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Neumann-Poincaré operator

Let D be a bounded Lipschitz domain in RY. The single-layer potential Ssp
and the Neumann-poincaré operator K5, are defined as

Sooldl(x) = /a Tlx=)oly)doly). xR

Kiolél() = pv. | ST(x=y)oly)do(y). x < 0D,

where v is the outward unit normal vector to 9D and I is the fundamental
solution

Mx)={ 27
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Solution to transmission problems
Let D and R\ D have the constant conductivities o, and 1, respectively. For
a given entire harmonic function h consider the solution v to
{ V-oVv=0 inRY

v(x) — h(x) = O(|x\17d) as |x| — oo.

The solution v admits the expression in terms of the single layer potential and
the Neumann-poincaré operator:

v(x) = h(x) + Sap[#](x), x € R’

with
d(y) = (M = Kop) ' w(x) - VA(X)I(y), y €D
and
ox +1
A= m.
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Symmetrization of K}

m [Chq is self-adjoint on the usual L*-space only for a disc or a ball (L., 01).

m For general Lipschitz domain, it can be symmetrized using Plemelj's
symmetrization principle (Khavinson-Putinar-Shapiro, 2007):

SaQ’CBQ = K:BQSE)Q

If we define, for ¢, v € Hy */?(09),
(0. )s = — (o, Sonlts]) = /8 ) / Infx — yle(x)0(y) ds(x)ds(),

then the induced norm || - || is equivalent to the H~'/2(9Q) norm and
K is self-adjoint on Hg = (Hy /2(09), || - [|.).

Mikyoung LIM Spectral resolution of the Neumann-Poincaré operator



Spectrum of K3 on Hg

m Let 0(Kjq) be the spectrum of g on Hg. It is known that
o(Kan) C (~1/2,1/2).

m Since Kjq is self-adjoint on H*, o(Kjq) is real and consists of pure point
spectrum (eigenvalues),absolutely continuous spectrum, and singularly
continuous spectrum, namely,

O'(ICZ’;Q) = Jac(K:gQ) U USC(IC;;Q) U O'pp(’C;’;Q)

m By the spectral resolution theorem there is a family of projection operators
E: on H* (called a resolution of the identity) such that

1/2
lch:/ t d&.. (1)

—1/2
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Eigenvalue distribution of smooth domains

For C1*-domain D, KC}p is compact on H§ and admits the decomposition in
terms of the eigenvalue (counted with the multiplicity) and eigenfunctions:

Kip =Y Nei ® ¢
n=1
(3> = 2= 0).
m Disk: Kjp is the averaging operator.
m Ellipse with the eccentricity r: As(r) = £3 (3£)", n=1,2,....

1+r
m Ball: \] =

positive.

m, m=1,...,2n4 1. Note that the eigenvalues are

m Ellipsoid: Eigenvalues have the closed form of in terms of integral of Lamé
functions. And for any number A € (1/2,1/2) there is an ellipsoid
including 0 (Feng-Kang).
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05 Eigenvalues of ellipses

0.25F 1

-0.25 ]

Figure : The 20 largest eigenvalues for ellipses of various aspect ratios r. Thinner
ellipses have bigger eigenvalues.
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NP operator of Multiple boundaries

u(X) = H(X) + Sp, p1(X) + Sp,p2(X)

with
N 0 OH
(>‘1 - K:Dl) Y1 — B SDZSO2 m on 0Dy
9 * OH 41
~gmSnet Ge—Kb)er = 5 on 002 (N = o).
We can rewrite it as
(D —K)p = h.
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Stress concentration for two nearly touching inclusions

3002 A 0 1 2 3

The operator K has eigenvalues [A,| ~ 2 — c,\/€, where ¢, is a constant. And
A =1 for k = 0.

o = N W A O O N @

m Bonnetier and Triki(2012). Behavior of the singular values.

m Ammari, Ciraolo, Kang, Lee and Yun(2013). Symmetrization of K and the
characterization of the blow-up terms in terms of the singular function
with the one corresponding to two disks osculating to the inclusions.

m Lim and Yu(2015). Asymptotic of the solution for general k.
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Stress concentration for two nearly touching inclusions

m The generic rate of gradient blow-up is |¢In¢|™" in three dimensions
(Bao-Li-Yin 2010, L-Yun 2009, Kang-L-Yun 2014, L-Yu, etc.).

m It is € /2 in two dimensions
(Keller 63, Budiansky-Carrier 84, Ammari-Kang-L 2005,
Ammari-Kang-Lee-Lee-L 2007, Yun 07, 09 etc.).

m Two dimensional problem can be considered as the anti-plane elasticity of
fiber reinforced composite materials.
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Plasmon resonance

Metallic nano particle and light interaction causes a strong excitation of the
collective electrons oscillations(plasmons) in the metallic particle. For noble
metals such as gold and silver this resonance happens at the visible frequency.
The color of the resonant frequency is absorbed.

Figure : Lycurgus cup, 4th-century Roman glass; Tiny gold particles are embedded in
the glass

Green -reflected light.
Red- transmitted light; It is due to tiny gold particles embedded in the glass,

which have an absorption peak at around 520 nm
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Plasmon resonance

At certain frequency metallic particles has the negative relative permittivity
€(w) (Drude model). For wave length much longer than the dimension of the
particle, the quasi-static regime is valid.

For such negative permittivity case, A = % can be the eigenvalue of

K35p. We call it plasmon eigenvalues. The eigenvalues correspond to the
resonant frequencies.
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ALR

Cloaking by Anomalous Localized Resonance.

’ point dipole source
oy

/ 2
dectricfield ~ 0

g=1

Figure : Cloaking due to the anomalous localized resonance: the concentric case

Anomalous localized resonance occurs at the accumulation point of eigenvalues
Milton et al. (2006, 2007), Ammari-Ciraolo-Kang-Lee-Milton (2013, Spectral

analysis)

of the Neumann-Poincaré operator
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Questions and recent approaches

m Eigenvalue distribution for general smooth domain and the spectral
decomposition of Lipschitz domain

m Designing the shape for the specific spectrum

m Validation of the quasi-static approximation for nano-scale particle and
relative long wave length

m Dependence of the plasmon resonance on the geometry of D
m Full maxwell equation and elastic system.

m Application: Analysis on the focusing effect. Mathematical imaging and
focusing in resonant media...
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Spectral decomposition of Lipschitz domain?
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Intersecting disks: Lipschitz domain example

s £=07¢

6=37/4

Figure : The left figure is the intersecting disks Q. Level coordinate curves of bipolar
coordinate.

Theorem (Kang-L.-Yu)

Let 04c(K3q), 0sc(K5q) and os.(K3q) be the absolutely continuous, singularly
continuous, and pure point spectrum of K3q on H*, respectively. Then we have

O—aC(ICgQ) = [7b7 b]7 USC(’CgQ) = ®7 O—PP(ICBQ) = @
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The spectral bounds is given by

b:},ﬂ-_e‘)f@,l

2 ™ T 2

This bound coincides the essential spectrum bound of the NP operator on
curvilinear polygonal domains obtained by Perfekt-Putinar 2014.

5 O <

o=

E<r1u<n

NI

Figure : Disks of various intersecting angles
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Resonance and eigenvalues

Consider the following problem:

V-eVu=f in R?
u(x) = O(|x|_1) as |x| — oo,

where the distribution of the dielectric constant is given by

e = (co +i8)x () + Ix(R* \ Q).

A typical such source functions are polarized dipoles, namely,
f(x) =a- Vi, (x)

for some z € R? \ﬁ, where a is a constant vector and ¢, is the Dirac mass.
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m The solution us can be represented as
us(x) = q(x) + Saalps](x), x € R?,
where q(x) = [54 T( Y (y)dy, (A — Kq)[ps] = 0vq on 09, and

e +1+i6

A= ot

s+id.
(We denote the imaginary part again as ¢ for notational simplicity).
m For a given €. resonance is characterized by the fact

IV (us — q)ll12() = 00 asd — 0.

m We have
Gllesllns < IV(us — @)lliz@) < Colls |7

for some positive constants C; and G,.
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Remind that K3, = ffb t d&:. So the boundary density function becomes
b1
w5 = /71) P d&:[0.q].
We have

lpsl3er = / g A0 Sl (Poisson integral)

Suppose that the spectral measure u(t)dt := d{0,q, [0, q])n~ is
absolutely continuous near t then

2 T
lim 8llsfe = lim (5" llesll.)” = Z(u(t+) + u(t-)-
Define
ar(t) := sup{ a ’ lim sup 6%||¢¢,s]|« = o0 }, te(-1/2,1/2). (2)
5§—0

Characterization of the purely point spectrum (isolated) and singularly
continuous spectrum (not isolated) may be achieved by af(t) = 1.
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Numerical Computation: joint work with H. Kang and J. Helsing

The absolutely continuous spectrum appears:

Intersecting disks; a = 2; 6y = /4; location of dipale

Intersecting disks; dipole at (3,2)

3t =
T ——— 5-0 extrap.
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The absolutely continuous and singularly continuous, and pure point spectrum

appears:
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Unit square; R = 0.8 Unit square; R =0.8
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Rectangle; unit area; aspect ratio 3; R = 0.98 Rectangle; unit area; aspect ratio 3; R = 0.98
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Figure : Rectangles with various aspect ratios (Left column) and the corresponding
spectra (Right column). The second row exhibits a rectangle with the special aspect
ratio such that eigenvalues just about to emerge at the two ends of the continuous
spectrum interval.
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Tsosceles triangle; sides (1,2,2); R = 118
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Tsosceles triangle; sides (1,2,2); 6 =107 R =1.18
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Figure :

Tsosceles triangle; sides (1,2,2); R = 1.18

o—

04186 —0.2902 [ 02902 04196

Isosceles triangle; sides (1,2,2); R = 1.18; ¢ = 0.419569376744834

Spectrum of the isosceles triangle with sides 1, 2 and 2. The values of

0.5(1 — 6/) for interior angles, say 0, are approximately 0.4196 and 0.2902. The
larger number 0.4196 bounds the essential spectrum. While the indicator function
ay(t) changes only at zero and 0.4196, the functions a(t,8) and &|[¢y,s|2 for

§ = 10710 show dynamic changes near 0.2902 as well.
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The absolutely continuous and singularly continuous appears:

Perturbed ellipse Perturbed ellipse

o0
1 T ¢ ¢ v | ——8=0 extrap.

Figure : Perturbed ellipse.

Thank you!
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