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Notion of presortedness

@ In practice, data are often presorted.
e No reasons to be uniformly distributed.
o Few alterations in databases.

e First intuition in [Knuth73] and formalized in [Mannila86].
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Measures of presortedness

Definition

Let X = (x1,...,xn) and Y = (y1,...,yr) two sequences; m is a
measure of presortedness iff

Q@ m(X)=0if X is sorted.

Q If n=/{and x; < xj <= y; < yj, then m(X) =
@ If Y is a subsequence of X, then m(Y) < m(X).
Q If X <Y, then m(XY) < m(X)+ m(Y).

@ For any element a, m(aX) < |X|+ m(X).

Two classical measures :
@ number of Runs —1, Runs(41536827) =4
@ number of Inversions, Inv(41536827) =9
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Adaptiveness of sorting algorithms

Let X be a sequence s.t. m(X) = k. Any algorithm uses at least C(n, k)
comparisons to sort X, with C(n, k) € ©(n + log(||belowm(n, k)||) and
belowm(n, k) = {o € &, : m(c) < k}.

Definition

A sorting algorithm is m-optimal if it reaches this bound.

4&I368

23078
12345678

@ Natural Merge Sort
[Knuth73]

e O(nlogr), where r is the
number of runs

@ Runs-optimal
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Records as a measure of presortedness

Let X = (x1,...,Xn) be a sequence; x; is a record iff x; < x;
whenever j < i.

For any sequence X of size n, Mec(X) = n — record(X) is a
measure of presortedness.

Example : For X = 32418567, record(X) = 3 and mye.(X) = 5.

Proof.
If Y is a subsequence of X, then myec(Y) < myec(X). Two cases :

@ Remove a non-record (if we remove 2, Y = 3418567,
rec(Y) =3 and mp = 4).

@ Remove a record (if we remove 8, Y = 3241567, rec(Y) =5
and meec(Y) = 2).

The other properties are trivial.
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A m,.-optimal sorting algorithm

B2H18567

GXtI"aCtIOIN
21567

348 sorting O(klog k)
\ merging OV

12345678

| belowpm,.(n, k)[| > k! Overall complexity O(n + k log k) o




Analysis of algorithms on average

Under the uniform distribution, for most measures m :
|| below,(n, E[m])|| = ©(n!).

O(nlog n) in average.

How to define a probabilistic framework well-suited for
presortedness measures ?

Analysis of algorithms ?
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The classical Ewens distribution

Any permutation can be seen as a composition of cycles.
Example : 145263 is composed of 3 cycles : (1), (563) and (42).

We denote cycle(o) the number of cycles of o.

Definition (Ewens distribution)
[Ewens72]
o Toany o € &, we associate a weight w(c) = §¥ele(?),
where 6 is an arbitrary positive real number.
o Total weight : > s w(0o) = o(n).

cycle(o)
e P(o) = gy(n) :

Notation : (" = 0(0 +1)...(0 +n—1)
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Generalizing the distribution

Definition (Ewens-like distribution)

@ Let x be any statisticon 0 € &,,.
e To any 0 € &, we associate a weight w(o) = 6X(?),

o Let W, =3 e, w(0) and P(o) = 5.
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Generalizing the distribution

Definition (Ewens-like distribution)

@ Let x be any statistic on 0 € &,,.
o Toany o € &, we associate a weight w(c) = 6X(?).

o Let W, =3 s, W(0) and P(0) = W(U)

Analytic combinatorics

Let F(z,u) = foxz"u”, where f,, = |[{o € &, : x(0) =
k-

9[2”] dF(gfl,u)

u=60

Wy =nl[2"1F(2,60)  and  Enl] = —r 5z

But difficult when # depends on n.




Ewens-like distributions for records

For any sequence X of size n, myc(X) = n — record(X) is a
measure of presortedness.

Definition (Ewens-like distribution for records)

e To any o € &, we associate a weight w(c) = grecord(@)
. grecord(a)

o Let W, =" o, (o) = 6" and P(0) = &=

In the following, we focus on this distribution.
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Linear random samplers

. 012 22 32 wlo)=0> [Ferray2014]
P
1 3% 1o w(o) = 6? e Generation, in
9/2’@ 1 :
S0y 0o _ g O(n), following one
0 015 . w(o) = path in the tree.
Y
1\ /g 1 2 32 wo)=0? @ Keep o and o1
1 {NS) (o) = 6 @ Choosing a position
h 1%2 in a cycle in O(1).
3/ w(o) =6 @ Insertion in O(1).

Sampler for records in O(n) :
e Fundamental bijection : 145263 — (1)(635)(42) — 142635.

@ Records are already sorted and we read o1 in reverse order.

11/16



Asymptotic equivalents

f=1 fixed >0 | 6 := n, 6 := An, 9 :=n’
(uniform) 0<ex<l1 A>0 0>1
En[record] | logn 6 -logn (1—¢)-nlogn | Xlog(1+1/X)-n | n
E,[desc] n/2 n/2 n/2 n/2(A+1) n?=%/2
En[o(1)] n/2 n/(6+1) nl=e (A+1)/A 1
E,[inv] n?/4 n?/4 n?/4 n? /4. f(\) m=9/6

With f(A) = 1 — 2X + 2X2log (1 + 1/A).

12 /16



Asymptotic equivalents

f=1 fixed @ >0 | 6 := n°, 0 := An, 9 :=n’
(uniform) 0<ex<l1 A>0 0>1
En[record] | logn 6 -logn (1—¢)-nlogn | Xlog(1+1/X)-n | n
E,[desc] n/2 n/2 n/2 n/2(A+1) n?=%/2
Enlo(1)] n/2 n/(6+1) nl=e (A+1)/A 1
E,[inv] n?/4 n?/4 n?/4 n? /4. f(\) m=9/6
With f(A) = 1 — 2X + 2X2log (1 + 1/A).

(i-1)
P,(Record at position i) = o 0] o = 0_{_?_ 1
1 i i+ n
™ T
Sum to w(G;_;) = 01 x L \\X_/L}il(/?')\/

12 /16



1457

30829




13407

06829




InsertSort

134567829




InsertSort

134567829




InsertSort

123456789




InsertSort

123406739




InsertSort

123406739

@ Adapts to the number of inversions.

@ Sorts a sequence X in ©(/nv(X)) comparisons.

0=1 fixed # >0 | 0 := n®, 0 := A\n, 0:=n’
(uniform) 0<e<l|A>0 0>1
Eq[inv] | n?/4 | n?/a | n?/4 | 2/ f) | /6

With £F(A) = 1 — 2X + 222 log (1 + 1/).

Unless 6 >> n, InsertSort remains in ©(n?) on average.
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Introduction to min/max search

NAIVEMINMAX(T, n) 3/2-MINMAX(T, n)
min < TJ1] min, max < T|[n], T[n]
max < T[1] for i< 2tonby?2do
for i+ 2tondo if T[i—1] < T[i] do
if T[i] < min do | pMin, pMax « T[i — 1], T[i]
min < TIi] else

| pMin, pMax < TIi], T[i — 1]
if pMin < min do min < pMin

if T[i] > max do

max <+ TIi]
if pMax > max do max < pMax
return min, max return min, max
2n comparisons 3n/2 comparisons

In practice, NAIVEMINMAX is faster than 3/2-MINMAX, when
the data are uniformly distributed in [0, 1].
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Average analysis of the number of mispredictions

When 6 = An for some real X and for a 1-bit predictor, we have :

@ 1 number of mispredictions of NAIVEMINMAX.
@ v number of misprediction of 3/2-MINMAX.

mispredictions ]En[ ] 1 1
predict n'u,N2)\ (|Og(1+x)_ (/\+1))
1
2] E, 3 2 _
14 . (2 l0g (1 + 1) — 200450a-3)

1
4 w En (1]

7En V]

; A
1 2 3
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Discussion

What's next ?

@ Ewens-like distribution for other statistics that take part in
(sorting) algorithms.

@ For example, the runs for the analysis of TimSort.

@ Explain the asymptotic shape of the diagrams below.

n =100 sample size = 10000

=1 0 =50 6 =100 6 =500
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