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Monin’s proof

» Connect randomness to reverse mathematics:

» study the axiom power needed to verify equivalence
of randomness notions;

» study strength of randomness existence axioms in
the setting of reverse mathematics
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PART I

The I' and A operators, and

cardinal characteristics in set theory



The I' operator

For Z C N the lower density is defined to be

VA
p(Z) = liminf |m—[0’”)|
P b n
Recall that
7(A4)= sup p(A e X)

X computable

The I' operator was introduced by Andrews, Cai,
Diamondstone, Jockusch and Lempp (2013):

['(A) =inf{y(Y): Y <r A}.
This only depends on the Turing degree of A.



Viewing 1 — I' as a Hausdorft pseudodistance

For Z C N the upper density is defined by

Z
5(Z) = limsup 1Z2n10,n]|
n

n

» For X,Y € 2Vlet d(X,Y) = p(XAY) be the upper
density of the symmetric difference of X and Y

» this is a pseudodistance on Cantor space 2" (that is,
two objects may have distance 0 without being equal).



Let R € A C M for a pseudometric space(M, d). The
Hausdorff distance is dg (A, R) = supy 4 infger d(Y, 5)).



Let R € A C M for a pseudometric space(M, d). The
Hausdorff distance is dg (A, R) = supy 4 infger d(Y, 5)).

Given an oracle set Alet A={Y: Y <1t A}. Let RC A
denote the collection of computable sets. We have

1—T(A) = dy (A R).

below A

computable




A operator, a dual to I’

6(Y) = inf{p(Y <+ S): S computable}
A(A) = sup{d(Y): Y < A}



A operator, a dual to I’

6(Y) = inf{p(Y <+ S): S computable}
A(A) = sup{d(Y): Y < A}

» ['(A) measures how well computable sets can
approximate the sets that A computes.
“I'(A) > p” for fixed p € [0,1) is a lowness property.

» A(A) measures how well the sets that A computes can
approximate the computable sets.
“A(A) > p” is a highness property.



Interpreting 1 — A(A) metrically

We can view 1 — A(A) as a one-sided “dual” of the
Hausdorff distance:

1—-A(A) =dy(A,R) =infyecasupger d(Y, 5).

below A

Example: for the unit disc D C R? we have d},(D, D) = 1.



oY) = inf{p(Y <+ S): S computable}
A(A) = sup{d(Y): Y < A}.

Properties of 6 and A (w. Merkle and Stephan)

>

>

v

d(Y) < 1/2 for each Y (by considering also the
complement of S)

Y Schnorr random = 0(Y") = 1/2 (by law of large
numbers)

A computable = A(A) = 0.

A(A) = 0 is possible for noncomputable A, e.g. if A is
low and c.e., or 2-generic .



Cardinal characteristics and their analogs

We use analogs of cardinal characteristics in set theory.
Consider a binary relation R C X x ) between sets,
functions (or other objects encoded by reals).

» In set theory one lets
b(R) = min{|F|: F C X A Vy € Y3x € F [-xRyl}

(e.g. if R is almost everywhere domination of functions,
one gets the unbounding number b)
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Consider a binary relation R C X x ) between sets,
functions (or other objects encoded by reals).

» In set theory one lets
b(R) = min{|F|: F C X A Vy € Y3x € F [-xRyl}

(e.g. if R is almost everywhere domination of functions,
one gets the unbounding number b)

» In computability we let
B(R) = {A: Jy <1 AVz computable [xRy|}

(e.g., the same R yields highness.)
See Rupprecht, Thesis, 2010; Brooke, Brendle, Ng, N., 2014.



The highness classes B(~,)

Definition (Brendle and N.)
For p € [0,1/2) let S ~, Y if p(S <> Y)) > p, and

B(~,) ={A: FY <r AVS computable S ~, Y'}.



The highness classes B(~,)

Definition (Brendle and N.)
For p € [0,1/2) let S ~, Y if p(S <> Y)) > p, and

B(~,) ={A: FY <r AVS computable S ~, Y'}.

The connection to A: for each p € [0,1/2) we have
A(A) >p= A€ B(~,) = A(A4) > p.

We will show that all the classes B(p) coincide, for
0 < p < 1/2. Therefore:

A(A) > 0= A(A) =1/2.



A.e. avoiding a computable function

Definition (B(#£*, h))
For a computable function h, we let

B(#*,h) ={A: 3f <r A, f < hVr computable

ven f(n) #r(n)}.

» This gets easier as h grows faster.

» In the extreme, B(#"), i.e. the class obtained when we
omit the computable bound, coincides with “high or
diagonally noncomputable”.



A.e. avoiding a computable function

Definition (B(#*,h))
For a computable function h, we let

B(#*,h) ={A: 3f <r A, f < hVr computable

ven f(n) #r(n)}.

» This gets easier as h grows faster.

» In the extreme, B(#"), i.e. the class obtained when we
omit the computable bound, coincides with “high or
diagonally noncomputable”.

Fact

A computes a Schnorr random = A € B(#”, 2h) whenever
h is computable and oo > Y 1/h(n). E.g. h(n) = n*



Recall: for p € (0,1/2) let
B(~p) = {A: 3Y <1 AVS computable p(S <> Y) > p}.

If A computes a Schnorr random then A € B(~,).
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Recall: for p € (0,1/2) let
B(~p) = {A: 3Y <1 AVS computable p(S <> Y) > p}.

If A computes a Schnorr random then A € B(~,).
B(#*,h) ={A: 3f <r A, f < h¥Vr computable

venr(n) # f(n)}.

If A computes a Schnorr random then A € B(#£*,2"").

Theorem (N., dual form of Monin’s result)

B(~,) = B(#*,2%) for each p € (0,1/2).

Corollary
A(A) >0 A(A) =1/2 & A € B(#*,2%").

13/27



Show the harder inclusion B(~,) 2 B(#*,22"): )
Relation 1: Let ¢ > p such that ¢ < 1/2. For h(n) = gh(”)

and functions z,y < h, view x(n) as string of length h(n).

z#1 y eV |{i < h(n): 2(n)(i) # y(n)(D)}| = na.

Four steps:
1. there is k such that where h(n) = |27/*]

B(~p) 2 B(#; )-

h,q
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Relation 1: Let ¢ > p such that ¢ < 1/2. For h(n) = gh(”)

and functions z,y < h, view x(n) as string of length h(n).
v £y e venlli < hn): 2(n)(i) £ y(m)6)H > ng.

Relation 2: Let L € N and u be a function. For a trace s

consisting of L-element sets, and a function y < u, let

$ Fur Y € VOn[s(n) F y(n)].

Four steps:

2. There are L € N, € > 0 such that where u(n) = 2Leh(m)]
we have B(#; ) 2 B(Z;, 1)-

)
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consisting of L-element sets, and a function y < u, let

$ Fur Y € VOn[s(n) F y(n)].

Four steps:
1. there is k such that where h(n) = |27/*]

B(~,) 2 B(#).

2. There are L € N, € > 0 such that where u(n) = 2leh(m)]

we have B(#}‘L,q) 2 B(Zi1)-

3. B(#ir) 2 B(Fpwem p)-
4. Finally, B(#*,2(2") L) D B(#£*,2%")

14/27



Separations?

Recall: For a computable function h, we let
B(#*,h) ={A: 3f <1 A, f < hVr computable

vn f(n) # r(n)}.
It is easy to show B(~q) C B(#£*%,2™).
Question
Is B(1/4) C B(~0)? Is B(#*,2%") C B(#£*,2")?

In fact we don’t know much about any separations
B(#*,g9) C B(#£*, h) for g << h.
Maybe set theory can help: the analog of B(#*, h) is the

cardinal characteristic

b(#) = the least size of a set F' of functions such that
for each h-bounded function y,
there is a function z € F with 3°n [z(n) = y(n)].



Separating the b(#}) in a suitable model of ZFC

b(#) = the least size of a set F' of functions such that for
each h-bounded function y, there is a function z in F' with

3n [z(n) = y(n)].

Theorem (Kamo and Osuga 2014, special case)
Let (\,), ., be a strictly increasing sequence of regular
cardinals > Ny, e.g. A, = N,,11.

There is a forcing notion P with the countable (anti)chain
condition that forces:

there is a sequence of functions (h,,),,_,, in the ground
model such that b(#} ) = A, for each n.

The c.c.c. implies that cardinals remain cardinals.

16/27



PART II:

Randomness, analysis, reverse mathematics



Systems based on randomness notions

Let C denote a randomness notion. We study the strength
of the subsystem of second-order arithmetic

Co = RCAq + VX3V [Y € CX].
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Systems based on randomness notions

Let C denote a randomness notion. We study the strength
of the subsystem of second-order arithmetic

Co=RCA;+VXIY[Y € CX}.
Notation:

» MLR is ML-randomness,
» CRand is computable randomness,

» SRand is Schnorr randomness.
MLR = CRand = SRand

We will also use C to denote the axiom VX3IY [Y € CX].

Theorem (Simpson and X. Yu, 1990)
MLR is equivalent to WWKL over RCA,.



Formalising randomness notions

Care has to be taken how to formalise the corresponding

systems. For instance we can’t assume measure theory to
define MLR, as this needs WWKL.

MLR

» A ML-test relative to X is given by an X-computable
sequence of trees (T;),  such that u[T;] > 1—27"
where p[T;] denotes lim,, 27"|7;~"| (relative size of the
n-th level). Tt simulates the ML-test (2" — [T]).

» Y is ML-random in X if for each such sequence,
Y € [T;] for some i.
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Formalising randomness notions

Care has to be taken how to formalise the corresponding

systems. For instance we can’t assume measure theory to
define MLR, as this needs WWKL.

MLR

» A ML-test relative to X is given by an X-computable
sequence of trees (T;),  such that u[T;] > 1—27"
where p[T;] denotes lim,, 27"|7;~"| (relative size of the
n-th level). Tt simulates the ML-test (2" — [T]).

» Y is ML-random in X if for each such sequence,
Y € [T;] for some i.

CRand
Y is computably random in X if each martingale
computable in X fails on Y.

19/27



Equivalences in the framework of reverse maths

Theorem (Yokoyama and N.)
Over RCAg, MLR is equivalent to the statements (suitably
formulated)
» every continuous function of bounded variation is
differentiable somewhere
» every continuous function of bounded variation is
differentiable almost everywhere.
Original proof uses infinite pigeonhole principle RT1<OO in
one important place; we needed to get rid of that.



Equivalences in the framework of reverse maths

C* (o) denotes plain Kolmogorov complexity of o relative
to oracle X.

Theorem (Shafer and N.)

Over BY,, 2Rand is equivalent to the statement
for each X there is Z such that 3°nCX(Z | n) > n — O(1).

» Right-to-left actually works over RCA
» left-to-right may as well (wip).

Other equivalences left to be done: e.g.
2Rand <> MLR N Low(£2).



An w-model of CRandy without a d.n.c. function

» Every high set is Turing above a computably random
set (N., Stephan and Terwijn 2005).

» By the proof of Lemma 4.1 in Cholak, Greenberg, et al.
06, for each set B of non-d.n.c. degree there is a set X,
high relative to B, such that B & X is also not of d.n.c.
degree.

» Iterating this in the standard way, we build an w-model
of CRandy without a set of d.n.c. degree.

» In particular, there is no ML-random set.



RCAy + SRand — CRand

Let M be a model of SRq. Given a set X of M, we want to
find a set Y in M that is computably random in X. Let Z
be a set of M that is Schnorr random in X.
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RCAy + SRand — CRand

Let M be a model of SRq. Given a set X of M, we want to
find a set Y in M that is computably random in X. Let Z
be a set of M that is Schnorr random in X.

>
>
>

If Z is ML-random in X we are done.

Else Z € N, Gy for a ML-test (G,,) relative to X.
Let f(m) = pus.Z € G5 . Then f <p Z & X, hence f
exists in M.

There is no function g <t X such that f(k) < g(k) for
infinitely many k (else Sy, = Uy, Gr.g(x) defines a
Schnorr test relative X that captures Z).



RCA,
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be a set of M that is Schnorr random in X.

>
>
>
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Use f to build a martingale L that dominates all

X-computable martingales. Let Y be a set on which L
does not succeed.



RCA,

I SRand — CRand -RCH

Let M be a model of SRq. Given a set X of M, we want to
find a set Y in M that is computably random in X. Let Z
be a set of M that is Schnorr random in X.

>
>
>

It Z is ML-random in X we are done.

Else Z € N, Gy for a ML-test (G,,) relative to X.
Let f(m) = pus.Z € G5 . Then f <p Z & X, hence f
exists in M.

There is no function g <t X such that f(k) < g(k) for
infinitely many k (else Sy, = Uy, Gr.g(x) defines a
Schnorr test relative X that captures Z).

Use f to build a martingale L that dominates all

X-computable martingales. Let Y be a set on which L
does not succeed.



W2Rand, I/ 2Rand shown by an w-model

» Take a weakly 2-random Z that does not compute a
2-random.
For instance, a 2-random is not computably dominated.
Any computably dominated ML-random Z is weakly
2-random and hence does not compute a 2-random.

» For each n let Z,, be the n-th column of Z, that is,
Zn ={k: (k,n) € Z}.

» Let M = (w,S) where S consists of all the sets Turing
below the join of finitely many columns of Z.

» 7, is weakly 2-random in any finite sum of columns not
containing Z,,. So M is a model of W2Rand,.



Notions slightly stronger than MLR

An h-Demuth test for computable function A is an effective
sequence (U,) of effectively open (XY) subsets of Cantor
space such that:

» For all n, the measure \(U,,) of U, is bounded by 27"

» there is an h-c.e. function mapping n to a X? index for
U,.

A set Z is h-weakly Demuth random if Z & (), U, for every
h-Demuth test. Z is balanced random if Z is O(2") weakly
Demuth random.

Proposition (Figueira et al. 2015)

Let Z = Zy ® Z; be ML-random. Then Z; or Z; is
balanced random.

So MLRy + sufficient induction + BalancedRd.



WKL, # 2mloslosn _ weakDemRd via w-model

Definition

For a computable function h, we say that a set Z is h-c.e. if
there is a computable approximation such that Z [ n
changes at most h(n) times.

Proposition (Shafer and N.)

There is an w-model M of WKL such that each set of M is
superlow and k"-c.e. for some k € N.

» An h-c.e. set is not A-weak Demuth random.

» So M satisfies WKLy, but not the axiom for weak
h-Demuth randomness, for any function h dominating
all the functions k" (e.g. h(n) = 2nlelen),
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