
Randomness connecting to set theory and

to reverse mathematics

André Nies

June 2016

CIRM
Slides are on my web site under “talks”.

1/27



Goals

I Connect randomness and computability to cardinal
characteristics in set theory:

I define a dual ∆(A) of the Gamma operator,
I show ∆(A) > 0→ ∆(A) = 1/2 by dualising

Monin’s proof

I Connect randomness to reverse mathematics:

I study the axiom power needed to verify equivalence
of randomness notions;

I study strength of randomness existence axioms in
the setting of reverse mathematics

2/27



Goals

I Connect randomness and computability to cardinal
characteristics in set theory:

I define a dual ∆(A) of the Gamma operator,
I show ∆(A) > 0→ ∆(A) = 1/2 by dualising

Monin’s proof

I Connect randomness to reverse mathematics:

I study the axiom power needed to verify equivalence
of randomness notions;

I study strength of randomness existence axioms in
the setting of reverse mathematics

2/27



PART I:

The Γ and ∆ operators, and

cardinal characteristics in set theory

3/27



The Γ operator

For Z ⊆ N the lower density is defined to be

ρ(Z) = lim inf
n

|Z ∩ [0, n)|
n

.

Recall that

γ(A) = sup
X computable

ρ(A↔ X)

The Γ operator was introduced by Andrews, Cai,

Diamondstone, Jockusch and Lempp (2013):

Γ(A) = inf{γ(Y ) : Y ≤T A}.

This only depends on the Turing degree of A.

4/27



Viewing 1− Γ as a Hausdorff pseudodistance

For Z ⊆ N the upper density is defined by

ρ(Z) = lim sup
n

|Z ∩ [0, n]|
n

.

I For X, Y ∈ 2N let d(X, Y ) = ρ(X4Y ) be the upper
density of the symmetric difference of X and Y

I this is a pseudodistance on Cantor space 2N (that is,
two objects may have distance 0 without being equal).

5/27



Let R ⊆ A ⊆M for a pseudometric space(M,d). The
Hausdorff distance is dH(A,R) = supY ∈A infS∈R d(Y, S)).

Given an oracle set A let A = {Y : Y ≤T A}. Let R ⊆ A
denote the collection of computable sets. We have

1− Γ(A) = dH(A,R).

6/27



Let R ⊆ A ⊆M for a pseudometric space(M,d). The
Hausdorff distance is dH(A,R) = supY ∈A infS∈R d(Y, S)).

Given an oracle set A let A = {Y : Y ≤T A}. Let R ⊆ A
denote the collection of computable sets. We have

1− Γ(A) = dH(A,R).

6/27



∆ operator, a dual to Γ

δ(Y ) = inf{ρ(Y ↔ S) : S computable}
∆(A) = sup{δ(Y ) : Y ≤T A}.

I Γ(A) measures how well computable sets can
approximate the sets that A computes.
“Γ(A) > p” for fixed p ∈ [0, 1) is a lowness property.

I ∆(A) measures how well the sets that A computes can
approximate the computable sets.
“∆(A) > p” is a highness property.

7/27



∆ operator, a dual to Γ

δ(Y ) = inf{ρ(Y ↔ S) : S computable}
∆(A) = sup{δ(Y ) : Y ≤T A}.

I Γ(A) measures how well computable sets can
approximate the sets that A computes.
“Γ(A) > p” for fixed p ∈ [0, 1) is a lowness property.

I ∆(A) measures how well the sets that A computes can
approximate the computable sets.
“∆(A) > p” is a highness property.

7/27



Interpreting 1−∆(A) metrically

We can view 1−∆(A) as a one-sided “dual” of the
Hausdorff distance:

1−∆(A) = d∗H(A,R) = infY ∈A supS∈R d(Y, S).

Example: for the unit disc D ⊆ R2 we have d∗H(D,D) = 1.

8/27



δ(Y ) = inf{ρ(Y ↔ S) : S computable}
∆(A) = sup{δ(Y ) : Y ≤T A}.

Properties of δ and ∆ (w. Merkle and Stephan)

I δ(Y ) ≤ 1/2 for each Y (by considering also the
complement of S)

I Y Schnorr random ⇒ δ(Y ) = 1/2 (by law of large
numbers)

I A computable ⇒ ∆(A) = 0.

I ∆(A) = 0 is possible for noncomputable A, e.g. if A is
low and c.e., or 2-generic .

9/27



Cardinal characteristics and their analogs

We use analogs of cardinal characteristics in set theory.
Consider a binary relation R ⊆ X × Y between sets,
functions (or other objects encoded by reals).

I In set theory one lets

b(R) = min{|F | : F ⊆ X ∧ ∀y ∈ Y∃x ∈ F [¬xRy]}

(e.g. if R is almost everywhere domination of functions,

one gets the unbounding number b)

I In computability we let

B(R) = {A : ∃y ≤T A∀x computable [xRy]}

(e.g., the same R yields highness.)

See Rupprecht, Thesis, 2010; Brooke, Brendle, Ng, N., 2014.

10/27



Cardinal characteristics and their analogs

We use analogs of cardinal characteristics in set theory.
Consider a binary relation R ⊆ X × Y between sets,
functions (or other objects encoded by reals).

I In set theory one lets

b(R) = min{|F | : F ⊆ X ∧ ∀y ∈ Y∃x ∈ F [¬xRy]}

(e.g. if R is almost everywhere domination of functions,

one gets the unbounding number b)

I In computability we let

B(R) = {A : ∃y ≤T A∀x computable [xRy]}

(e.g., the same R yields highness.)

See Rupprecht, Thesis, 2010; Brooke, Brendle, Ng, N., 2014.

10/27



The highness classes B(∼p)

Definition (Brendle and N.)

For p ∈ [0, 1/2) let S ∼p Y if ρ(S ↔ Y ) > p, and

B(∼p) = {A : ∃Y ≤T A ∀S computable S ∼p Y }.

The connection to ∆: for each p ∈ [0, 1/2) we have

∆(A) > p⇒ A ∈ B(∼p)⇒ ∆(A) ≥ p.

We will show that all the classes B(p) coincide, for
0 < p < 1/2. Therefore:

∆(A) > 0⇒ ∆(A) = 1/2.

11/27



The highness classes B(∼p)

Definition (Brendle and N.)

For p ∈ [0, 1/2) let S ∼p Y if ρ(S ↔ Y ) > p, and

B(∼p) = {A : ∃Y ≤T A ∀S computable S ∼p Y }.

The connection to ∆: for each p ∈ [0, 1/2) we have

∆(A) > p⇒ A ∈ B(∼p)⇒ ∆(A) ≥ p.

We will show that all the classes B(p) coincide, for
0 < p < 1/2. Therefore:

∆(A) > 0⇒ ∆(A) = 1/2.

11/27



A.e. avoiding a computable function

Definition (B(6=∗, h))

For a computable function h, we let
B( 6=∗, h) = {A : ∃f ≤T A, f < h∀r computable

∀∞n f(n) 6= r(n)}.

I This gets easier as h grows faster.

I In the extreme, B( 6=∗), i.e. the class obtained when we
omit the computable bound, coincides with “high or
diagonally noncomputable”.

Fact

A computes a Schnorr random ⇒ A ∈ B(6=∗, 2ĥ) whenever
ĥ is computable and ∞ >

∑
n 1/ĥ(n). E.g. ĥ(n) = n2.

12/27



A.e. avoiding a computable function

Definition (B(6=∗, h))

For a computable function h, we let
B( 6=∗, h) = {A : ∃f ≤T A, f < h∀r computable

∀∞n f(n) 6= r(n)}.

I This gets easier as h grows faster.

I In the extreme, B( 6=∗), i.e. the class obtained when we
omit the computable bound, coincides with “high or
diagonally noncomputable”.

Fact

A computes a Schnorr random ⇒ A ∈ B(6=∗, 2ĥ) whenever
ĥ is computable and ∞ >

∑
n 1/ĥ(n). E.g. ĥ(n) = n2.

12/27



Recall: for p ∈ (0, 1/2) let

B(∼p) = {A : ∃Y ≤T A∀S computable ρ(S ↔ Y ) > p}.

If A computes a Schnorr random then A ∈ B(∼p).

B( 6=∗, h) = {A : ∃f ≤T A, f < h∀r computable
∀∞n r(n) 6= f(n)}.

If A computes a Schnorr random then A ∈ B(6=∗, 2n2
).

Theorem (N., dual form of Monin’s result)

B(∼p) = B( 6=∗, 2(2n)) for each p ∈ (0, 1/2).

Corollary

∆(A) > 0⇔ ∆(A) = 1/2⇔ A ∈ B(6=∗, 2(2n)).

13/27



Recall: for p ∈ (0, 1/2) let

B(∼p) = {A : ∃Y ≤T A∀S computable ρ(S ↔ Y ) > p}.

If A computes a Schnorr random then A ∈ B(∼p).

B( 6=∗, h) = {A : ∃f ≤T A, f < h∀r computable
∀∞n r(n) 6= f(n)}.

If A computes a Schnorr random then A ∈ B(6=∗, 2n2
).

Theorem (N., dual form of Monin’s result)

B(∼p) = B( 6=∗, 2(2n)) for each p ∈ (0, 1/2).

Corollary

∆(A) > 0⇔ ∆(A) = 1/2⇔ A ∈ B(6=∗, 2(2n)).

13/27



Recall: for p ∈ (0, 1/2) let

B(∼p) = {A : ∃Y ≤T A∀S computable ρ(S ↔ Y ) > p}.

If A computes a Schnorr random then A ∈ B(∼p).

B( 6=∗, h) = {A : ∃f ≤T A, f < h∀r computable
∀∞n r(n) 6= f(n)}.

If A computes a Schnorr random then A ∈ B(6=∗, 2n2
).

Theorem (N., dual form of Monin’s result)

B(∼p) = B( 6=∗, 2(2n)) for each p ∈ (0, 1/2).

Corollary

∆(A) > 0⇔ ∆(A) = 1/2⇔ A ∈ B(6=∗, 2(2n)).

13/27



Recall: for p ∈ (0, 1/2) let

B(∼p) = {A : ∃Y ≤T A∀S computable ρ(S ↔ Y ) > p}.

If A computes a Schnorr random then A ∈ B(∼p).

B( 6=∗, h) = {A : ∃f ≤T A, f < h∀r computable
∀∞n r(n) 6= f(n)}.

If A computes a Schnorr random then A ∈ B(6=∗, 2n2
).

Theorem (N., dual form of Monin’s result)

B(∼p) = B( 6=∗, 2(2n)) for each p ∈ (0, 1/2).

Corollary

∆(A) > 0⇔ ∆(A) = 1/2⇔ A ∈ B(6=∗, 2(2n)).

13/27



Show the harder inclusion B(∼p) ⊇ B( 6=∗, 2(2n)):

Relation 1: Let q > p such that q < 1/2. For h(n) = 2ĥ(n)

and functions x, y < h, view x(n) as string of length ĥ(n).

x 6=∗
ĥ,q
y ⇔ ∀∞n |{i < ĥ(n) : x(n)(i) 6= y(n)(i)}| ≥ nq.

Relation 2: Let L ∈ N and u be a function. For a trace s
consisting of L-element sets, and a function y < u, let

s 63∗u,L y ⇔ ∀∞n[s(n) 63 y(n)].

Four steps:

1. there is k such that where ĥ(n) = b2n/kc
B(∼p) ⊇ B( 6=∗

ĥ,q
).

2. There are L ∈ N, ε > 0 such that where u(n) = 2bεĥ(n)c,
we have B(6=∗

ĥ,q
) ⊇ B( 63∗u,L).

3. B( 63∗u,L) ⊇ B( 63∗
2(L2n),L

).

4. Finally, B〈63∗, 2(L2n), L〉 ⊇ B(6=∗, 2(2n))

14/27



Show the harder inclusion B(∼p) ⊇ B( 6=∗, 2(2n)):

Relation 1: Let q > p such that q < 1/2. For h(n) = 2ĥ(n)

and functions x, y < h, view x(n) as string of length ĥ(n).

x 6=∗
ĥ,q
y ⇔ ∀∞n |{i < ĥ(n) : x(n)(i) 6= y(n)(i)}| ≥ nq.

Relation 2: Let L ∈ N and u be a function. For a trace s
consisting of L-element sets, and a function y < u, let

s 63∗u,L y ⇔ ∀∞n[s(n) 63 y(n)].

Four steps:

1. there is k such that where ĥ(n) = b2n/kc
B(∼p) ⊇ B( 6=∗

ĥ,q
).

2. There are L ∈ N, ε > 0 such that where u(n) = 2bεĥ(n)c,
we have B(6=∗

ĥ,q
) ⊇ B( 63∗u,L).

3. B( 63∗u,L) ⊇ B( 63∗
2(L2n),L

).

4. Finally, B〈63∗, 2(L2n), L〉 ⊇ B(6=∗, 2(2n))

14/27



Show the harder inclusion B(∼p) ⊇ B( 6=∗, 2(2n)):

Relation 1: Let q > p such that q < 1/2. For h(n) = 2ĥ(n)

and functions x, y < h, view x(n) as string of length ĥ(n).

x 6=∗
ĥ,q
y ⇔ ∀∞n |{i < ĥ(n) : x(n)(i) 6= y(n)(i)}| ≥ nq.

Relation 2: Let L ∈ N and u be a function. For a trace s
consisting of L-element sets, and a function y < u, let

s 63∗u,L y ⇔ ∀∞n[s(n) 63 y(n)].

Four steps:

1. there is k such that where ĥ(n) = b2n/kc
B(∼p) ⊇ B( 6=∗

ĥ,q
).

2. There are L ∈ N, ε > 0 such that where u(n) = 2bεĥ(n)c,
we have B(6=∗

ĥ,q
) ⊇ B( 63∗u,L).

3. B( 63∗u,L) ⊇ B( 63∗
2(L2n),L

).

4. Finally, B〈63∗, 2(L2n), L〉 ⊇ B(6=∗, 2(2n))

14/27



Show the harder inclusion B(∼p) ⊇ B( 6=∗, 2(2n)):

Relation 1: Let q > p such that q < 1/2. For h(n) = 2ĥ(n)

and functions x, y < h, view x(n) as string of length ĥ(n).

x 6=∗
ĥ,q
y ⇔ ∀∞n |{i < ĥ(n) : x(n)(i) 6= y(n)(i)}| ≥ nq.

Relation 2: Let L ∈ N and u be a function. For a trace s
consisting of L-element sets, and a function y < u, let

s 63∗u,L y ⇔ ∀∞n[s(n) 63 y(n)].

Four steps:

1. there is k such that where ĥ(n) = b2n/kc
B(∼p) ⊇ B( 6=∗

ĥ,q
).

2. There are L ∈ N, ε > 0 such that where u(n) = 2bεĥ(n)c,
we have B(6=∗

ĥ,q
) ⊇ B( 63∗u,L).

3. B( 63∗u,L) ⊇ B( 63∗
2(L2n),L

).

4. Finally, B〈63∗, 2(L2n), L〉 ⊇ B(6=∗, 2(2n))
14/27



Separations?
Recall: For a computable function h, we let
B( 6=∗, h) = {A : ∃f ≤T A, f < h∀r computable

∀∞n f(n) 6= r(n)}.
It is easy to show B(∼0) ⊆ B(6=∗, 2n!).

Question

Is B(1/4) ⊂ B(∼0)? Is B(6=∗, 2(2n)) ⊂ B(6=∗, 2n!)?

In fact we don’t know much about any separations
B( 6=∗, g) ⊂ B( 6=∗, h) for g << h.

Maybe set theory can help: the analog of B(6=∗, h) is the
cardinal characteristic

b( 6=∗h) = the least size of a set F of functions such that
for each h-bounded function y,

there is a function x ∈ F with ∃∞n [x(n) = y(n)].

15/27



Separating the b( 6=∗h) in a suitable model of ZFC

b( 6=∗h) = the least size of a set F of functions such that for
each h-bounded function y, there is a function x in F with
∃∞n [x(n) = y(n)].

Theorem (Kamo and Osuga 2014, special case)

Let 〈λn〉n<ω be a strictly increasing sequence of regular
cardinals > ℵ0, e.g. λn = ℵn+1.

There is a forcing notion P with the countable (anti)chain
condition that forces:
there is a sequence of functions 〈hn〉n<ω in the ground
model such that b( 6=∗hn) = λn for each n.

The c.c.c. implies that cardinals remain cardinals.

16/27



PART II:

Randomness, analysis, reverse mathematics

17/27



Systems based on randomness notions

Let C denote a randomness notion. We study the strength
of the subsystem of second-order arithmetic

C0 = RCA0 + ∀X∃Y [Y ∈ CX ].

Notation:

I MLR is ML-randomness,

I CRand is computable randomness,

I SRand is Schnorr randomness.

MLR⇒ CRand⇒ SRand

We will also use C to denote the axiom ∀X∃Y [Y ∈ CX ].

Theorem (Simpson and X. Yu, 1990)

MLR is equivalent to WWKL over RCA0.

18/27



Systems based on randomness notions

Let C denote a randomness notion. We study the strength
of the subsystem of second-order arithmetic

C0 = RCA0 + ∀X∃Y [Y ∈ CX ].

Notation:

I MLR is ML-randomness,

I CRand is computable randomness,

I SRand is Schnorr randomness.

MLR⇒ CRand⇒ SRand

We will also use C to denote the axiom ∀X∃Y [Y ∈ CX ].

Theorem (Simpson and X. Yu, 1990)

MLR is equivalent to WWKL over RCA0.

18/27



Systems based on randomness notions

Let C denote a randomness notion. We study the strength
of the subsystem of second-order arithmetic

C0 = RCA0 + ∀X∃Y [Y ∈ CX ].

Notation:

I MLR is ML-randomness,

I CRand is computable randomness,

I SRand is Schnorr randomness.

MLR⇒ CRand⇒ SRand

We will also use C to denote the axiom ∀X∃Y [Y ∈ CX ].

Theorem (Simpson and X. Yu, 1990)

MLR is equivalent to WWKL over RCA0.

18/27



Formalising randomness notions
Care has to be taken how to formalise the corresponding
systems. For instance we can’t assume measure theory to
define MLR, as this needs WWKL.

MLR

I A ML-test relative to X is given by an X-computable
sequence of trees 〈Ti〉i∈N such that µ[Ti] ≥ 1− 2−i,
where µ[Ti] denotes limn 2−n|T=n

i | (relative size of the
n-th level). It simulates the ML-test

〈
2N − [Ti]

〉
i∈N

I Y is ML-random in X if for each such sequence,
Y ∈ [Ti] for some i.

CRand
Y is computably random in X if each martingale
computable in X fails on Y .

19/27



Formalising randomness notions
Care has to be taken how to formalise the corresponding
systems. For instance we can’t assume measure theory to
define MLR, as this needs WWKL.

MLR

I A ML-test relative to X is given by an X-computable
sequence of trees 〈Ti〉i∈N such that µ[Ti] ≥ 1− 2−i,
where µ[Ti] denotes limn 2−n|T=n

i | (relative size of the
n-th level). It simulates the ML-test

〈
2N − [Ti]

〉
i∈N

I Y is ML-random in X if for each such sequence,
Y ∈ [Ti] for some i.

CRand
Y is computably random in X if each martingale
computable in X fails on Y .

19/27



Equivalences in the framework of reverse maths

Theorem (Yokoyama and N.)

Over RCA0, MLR is equivalent to the statements (suitably
formulated)

I every continuous function of bounded variation is
differentiable somewhere

I every continuous function of bounded variation is
differentiable almost everywhere.

Original proof uses infinite pigeonhole principle RT1
<∞ in

one important place; we needed to get rid of that.

20/27



Equivalences in the framework of reverse maths

CX(σ) denotes plain Kolmogorov complexity of σ relative
to oracle X.

Theorem (Shafer and N.)

Over BΣ2, 2Rand is equivalent to the statement
for each X there is Z such that ∃∞nCX(Z | n) ≥ n−O(1).

I Right-to-left actually works over RCA

I left-to-right may as well (wip).

Other equivalences left to be done: e.g.
2Rand↔ MLR ∩ Low(Ω).

21/27



An ω-model of CRand0 without a d.n.c. function

I Every high set is Turing above a computably random
set (N., Stephan and Terwijn 2005).

I By the proof of Lemma 4.1 in Cholak, Greenberg, et al.
06, for each set B of non-d.n.c. degree there is a set X,
high relative to B, such that B ⊕X is also not of d.n.c.
degree.

I Iterating this in the standard way, we build an ω-model
of CRand0 without a set of d.n.c. degree.

I In particular, there is no ML-random set.

22/27



RCA0 ` SRand→ CRand

LetM be a model of SR0. Given a set X ofM, we want to
find a set Y in M that is computably random in X. Let Z
be a set of M that is Schnorr random in X.

I If Z is ML-random in X we are done.

I Else Z ∈
⋂
mGm for a ML-test 〈Gm〉 relative to X.

I Let f(m) = µs.Z ∈ Gm,s . Then f ≤T Z ⊕X, hence f
exists in M.

I There is no function g ≤T X such that f(k) ≤ g(k) for
infinitely many k (else Sm =

⋃
k>mGk,g(k) defines a

Schnorr test relative X that captures Z).

I Use f to build a martingale L that dominates all
X-computable martingales. Let Y be a set on which L
does not succeed.

23/27



RCA0 ` SRand→ CRand

LetM be a model of SR0. Given a set X ofM, we want to
find a set Y in M that is computably random in X. Let Z
be a set of M that is Schnorr random in X.

I If Z is ML-random in X we are done.

I Else Z ∈
⋂
mGm for a ML-test 〈Gm〉 relative to X.

I Let f(m) = µs.Z ∈ Gm,s . Then f ≤T Z ⊕X, hence f
exists in M.

I There is no function g ≤T X such that f(k) ≤ g(k) for
infinitely many k (else Sm =

⋃
k>mGk,g(k) defines a

Schnorr test relative X that captures Z).

I Use f to build a martingale L that dominates all
X-computable martingales. Let Y be a set on which L
does not succeed.

23/27



RCA0 ` SRand→ CRand

LetM be a model of SR0. Given a set X ofM, we want to
find a set Y in M that is computably random in X. Let Z
be a set of M that is Schnorr random in X.

I If Z is ML-random in X we are done.

I Else Z ∈
⋂
mGm for a ML-test 〈Gm〉 relative to X.

I Let f(m) = µs.Z ∈ Gm,s . Then f ≤T Z ⊕X, hence f
exists in M.

I There is no function g ≤T X such that f(k) ≤ g(k) for
infinitely many k (else Sm =

⋃
k>mGk,g(k) defines a

Schnorr test relative X that captures Z).

I Use f to build a martingale L that dominates all
X-computable martingales. Let Y be a set on which L
does not succeed.

23/27



RCA0 ` SRand→ CRand

LetM be a model of SR0. Given a set X ofM, we want to
find a set Y in M that is computably random in X. Let Z
be a set of M that is Schnorr random in X.

I If Z is ML-random in X we are done.

I Else Z ∈
⋂
mGm for a ML-test 〈Gm〉 relative to X.

I Let f(m) = µs.Z ∈ Gm,s . Then f ≤T Z ⊕X, hence f
exists in M.

I There is no function g ≤T X such that f(k) ≤ g(k) for
infinitely many k (else Sm =

⋃
k>mGk,g(k) defines a

Schnorr test relative X that captures Z).

I Use f to build a martingale L that dominates all
X-computable martingales. Let Y be a set on which L
does not succeed.

23/27



RCA0 ` SRand→ CRand

LetM be a model of SR0. Given a set X ofM, we want to
find a set Y in M that is computably random in X. Let Z
be a set of M that is Schnorr random in X.

I If Z is ML-random in X we are done.

I Else Z ∈
⋂
mGm for a ML-test 〈Gm〉 relative to X.

I Let f(m) = µs.Z ∈ Gm,s . Then f ≤T Z ⊕X, hence f
exists in M.

I There is no function g ≤T X such that f(k) ≤ g(k) for
infinitely many k (else Sm =

⋃
k>mGk,g(k) defines a

Schnorr test relative X that captures Z).

I Use f to build a martingale L that dominates all
X-computable martingales. Let Y be a set on which L
does not succeed.

23/27



RCA0 ` SRand→ CRand

LetM be a model of SR0. Given a set X ofM, we want to
find a set Y in M that is computably random in X. Let Z
be a set of M that is Schnorr random in X.

I If Z is ML-random in X we are done.

I Else Z ∈
⋂
mGm for a ML-test 〈Gm〉 relative to X.

I Let f(m) = µs.Z ∈ Gm,s . Then f ≤T Z ⊕X, hence f
exists in M.

I There is no function g ≤T X such that f(k) ≤ g(k) for
infinitely many k (else Sm =

⋃
k>mGk,g(k) defines a

Schnorr test relative X that captures Z).

I Use f to build a martingale L that dominates all
X-computable martingales. Let Y be a set on which L
does not succeed.

23/27



RCA0 ` SRand→ CRand

LetM be a model of SR0. Given a set X ofM, we want to
find a set Y in M that is computably random in X. Let Z
be a set of M that is Schnorr random in X.

I If Z is ML-random in X we are done.

I Else Z ∈
⋂
mGm for a ML-test 〈Gm〉 relative to X.

I Let f(m) = µs.Z ∈ Gm,s . Then f ≤T Z ⊕X, hence f
exists in M.

I There is no function g ≤T X such that f(k) ≤ g(k) for
infinitely many k (else Sm =

⋃
k>mGk,g(k) defines a

Schnorr test relative X that captures Z).

I Use f to build a martingale L that dominates all
X-computable martingales. Let Y be a set on which L
does not succeed.

23/27



W2Rand0 6` 2Rand shown by an ω-model

I Take a weakly 2-random Z that does not compute a
2-random.

For instance, a 2-random is not computably dominated.

Any computably dominated ML-random Z is weakly

2-random and hence does not compute a 2-random.

I For each n let Zn be the n-th column of Z, that is,
Zn = {k : 〈k, n〉 ∈ Z}.

I Let M = (ω,S) where S consists of all the sets Turing
below the join of finitely many columns of Z.

I Zn is weakly 2-random in any finite sum of columns not
containing Zn. So M is a model of W2Rand0.

24/27



Notions slightly stronger than MLR

An h-Demuth test for computable function h is an effective
sequence 〈Un〉 of effectively open (Σ0

1) subsets of Cantor
space such that:

I For all n, the measure λ(Un) of Un is bounded by 2−n

I there is an h-c.e. function mapping n to a Σ0
1 index for

Un.

A set Z is h-weakly Demuth random if Z 6∈
⋂
n Un for every

h-Demuth test. Z is balanced random if Z is O(2n) weakly
Demuth random.

Proposition (Figueira et al. 2015)

Let Z = Z0 ⊕ Z1 be ML-random. Then Z0 or Z1 is
balanced random.

So MLR0 + sufficient induction ` BalancedRd.

25/27



WKL0 6` 2n log log n − weakDemRd via ω-model

Definition

For a computable function h, we say that a set Z is h-c.e. if
there is a computable approximation such that Z � n
changes at most h(n) times.

Proposition (Shafer and N.)

There is an ω-model M of WKL such that each set of M is
superlow and kn-c.e. for some k ∈ N.

I An h-c.e. set is not h-weak Demuth random.

I So M satisfies WKL0, but not the axiom for weak
h-Demuth randomness, for any function h dominating
all the functions kn (e.g. h(n) = 2n log logn).

26/27



References

J. Brendle, A. Brooke-Taylor, Keng Meng Ng, and A. Nies.

An analogy between cardinal characteristics and highness
properties of oracles. In Proceedings of the 13th Asian Logic
Conference: Guangzhou, China, pages 1–28. World
Scientific, 2013. http://arxiv.org/abs/1404.2839.

B. Monin and A. Nies. A unifying approach to the Gamma
question. In Proceedings of Logic in Computer Science
(LICS). IEEE press, 2015.

A. Nies (editor). Logic Blog 2013.

Available at http://arxiv.org/abs/1403.5719, 2013.

A. Nies (editor). Logic Blog 2015.

Available at http://arxiv.org/abs/1602.04432, 2015.

27/27

http://arxiv.org/abs/1404.2839
http://arxiv.org/abs/1403.5719
http://arxiv.org/abs/1602.04432

