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LOCAL TIME in Physics, Signal Processing and its computational
aspects..
Consider heuristically (mathematician) or formally (physicist) these
two intriguing if somewhat crazy symbolic expressions.

L(t, ω, x) :=

∫ t

0
δ(Xω(s)− x)ds,

where

δ(Xω(s)− x) =

∫
R

e i(Xω(s)−x)ds.

Intuitively, L(t, ω, x) is the time that the sample path s 7→ Xω(s)
spends “infinitesimally close” to x during the time interval
0 ≤ s ≤ t.
(Of course, we are not working with Lebesgue integrals here.)
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We shall also look at the measure (when it makes sense)

µω(a, b) = L(b, ω, 0)− L(a, ω, 0), 0 ≤ a < b ≤ 1

and its Fourier transform.
This especially when X is an algorithmically random Brownian
motion.
We will provide evidence that ideas from Kolmogorov complexity
yield new insights on these intuitions and even new (and
mathematically solid) results on the local time of Brownian motion
and the geometry of its sample paths.
Our arguments rely heavily on Fourier analysis.
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If (X , d) is a metric space, a regular Borel measure µ on X is a
Borel measure with the property that for every subset A of X ,
there is a Borel set B containing A such that µ(B) = µ∗(A). Here
µ∗ is the outer measure associated with µ, in other words, writing
B for the Borel algebra on X ,

µ∗(A) = inf{µ(B) : A ⊂ B ∈ B}, A ⊂ X .

A measure on Euclidean space Rd is a Radon measure iff it is
regular Borel and assumes finite values on compact subsets of Rd .
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HISTORY
The Fourier dimension of a compact set E in R is the supremum of
positive real numbers α < 1 such that for some non-zero Radon
measure µ supported by E , it is the case that

|µ̂(ξ)|2 ≤ 1

|ξ|α
,

for |ξ| sufficiently large. The Fourier dimension of E is denoted by
dimf (E ). It can be shown that

dimf (E ) ≤ dimh(E ),

for all compact sets E . Here dimh(E ) denotes the Hausdorff
dimension of E .
The set E is called a Salem set if dimf (E ) = dimh(E ).
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The following question posed by Beurling was addressed and solved
in the positive by Salem in 1950. (On singular monotonic functions
whose spectrum has a given Hausdorff dimension By R. Salem
(1950), Ark Mat 1,353-365.)
Given a number α ∈ (0, 1), does there exist a closed set on the line
whose Hausdorff dimension is α that carries a Radon measure µ
whose Fourier transform

µ̂(u) =

∫
R

e iuxdµ(x)

is dominated by |u|−α/2 as |u| → ∞?
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Salem proved this result by constructing for every α in the unit
interval, a random measure µ (over a convenient probability space)
whose support has Hausdorff dimension α and which satisfies the
Beurling-requirement with probability one.
It was recently shown (published in 2014) in collaboration with
George Davie and Safari Mukeru that such sets can also be
constructed by looking at Cantor ternary sets E with computable
ratios ξ and then to consider the image of E under a complex
oscillation or, equivalently, a Martin-Löf Brownian motion.
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COMPLEX OSCILLATIONS
For any finite binary word α we denote its (prefix-free) Kolmogorov
complexity by K (α). Recall that an infinite binary string α is
Kolmogorov-Chaitin complex if

∃d∀n K (α(n)) ≥ n − d .

In the sequel, we shall denote this set by KC and refer to its
elements as KC -strings.
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For n ≥ 1, we write Cn for the class of continuous functions on the
unit interval that vanish at 0 and are linear with slopes ±

√
n on

the intervals [(i − 1)/n, i/n] , i = 1, . . . , n. With every x ∈ Cn, one
can associate a binary string a = a1 · · · an by setting ai = 1 or
ai = 0 according to whether x increases or decreases on the
interval [(i − 1)/n, i/n]. We call the sequence a the code of x and
denote it by c(x). The following notion was introduced by Asarin
and Prokovskii. (1987).

Definition
A sequence (xn) in C [0, 1] is complex if xn ∈ Cn for each n and
there is a constant d > 0 such that K (c(xn)) ≥ n − d for all n. A
function x ∈ C [0, 1] is a complex oscillation if there is a complex
sequence (xn) such that ‖x − xn‖ converges effectively to 0 as
n→∞.

Willem Fouché School of Economic Sciences, University of South Africa, PretoriaZero sets and local time of algorithmically random Brownian motion



Fourier dimension
Complex oscillations

Salem sets, Brownian motion and oscillatory integrals
Zero sets Additive structure

Local time
Local time and (effective) descriptive set theory

The class of complex oscillations is denoted by C. It was shown by
Asarin and Prokovsky that the class C has Wiener measure 1. In
fact, they implicitly showed that the class corresponds exactly, in
the broad context and modern language of Hoyrup and Rojas, to
the Martin-Löf random elements of the computable measure space

R = (C0[0, 1], d ,B,W ),

where C0[0, 1] is the set of continuous functions on the unit
interval that vanish at the origin, d is the metric induced by the
uniform norm, B is the countable set of piecewise linear functions
f vanishing at the origin with slopes and points of
non-differentiability all rational numbers and where W is the
Wiener measure.
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Theorem
(F:2000).There is a bijection Φ : KC → C and a uniform algorithm
that, relative to any KC-string α, with input a dyadic rational
number t in the unit interval and a natural number n, will output
the first n bits of the the value of the complex oscillation Φ(α) at
t.

It was shown in 2013, in collaboration with Davie that the
construction of Φ is layerwise computable in α.
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Let U = (Un) be a universal Martin-Löf test. Define

LAYU : ML ⇒ N

by
n ∈ LAYU (p)←→ p 6∈ Un

. Then
Φ ≡W LAY.

(Davie, F, Pauly 2015.)
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Definition
Let 0 < α < 1. We call a Radon (probability) measure on the unit
interval an α-Frostman measure if for some constant C > 0, we
have ν(I ) ≤ C |I |α for all dyadic intervals I contained in the unit
interval.
An α-Frostman measure ν is called an effective α-Frostman
measure if the function

D→ R, d 7→ ν(Id)

is computable. (Id = ( `
2k
, `+1

2k
), when (d = `

2k
).)
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Definition
Let E be a compact subset of Hausdorff dimension β > 0. We say
that the Hausdorff dimension of E is effectively witnessed, if for
each rational 0 < α < β, there is an effective α-Frostman measure
which supports E .
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Theorem
(F, Mukeru, Davie) Let 0 < α ≤ 1. Suppose φ is a complex
oscillation and µ is an effective α-Frostman measure on [0, 1] and
ε > 0. Then for all reals u such that |u| is sufficiently large
(depending on ε),∣∣∣∣∫ 1

0
e iuφ(t)dµ(t)

∣∣∣∣ ≤ 1

|u|α−ε
. (1)
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Theorem
(follows from folklore in geometric measure theory) Suppose E is a
compact subset of reals such that, for every ε > 0, there is some
µ ∈ M+(E ) and 0 < α < 1, such that, for some constant
C = C (ε), it is the case that

|µ̂(ξ)|2 ≤ C |ξ|−α+ε,

as |ξ| → ∞. Then, if k is a natural number such that kα > 1, it
will follow, upon writing

Ek = E + · · ·+ E (k times),

that
R =

⋃
n<ω

n(Ek − Ek).
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< E >Z= R.
This implies, algebraically, and quite explicitly, that the set E
generates R as an abelian group!
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Theorem
(FM 2013) Let X be one-dimensional Brownian motion and let µ
be the “Dirac measure” of X . For a natural number q ≥ 1, write
U2q for the set of quadratic forms with integral coefficients of the
form

2q∑
j=1

αjx
2
j

with α1 = 0 and α2q, αj+1 − αj ∈ {−1, 1} for all j ≥ 1. Then, for
all u ∈ R,

E
(
|µ̂(u)|2q

)
=

(q!)2

(2π)q

∑
Q∈U2q

∫
B2q

e iuQ(x)dx (2)

where B2q is the unit ball in R2q.
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Theorem
(F. 2013) For a continuous version X of Brownian motion over the
unit interval, we have, almost surely,

R =
∞⋃
n=1

n(YX − YX ),

where
YX = ZX + ZX + ZX ,

and ZX is the zero set of X . Moreover, almost surely, for any finite
set A of real numbers, the set YX will contain an affine (rescaled
and translated) copy of A.

This is because the zero set of X is a Salem set of Fourier
dimension 1

2 , almost surely.
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Heuristically, we say that a function

X : R→ R

admits a Dirac function δ(X (t)), if “sense can be made of” the
formal expression

δ(X (t)) =

∫
R

e iαX (t)dα.

For more about this see the final chapter in Kahane’s “Some
random series of functions”.
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BIG OPEN QUESTION: Is the zero set of each complex oscillation
a Salem set?
It is well-known that such a zero set has Hausdorff dimension 1

2 .
But is this also its Fourier dimension???
Is it true that almost surely, there are distinct x , y , z ∈ ZX such
that y − x = z − y? (The Roth phenomenon in Ramsey theory.)
What if X is a complex oscillation?
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ADDITIVE STRUCTURE OF ZERO SETS
The zero-set of a complex oscillation has the following diophantine
property:

Theorem
(F. 2014) If x is a complex oscillation and r is a real number then

∀`∃n∃t1,...,t6∈[0,1]∩Q
[
|n((t1 + t2 + t3)− (t4 + t5 + t6))− r | < 1

`

]
∧∀1≤i≤6|x(ti )| <

1

`
.

Can we interchange the first two quantifiers here????
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LOCAL TIME
The occupation measure of Brownian motion X : R× Ω→ R up
to time t, is the random Borel measure defined by

µ(t, ω,A) = λ{s ∈ [0, t] : X (s, ω) ∈ A}, A Borel in R, ω ∈ Ω.

Here λ is the Lebesgue measure.
REMARK: One can analogously define the occupation measure
µ(t, f ,A) of any (“deterministic”) Borel function f : R→ R.
Abuse of notation: µ(t, ω,A) = µ(t,X (., ω),A).
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Lévy (1940 ... ) proved that for almost all ω ∈ Ω, the occupation
measure µ(t, ω, .) is absolutely continuous (with respect to
Lebesgue measure), that is, there exists a function

L(t, ω, .) : R→ R, x 7→ L(t, ω, x), t ≥ 0

such that

µ(t, ω,A) =

∫
A
L(t, ω, x)dx , (A Borel in R).

The number L(t, ω, x) is called the “local time of ω at x up to
time t”.
Lévy referred to his construct as the “mesure du voisinage”
suggesting to me at least that it might represent, for t > 0, the
“time that the Brownian path ω spends at the point x or
infinitesimally around the point x during the time interval [0, t]”.
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It is clear, by the Lebesgue density theorem that, for almost every
x ∈ R (with respect to the Lebesgue measure), and each t,

L(t, ω, x) = lim
ε→0+

1

2ε
λ{0 ≤ s ≤ t : |X (s, ω)− x | ≤ ε}, (3)

almost surely.
Trotter (1958) proved later that the occupation measure µ(t, ω, .)
has continuous density for almost all ω, that is,

L(., ω, .) : [0, 1]× R→ R

(t, x) 7→ L(t, ω, x)

is continuous for almost all ω ∈ Ω.
This has the implication that, for every x ∈ R, almost surely, for all
t ∈ [0, 1],

L(t, ω, x) = lim
ε→0+

1

2ε
λ{0 ≤ s ≤ t : |X (s, ω)− x | ≤ ε}. (4)

Willem Fouché School of Economic Sciences, University of South Africa, PretoriaZero sets and local time of algorithmically random Brownian motion



Fourier dimension
Complex oscillations

Salem sets, Brownian motion and oscillatory integrals
Zero sets Additive structure

Local time
Local time and (effective) descriptive set theory

In 2014 , F (with George Davie and Safari Mukeru) proved that for
each complex oscillation ω, the occupation measure µ(t, ω, .) of ω
up to time t is such that its Fourier transform

µ̂(t, ω, u) =

∫ t

0
exp(i u ω(s))ds, u ∈ R

satisfies
|µ̂(t, ω, u)|2 =�ε |u|−2+ε, |u| → ∞

for all ε > 0. This has the implication that µ̂(t, ω, .) ∈ L2(R) and
by a standard argument (Parseval), µ(t, ω, .) is absolutely
continuous and its Radon-Nikodym derivative L(t, ω, .) is in L2(R).
Hence for almost every x ∈ R (with respect to the Lebesgue
measure), and every complex oscillation ω, for all t in the unit
interval:

L(t, ω, x) = lim
ε→0+

1

2ε
λ{0 ≤ s ≤ t : |ω(s)− x | ≤ ε}.
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Subsequently Safari Mukeru and F proved that for any complex
oscillation ω and any computable real number x , and all t, the limit

L(t, ω, x) = lim
n→+∞

1

2εn
λ{s ≤ t : |ω(s)− x | ≤ εn},

where εn = 2−n, exists, and the function

L(., ω, x) : [0, 1] −→ [0,+∞), t 7→ L(t, ω, x)

is continuous.
We call L(t, ω, x) the effective local time of ω at x up to time t.
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Eventually we found (paper in preparation)

Theorem
(FM ???) For any complex oscillation ω and for any computable
real number a, and all t

L(t, ω, a) = 2 lim
m→∞

∑
k∈Sm

|ω(k/2m)− a|

where Sm is the subset of {1, 2, . . . , `}, ` = bt2mc, defined by

k ∈ Sm iff sign(ω(k/2m)− a) 6= sign(ω((k − 1)/2m)− a)

i.e., k ∈ Sm iff ω assumes the value a in the interval (k−12n ,
k
2n ).

Note that the value of ω at a dyadic rational can never be
computable. Even the almost sure version for just a = 0 of this
result is new, it would appear.
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I conclude with two interesting, I think, challenges.
Understand Borel functions f : [0, 1]→ R which has a local time
L(t, f , x) which is real analytic in x for each t.
Such a function f will have the following interesting property: It
would be extremely discontinuous (turbulent/Pascal infinite) in the
following sense:
Given any open interval I in the unit interval and D a Borel set of
positive Lebesgue measure. Then f −1(D) will meet any interval I
in a significant manner, in the sense that

λ(f −1(D) ∩ I ) > 0.

Problem: Does every extremely discontinuous function have a local
time ... and if so is it real analytic, ... when is it computable??
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Consider the Weierstrass function

X (t) := Σk≥0bk cos(akπt), 0 < b < 1, ab ≥ 1.

Does this function have a local time, i.e., is the occupation
measure of the Weierstrass function absolutely continuous, and, if
so, how can this local time be computed from a, b?
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Willem L Fouché, Diophantine properties of Brownian motion:
recursive aspects. Logic, Computation, Hierarchies (Festschrift
in honour of Victor L. Selivanov) (V. Brattka, H. Diener, D.
Spreen, eds.), DeGruyter, Berlin, (2014) 139-156.
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