anemia 1 (<1) 2 (1) 4 (1)

Any 19 (7) 32 (14) 46 (16)
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Neoadjuvant antiangiogenic therapy reveals
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Abstract

Thousands of cancer patients are currently in clinical trials evaluat-
ing antiangiogenic therapy in the neoadjuvant setting, which is the
treatment of localized primary tumors prior to surgical intervention.
The rationale is that shrinking a tumor will improve surgical
outcomes and minimize growth of occult micrometastatic disease—
thus delaying post-surgical recurrence and improving survival. But
approved VEGF pathway inhibitors have not been tested in clinically
relevant neoadjuvant models that compare pre- and post-surgical
treatment effects. Using mouse models of breast, kidney, and mela-
noma metastasis, we demonstrate that primary tumor responses to
neoadjuvant VEGFR TKI treatment do not consistently correlate with
improved post-surgical survival, with survival worsened in certain
settings. Similar negative effects did not extend to protein-based
VEGF pathway inhibitors and could be reversed with altered dose,
surgical timing, and treatment duration, or when VEGFR TKIs are
combined with metronomic ‘anti-metastatic’ chemotherapy regi-
mens. These studies represent the first attempt to recapitulate the
complex clinical parameters of neoadjuvant therapy in mice and
identify a novel tool to compare systemic antiangiogenic treatment
effects on localized and disseminated disease.
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Introduction

Eight inhibitors that block the vascular endothelial growth factor

(VEGF) pathway have now been approved as first- or second-line

treatment in twelve different late-stage cancer types, thus validating

antiangiogenesis as a therapeutic modality in treating established

metastatic disease and late-stage glioblastoma (Jayson et al, 2012).

Stemming from these approvals, several hundred phase II and III

trials were initiated to evaluate VEGF pathway inhibitors in earlier

stage disease, that is, neoadjuvant (pre-surgical) and adjuvant (post-

surgical) treatment settings (Ebos & Kerbel, 2011). Such ‘periopera-

tive’ treatments are unique in that they typically have defined treat-

ment durations (unlike in late-stage or advanced disease, where

treatments are variable depending on response) and are guided by

the hypothesis that drug efficacy in advanced metastatic disease

would elicit equal or greater improvements in the earlier stages

(Tanvetyanon et al, 2005). These benefits—shown with radiation

and chemotherapy (Van Cutsem et al, 2009)—would theoretically

include control of localized primary cancers which, in turn, would

prevent occult micrometastatic disease and improve progression-free

survival (PFS) (Ebos & Kerbel, 2011). However, based on recent clini-

cal and preclinical observations, there is growing concern that VEGF

pathway inhibitors may not be effective in this setting (Ebos & Kerbel,

2011). First, there have been five failed phase III adjuvant trials with

VEGF pathway inhibitors, including four with the VEGF neutralizing

antibody bevacizumab (in combination with chemotherapy or an

anti-HER2 antibody) in colorectal carcinoma (CRC) (AVANT and

C-08) (de Gramont et al, 2012) and triple-negative and HER2+breast

carcinoma (BEATRICE and BETH, respectively) (Cameron et al,

2013), and one with the VEGF receptor tyrosine kinase inhibitor

(RTKI) sorafenib in hepatocellular carcinoma (HCC) (Bruix et al,

2014). Second, growing preclinical evidence suggests that unex-

pected collateral consequences of angiogenesis inhibition may limit

efficacy in preventing growth of micrometastatic lesions (Mountzios

et al, 2014). Indeed, we and others have demonstrated that VEGF

pathway inhibitors can elicit both tumor- and host-mediated reac-

tions to therapy that can offset (reduce) benefits, or even facilitate,

early-stage metastatic disease in certain instances (Ebos et al, 2009;

Paez-Ribes et al, 2009). Though these latter results have thus far not

been confirmed clinically in patients with advanced metastatic

disease when therapy is removed (Miles et al, 2010; Blagoev et al,

2013), they underscore a gap in our current understanding of how

antiangiogenic therapy may work in different disease stages. They
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A variety of mathematical models have been 
proposed to describe tumour growth, such as the 
Gompertz71, Mendelsohn72, Bertalanffy and logistic 
models73,74. Tumour growth is probably best described 
by Gompertzian law, whereby growth is sigmoidal — 
starting slow, then increasing to approach an exponen-
tial rate, before reaching a plateau75–77. The Gompertzian 
model of tumour growth involves two key para meters: 
the tumour-cell-proliferation rate; and the largest 
tumour mass that is achievable under the given circum-
stances (considering the available nutrients, for example). 
However, cell death resulting from exposure to anti cancer 
agents, used either alone or in combination, can affect 
tumour growth such that the growth curve plateaus at an 
early stage, or declines78. Thus, a disturbed Gompertzian 
tumour growth model can be used to describe tumour fate 
in the presence of anticancer agents79. Cytotoxic therapy 
is usually modelled using the ‘log-kill’ assumption, which 
hypothesizes that a cytotoxic drug kills a constant frac-
tion of the cancer-cell population over a defined period; 
the term used typically to describe cell-loss is propor-
tional to the effective concentration of drug within the 
tumour. Such Gompertzian and other related models are 
examples of the phenomenological (that is, descriptive) 
approach, and are not based on mechanistic or biological 
processes and parameters. By contrast, many models have 
been developed that additionally incorporate the influ-
ence of complex biological factors and processes, such as 
angiogenesis80, effects of the immune system on cancer81, 
influence of cancer stem cells on cell-growth pattern and 
therapy resistance82, or tumour heterogeneity (FIG. 1)83,84. 
Of note, limited preclinical and no clinical applications 
of such complex mechanistic models have been establish 
to date, and the available data reflect only in silico testing, 

with no correlation with experimental of clinical observa-
tions. In this respect, the reliability of such sophisticated 
models and whether or not they will be useful to drive 
the development of drug regimens in patients remains 
an open question. Conversely, simpler models proved 
to be able to forecast and describe experimental74,85 or 
clinical data86.

Most of the current computational oncology models 
study cancer at a single biological scale such as angio-
genesis or metastatic spreading80,85; however, modelling 
cancer across different biological scales has a growing role 
in helping to translate the complexity of cancer systems 
biology into clinical applications. By definition, a multi-
scale model encompasses at least two spatial scales and/or 
includes physical or biological processes that occur at two 
or more temporal scales. Temporal scales can encompass 
milliseconds for molecular interactions, days for tumour-
cell doubling times, and weeks to years for disease evolu-
tion87,88. Usually, multiscale modelling couples lower-level 
processes (that is, at the molecular and subcellular levels) 
with small spatial scales and fast dynamics, and higher- 
level processes, which generally occur at large spatial 
scales with slow dynamics (that is, at cellular and tissues 
levels). These models represent individual cells as discrete 
entities, and continuous models are often used when a 
larger number of cells (that is, tissues and organs) is being 
considered; models that integrate both continuous and 
discrete variables are regarded as hybrid. These models 
aim at articulating a variety of molecular, subcellular, cel-
lular, tissue, and whole-body processes combined even-
tually in a global therapeutic approach. Multiscale cancer 
modelling is, therefore, increasingly used to develop 
more-realistic models of tumour growth. The complexity 
of developing multiscale cancer models is substantially 
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Over the past decade, sophisticated techniques, such 
as those applied in molecular biology and genomics 
studies, have emerged from the combined efforts in the 
fields of physics, and the computational and biological 
sciences. These tools have fuelled progress in cancer 
research, and their use has increased our knowledge 
and understanding of cancer, leading to the current 
paradigm of molecularly targeted precision medicine1. 
Furthermore, the use of in silico analyses to extract 
clinically relevant information from the data gener-
ated using high-throughput technologies has given 
rise to the new field of computational oncology. The 
application of this concept to cancer systems biology 
(that is, computational and mathematical modelling 
of the biological networks underlying tumorigenesis), 
that exploits the constant improvements in comput-
ing resources, has contributed greatly to the analysis 
of large datasets relating to complex signalling net-
works2. Indeed, huge databases of diverse information 

on intracellular pathways are now being analysed to 
understand the inter-relationship between complex 
biological processes to improve tumour classification, 
to better understand tumour  progression, and to search 
for new druggable targets3.

Beyond cancer systems biology, an aspect of com-
putational oncology is focused on optimizing the dos-
ing and scheduling of anticancer therapies. In contrast 
to the clinical implications of cancer-systems-biology 
studies, to date, the application of computer-aided per-
sonalization of treatment regimens at the bedside has 
been limited. Considering the increasing number of 
potential drug combinations, and the variety of dosing 
schedules and sequences that might be used, identify-
ing the optimal treatment regimen among the countless 
possibilities seems an unreachable goal when using the 
standard empirical methods inherited from 20th cen-
tury medicine. Indeed, choosing the ideal treatment 
for any given patient is a far more complex task than 
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Computational oncology — 
mathematical modelling of drug 
regimens for precision medicine
Dominique Barbolosi1, Joseph Ciccolini1, Bruno Lacarelle1, Fabrice Barlési1,3,5 
and Nicolas André2,4,5

Abstract | Computational oncology is a generic term that encompasses any form of 
computer-based modelling relating to tumour biology and cancer therapy. Mathematical 
modelling can be used to probe the pharmacokinetics and pharmacodynamics relationships of 
the available anticancer agents in order to improve treatment. As a result of the ever-growing 
numbers of druggable molecular targets and possible drug combinations, obtaining an optimal 
toxicity–efficacy balance is an increasingly complex task. Consequently, standard empirical 
approaches to optimizing drug dosing and scheduling in patients are now of limited utility; 
mathematical modelling can substantially advance this practice through improved 
rationalization of therapeutic strategies. The implementation of mathematical modelling tools is 
an emerging trend, but remains largely insufficient to meet clinical needs; at the bedside, 
anticancer drugs continue to be prescribed and administered according to standard schedules. 
To shift the therapeutic paradigm towards personalized care, precision medicine in oncology 
requires powerful new resources for both researchers and clinicians. Mathematical modelling is 
an attractive approach that could help to refine treatment modalities at all phases of research 
and development, and in routine patient care. Reviewing preclinical and clinical examples, we 
highlight the current achievements and limitations with regard to computational modelling of 
drug regimens, and discuss the potential future implementation of this strategy to achieve 
precision medicine in oncology.
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safety–efficacy multiscale model describing the PK/
PD relationships between docetaxel and epirubicin, 
allowing the best in silico drug-dosing regimen (that 
is, docetaxel first and epirubicin 1 day later, a sequence 
opposite to that usually performed with these drugs) for 
each patient to be tested in a phase Ib trial101. To date, 
17 patients have been recruited and the proposed regimen 
was both well tolerated, and achieved a response rate of 
45%, a median progression-free survival of 10.4 months 
and a median survival of 54.6 months, which compares 
favourably to the results reported in initial publications of 
the docetaxel and epirubicin combination102–108.

Planning metronomic chemotherapy. The role of metro-
nomic chemotherapy in the treatment of cancer remains 
to be fully determined109. Metronomic chemotherapy is a 
paradigm that illustrates how changes in dose and sched-
ule can alter the mechanisms of action of drugs — for 
example, canonical cytotoxic agents can have antiangio-
genic or immune-stimulating effects, or both109. A better 
understanding of metronomics might be derived from 
mathematical modelling studies110, and computational 
approaches can facilitate comparison of the efficacy 
of conventional versus metronomic regimens. Because of 
the innumerable permutations for repeated, low-dose 
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safety profile based on absolute neutrophil count (middle panels)112. Shading represents confidence intervals. Permission 
obtained from Springer International Publishing © Barbolosi, D. et al. Cancer Chemother. Pharmacol. 74, 647–652 (2014).
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Clinical experience in children
Over the past 4 years, more clinical experience of 
metro nomic chemotherapy in children has been gained 
(Table 5).172–182 The addition of a metronomic combina-
tion of vinblastine, celecoxib and cyclophophamide to 
standard MTD chemotherapy was investigated in chil-
dren with newly diagnosed metastatic Ewing sarcoma.178 
Although, there was an increased toxicity in irradiated 
sites, there was also increased EFS for patients with iso-
lated pulmonary metastasis compared with historical 
controls. Similarly, the addition of metronomic main-
tenance was a favourable prognostic factor in children 
with embryonal rhabdomyosarcoma who had metastatic 
spread to the lungs.183

A multimodal metronomic protocol for children with 
relapsing embryonal brain tumours was assessed using 
the four-drug metronomic protocol of either continu-
ous oral thalido mide and celecoxib with alternating oral 
etoposide and cyclophosphamide based on an earlier 
study,184 combined with intrathecal etoposide and cyta-
rabine, bevacizumab and fenofibrate. An EFS of 85% and 
69% at 12 and 24 months, respectively, was observed in 
seven patients with medulloblastoma. Based on these 

promising results, the regimen is currently being investi-
gated in an international phase II trial.185 One of the most 
exciting recent developments of metronomic therapy in 
paediatric oncology relies on a multimodal metronomic 
approach that combines metronomic temozolomide 
and irinotecan with dasa tinib and rapamycin for chil-
dren with refractory neuro blastoma.186 After noting 
an overall survival rate of 55% at a median follow-up 
of 80 weeks, a randomized phase II trial has been initi-
ated.187 Metronomic therapy is gaining growing attention 
in LMICs.25 For example, in Mali a three-drug metro-
nomic combination of vincristine, cyclophosphamide 
and methotrexate resulted in re-induction of tumour 
dormancy in three out of six patients with retino-
blastoma.173 Building on these results, Traore et al.176 
added valproic acid to this chemotherapy metronomic 
backbone and observed a sustained complete response 
in a child with metastatic neuro blastoma. A prospective 
randomized phase III trial using a four-drug metro-
nomic regimen184 has been initiated in India to compare 
this regimen with best supportive care in children with 
no curative option.188 Further clinical studies are under-
way in the paediatric setting. For instance, a phase II trial 

Table 5 | Paediatric studies of metronomic chemotherapy

Patient population/
disease setting

Type of 
study

n Treatment regimen Efficacy Best 
response

Brainstem glioma172 Phase I 15 Temozolomide (oral, daily) + radiotherapy RR: NA; 
CB: 33%

NA

Refractory/relapsed 
tumours of various types173

Pilot 12 Cyclophosphamide (oral, daily for 3 weeks), 
alternating with methotrexate (oral, twice weekly, 
for 2 weeks), vincristine (IV, once every 4 weeks)

RR: 0%; 
CB: 58%

SD: 7/12

Recurrent/refractory 
neuroblastoma174

Phase I 21 Cyclophosphamide (oral, daily), zoledronic acid 
(IV monthly)

RR: 5%; 
CB: 50%

PR: 1/20

Refractory/relapsed 
or ‘high-risk of relapse’ 
tumours of various types175

Retrospective 74 Temozolomide (oral, daily, for 6 weeks), etoposide 
(oral, daily, for 3 weeks), retinoic acid (oral, daily, 
2 weeks on/2 weeks off), celecoxib + vitamin D +  
fenofibrate (oral, daily)

RR: NA; 
CB: 23%

NA

Refractory/relapsed 
tumours of various types176

Pilot 7 Cyclophosphamide (oral, daily for 3 weeks), 
alternating with methotrexate (oral, twice weekly, 
for 2 weeks), vincristine (oral, once every 4 weeks), 
valproic acid (oral, daily)

RR: 29%; 
CB: 29%

PR: 2/7

Recurrent/refractory brain 
tumour177

Phase II 31 Topotecan (oral, daily, 3 weeks on/1 week off) RR: 8%; 
CB: 23%

PR: 2/26

Newly diagnosed metastatic 
Ewing sarcoma178

Pilot 35 Vinblastine (IV weekly), celecoxib (oral, daily), 
standard MTD chemotherapy

24-month 
EFS: 35%

NA

Refractory/relapsed 
or ‘high-risk of relapse’ 
tumours of various types179

Phase II 16 Cyclophosphamide (oral, daily for 3 weeks), 
alternating with methotrexate (oral, twice weekly, 
for 3 weeks), vinblastine (IV weekly, for 7 weeks), 
celecoxib (oral, daily)

RR: 25%; 
CB: 25%

CR: 3/16– 
PR: 1/16

Brainstem glioma180 Pilot 8 Topotecan (oral, daily, for 6 weeks) + radiotherapy 
followed by etoposide (oral, daily for 3 weeks), 
thalidomide + celecoxib (oral, daily)

RR: NA; 
CB: 100%

NA

Refractory/relapsed 
rhabdomyosarcoma*181

Phase II 50 Vinorelbine (IV weekly, 3 weeks on/1 week off), 
cyclophosphamide (oral, daily)

RR: 36%; 
CB: 52%

CR: 4/50– 
PR: 14/50

Recurrent embryonal brain 
tumour182

Pilot 16 Etoposide (oral, daily, for 3 weeks), alternating with 
cyclophosphamide (oral, daily, for 3 weeks), 
thalidomide + celecoxib + fenofibrate (oral, daily), 
bevacizumab (IV, 2×/month), intraventricular therapy 

24-month 
EFS: 54%

CR: 3/9– 
PR: 2/9

*Details regarding the other cohorts of patients are not given. Abbreviations: CB, clinical benefit; CR, complete response; EFS, event-free survival; IV, intravenous; 
MTD, maximum tolerated dose; NA, not available; PR, partial response; PSA, prostate-specific antigen; RR, response rate; SD, stable disease.
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