
The Computational Power of Sets of Random
Strings

Rod Downey
Victoria University

Wellington
Joint with Mingzhong Cai, Rachel Epstein, Steffen Lempp,

and Joe Miller
Luminy, June 2016.

SETS OF RANDOM STRINGS

I We work mainly with C (plain complexity) and prefix-free K .
I RH = {x | H(x) > |x |}. The H-random strings.
I Related is the overgraph. OH = {〈x ,n〉 | H(x) > n}.

Evidently RH ≤m OH .

I Clearly, for H ∈ {C,K}, RH is wtt-complete (strictly, RH).

I For the computability-theorist, this can be seen as a game.
I We pick a length n(e) for e, and
I It is within our power to lower the complexity of strings of

length n(e) anh the opponent’s to lower a proportion.
I The last stage that things stop becoming non-random at

this length determines whether ϕe(e) ↓

WHAT ABOUT STRONGER REDUCIBILITIES?

I And does it depend on choice of universal machine?

THEOREM (KUMMER, 1996)
RC

tt is always tt-complete.
I The proof was the first evidence of the complexity of the

situation.
I It was nonuniform.
I It broke the potential random strings into blocks,

enumerated them (as a fraction for each size) and argued
that infinitely often they would be “true” and for these we
would have a conjunctive tt-reduction. (i.e. x ∈ ∅′ iff all of a
certain block are random.)

ALONG THESE LINES

I The following gives the idea and is easier.

THEOREM (AN. A. MUCHNIK)
The conditional overgraph M = {(x , y ,n) : C(x |y) < n} is
creative

I It does not matter if K or anything else is used for C.

I The proof. We need ∅′ ≤m M.
I Parameter d known in advance.
I Construct possible gx for x ∈ [1,2d].
I Either we know z ∈ ∅′, or there is a unique y such that

gx (z) = (x , y ,d) and x ∈ ∅′ iff gx (z) ∈ M.
I For some maximal x which enumerates elements infinitely

often, gx works.

I Construction, stage s + 1 For each active y ≤ s, find the
least q ∈ [1,2p] with

(q, y ,d) 6∈ Ms.

(Notice that such an x needs to exist since
{q : (q, y ,d) ∈ M} < 2d .)
If q is new, ie (q′, y ,d) ∈ Ms for all q′ < q, find the least z
with z 6∈ ∅′[s + 1] and define

gq(z) = (q, y ,d).

I Now for any v , if v enters ∅′[s + 1], find the largest r , if any,
with gr (v) defined. If one exists Find ŷ with
gr (v) = (r , ŷ ,d). Declare that ŷ is no longer active.

I Note that there must a largest x ≤ 2d such that
∃∞v(gx (v) ∈ M). Call this x . We claim that gx is the
required m-reduction. Work in stages after which gx+1
enumerates nothing into M.

I Given z, since gx is defined on infinitely many arguments
and they are assigned in order,we can go to a stage s
where either z has entered ∅′[s], or gx (z) becomes
defined, and gx (z) = (x , y ,d) for some active y . gx (z) will
be put into M should z enter ∅′ after s.

THE tt -CASE

I The tt-case is tricky.
I For each i < 2d we will this time attempt an infinite

sequence Si,x of strings and
I Enforce that for the largest i , x ∈ ∅′ iff Si,x ⊆ RC .

MUCHNIK’S THEOREM

I The situation for RK
tt and OK

tt is more complex.

THEOREM (AN. A. MUCHNIK)
There exist universal prefix-free machines U1 and U2 where

1. O
KU1
tt is tt-complete.

2. O
KU2
tt is not tt-complete.

THEOREM (ALLENDER, BUHRMAN AND KOUKÝ)
There is a universal prefix-free V such that RKV

tt is tt-complete.

I Muchnik (1) is kind of easy as we get to control coding
locations, and can easily code ∅′ into universal machine
“off to the side”.

I Allender, Buhrman and Kouký is significantly more complex
I The proof involves first building a machine V which

encodes “symmetrically” meaning that if σ has a
description of length n so does σ. (when τ, σ enters the
“normal” U put (0τ, σ) and 1τ, σ) into V .

I Then build a new universal machine M which “breaks the
symmetry” at sparse coding locations to encode ∅′.

DAY’S THEOREMS

I Not covered in detail here is related work of Day.
I Recall M is a process machine if σ ≺ τ and M(σ) ↓,M(τ) ↓

implies M(σ) � M(τ). This is strict if for all σ′ ≺ σ if M(σ) ↓,
then M(σ′) ↓.

I Day observed that the Allender et. al. Theorem works also
for monotone, strict process and process machines.

THEOREM (DAY)

1. OKm is always m-complete for optimal monotone machines.
2. OKM is always tt-complete for optimal monotone machine.
3. For optimal (strict) process machines the overgraphs are

tt-complete.
4. There is an optimal strict process machine where RKms is

not tt-complete.

QUESTION (DAY)
Can any of the RHU not be tt-complete for universal U and
H ∈ {Km,KM,KMD}?

PROOF OF MUCHNIK’S THEOREM

I The proof was remarkable in the new ideas it brought to
the area to use the determinacy of finite games.

I We want to build a universal prefix-free U to make OU
K not

tt-complete.
I We build part of the univeral U, via H and know which is

max K (σ) + 2,F (σ} and built by KC requests.
I It is within our power to use F to lower the complexity of a

string of length and within the opponent’s power to lower H
using K , but this costs him more.

I We build the rest of the machine and a c.e. set A and
ensure that

Re : ΓKU 6= A.

I We pick a follower x , and wait till ΓKU (x) ↓= 0[s].

I Now should we put x into A?
I We can view the situation like a directed graph. We can

use F to lower complexity and the opponent can too.
I We have more entropy.
I There will be a winning strategy to force a value for ΓKU (x).
I Of course in the real proof this can be construed as a

game G(ε, δ) where these quantities represent the
measure each player has to work with.

THE ALLENDER ET. AL. RESULTS

I Allender and his co-authors began a new program based
on efficient reductions to theses sets.

I The intuition is that random elements should not help much
except by luck, and this should be washed away by
machine independence.

THEOREM (BUHRMAN, FORTNOW, KOUCKÝ AND LOFF;
ALLENDER, BUHRMAN, KOUCKÝ, VAN MELKEBEEK AND
RONNEBURGER 2006; ALLENDER, BUHRMAN AND
KOUCKÝ 2006)
Let R be the set of all random strings for either plain or
prefix-free complexity.

I BPP ⊆ PR
tt .

I PSPACE ⊆ PR .
I NEXP ⊆ NPR .

I In some sense the levels are natural as strategies for
games live in PSPACE .

UPPER BOOUNDS

THEOREM (ALLENDER, FRIEDMAN AND GASARCH)

I ∆0
1 ∩

⋂
U P

RKU
tt ⊆ PSPACE.

I ∆0
1 ∩

⋂
U NPRKU ⊆ EXPSPACE.

Here U ranges over universal prefix-free machines, KU is
prefix-free complexity as determined by U, and RKU is the
corresponding set of random strings.

CONJECTURE (ALLENDER, FRIEDMAN AND GASARCH)
If A ∈

⋂
U NPRKU , then A is computable. (Therefore, ∆0

1 ∩ can
be removed from both parts of the Theorem above.)

NO MINIMAL PAIRS

THEOREM (CDELM)
For any prefix-free universal machines U1 and U2, there is a
noncomputable c.e. set A such that A ≤tt RKU1

and A ≤tt RKU2
.

PROOF

I Let Kj = KUj and Rj = RKUj
for j = 1,2.

I And K (σ) = K U1(σ).
I Let g be a (computable) Solovay function, so that

g(n) ≥ K (n) for all n, and g(n) = K (n) infinitely often.
I We may assume for some b, K (x) ≤ g(x) ≤b2 log x for all

x .
I We construct A ≤tt R1,R2, such that if A is computable,

then there exists an infinite c.e. set with g(n) = K (n).
I A contradiction (Solovay), in fact the “hitting set” of a

Solovay function is both hyperimmune and Turing complete
(Bienvenu, Downey, Merkle, Nies).

I We construct M1,M2 prefix-free machines with coding
const d .

I The number of non-random strings of length n is
< 2n−g(n)−c and we can divide the set of numbers below
this into 2c+d many regions of size 2n−g(n)−d .

I we know there is some maximal such region such that the
size of the set of non-random strings lies in this region, and
for infinitely many n with g(n) = K (n).

I when we compress we will code information about which n
have K (n) < g(n).

I The above resembles the idea used by Kummer in his
proof that RC is tt-complete, where a maximum “block”
gives the tt-information.

I Here we instead construct infinitely many candidates Ae,i .
The tt-reduction is more or less the same as Kummer’s in
that for the correct (dynamically determined) block
〈n, s〉 ∈ A iff the block (like the Se,i in Kummer) has empty
intersection with Rj .

STRONGER POSSIBILITY

I Is it possible that there are no wtt-complete tt-minimal
pairs.

I The easiest way would be to use minimal degrees. But...

THEOREM (DOWNEY AND SHORE, 1995)
I If A has minimal tt-degree and is c.e. then A is low2.
I Also the low2 c.e. tt-degrees are exactly those with minimal

covers.

QUESTION

I Which c.e. degrees can contain minimal tt-degrees?
I which Turing degrees contain minimal pairs of tt-degrees?

QUESTION

Is are there wtt-complete c.e. A1, A2 forming a tt-minimal pair?
(in the c.e. tt-degrees also open.)

A PARTIAL SOLUTION

THEOREM (CDELM)
There exist Turing complete A1 ≡T A2 such that the tt-degrees
form a minimal pair (in the tt-degrees).

THEOREM (DOWNEY AND NG, 2014)
There exist complete c.e. A1, A2 with A1 wtt-complete, forming
a tt-minimal pair in the tt-degrees.

I It might look like the second is a mild variation of the first,
but the strategies are much more complex.

I Of course Selwyn and I were trying to solve the main
question, and can do one mininal pair requirement with
wtt-reductions to ∅′. The T -comes from combining
requirements.

I I will sketch the easier proof of CDELM.
I We manke Ai ≥T ∅′ via marker coding ΓAi

i = Q, Q
complete, with use γi(x , s).

I The position of γi(x + 1) will determine ∅′(x). Note the
“+1”.

I We use a dump construction for Q a complete set so that if
x enters Qs+1 −Qs the so do x ′ for x ≤ x ′ ≤ s. This means
only certain configurations are possible for the Ai .

I Re : ∆A1 = ∆A2 = f → f computable.
I The main idea is we can use tt-reductions to examine the

effect of coding.
I We look to see what happens when `(e, s) > x for the first

time.
I Let’s suppose that e = 0 and this has highest priority, so

can move all markers.
I We would begin with x = 0. When `(e, s) > 0 for the first

time, what our plan is to move γi(y , s) for y > 0 and
i = 1,2 and γ2(0, s) to fresh positions above δ(0).

I Now we would like to enumerate a definition of ∆Ai (0), and
notice that if we cannot, then we can force a disagreement.

I With argument 1 we will ensure that only γ1(0, s) is below
the δ(1)-use on the A1-side and γ2(0, s) on the A2-side.

I If 0 entering Qs later can cause a disagreement, if we use
γi(0, s) to code this, then we can use γ1(1, s) on the
A1-side and γ2(0, s) to force a disagreement.

I Now consider arbitrary n.
I We’d like to define f (n), but it could be that small numbers

entering can cause a change in the current value even
after we do the “kicking” manoeuvre.

I there will be a least such position and this can be exploited
to make a disagreement.

I We won’t define f (n) but try for this. If later a Q-change
causes this disagreement to go away, then since that was
the least position then we can define f (n) with with
confidence.

I Note that the dump property means that no markers will be
sent to infinity.

I The one with Ng requires more complex game analysis.
I Joe Miller has suggested that it might be possible three

sets.
I Note you cannot do this with wtt-reducibility as

THEOREM (AMBOS-SPIES, 1985)
Computably enumerable A is wtt-cappable iff it is T -cappable.

THE KNIGHTS AND BISHOPS

THEOREM (CDELM)
For any universal U there is a noncomputable set X 6≤tt RU

K .
Hence if X ≤tt all RV

K ’s it is computable.

I This is the most complex proof in the paper. In fact the
strategy is to construct three universal Ui and argue that
not X ≤tt Ri for all i . We can assume that given X is ∆0

2.

I Ri : ¬(Ψ
Rj
i = X for j = 1,2,3).

I Force one of ΨRj 6= ΨRk or ΨRj 6= X some j . (or prove that
X is computable.)

I We make the machine universal as all will code V , via
Uj(000σ) = V (σ) and hence the opponent controls 1

8 of the
total measure.

I This time we modify Muchnik’s other proof.
I Again the game works with come measure and G(ε, δ) is

the one where opponent (coder) ε to play and we have δ.
I We can force ΨRj (0) to be i ∈ {0,1}.
I The possibilities are that for the game for a starting

measure of ε0 we can either force a disagreement for some
i , j , force him to use too much measure (and then play
again) or there is no such strategy and hence we are
working towards X being computable.

I That is, we begin with G(ε0, ε0) on the Ri ’s and see if we
can force a disagreement; or the opponent uses too much
measure.

I In this latter case, reset and start again. He only has 1
8 .

I If we can’t with with G(ε0, ε0), we call G(ε02 ,
ε0
2).

I We compare the values with the original game.
I If we have G(ε0, ε0) giving a Rk value and G(ε02 ,

ε0
2) a

different value Rj i, and the opponent plays honestly, we
win.

I Continue with a stack of games, with ever smaller
measure, and eventually it is the “real” 0-game. The value
of the tt-functional on argument 0 is determined.

I There is a complex and technical modification when the
opponent cheats at some level but not ε0 we will start a
modified game which is no longer symmetric, the
asymmetry being determined by the amount the aoponent
has spent.

POETICALLY

“we can think of R1 and R2 as knights who have gone off to
fight a battle. Their opponent has cheated and they return
home. The bishop, R3, is waiting for them and restores their
faith when they return. If the three new games G(ε0, ε0) all force
the same value, it will be the same value as before. We will use
this in the verification to show that if there is no disagreement
between the three tt-reductions, then the set they are
computing must be computable and so not X .”
Details in the paper.
Multiple bits are even more complicated, as are interactions.

I Many Thanks

