Electron quantum optics and transport in topological materials

Thierry Martin Centre de Physique Théorique, Marseille

Spectral theory of novel materials, Marseille, April 19, 2016

In collaboration with: D. Ferraro, J. Rech, T. Jonckheere

Outline

- The rise of electron quantum optics
- Hanbury-Brown-Twiss and Hong-Ou-Mandel interferometry with individual electrons
- Two-dimensional topological insulators: when Pauli meets topology
- SC/Hall hybrid systems: creation and collision of individual Bogoliubov excitations

Quantum optics: 50 years of history

R. Hanbury Brown

The Quantum Theory of Optical Coherence*

ROY J. GLAUBER Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts (Received 11 February 1963)

Phys. Rev. 130, 2529 (1963)

From 1956: stellar interferometry...

...to 2012: Nobel prize "for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

Electron quantum optics

Revising the tools of quantum optics with photons to describe individual electronic wave-packets in mesoscopic systems

E. Bocquillon et al., Ann. Phys. (Berlin) 526, 1 (2014)

One dimensional electron channels as chiral wave-guides (several micrometers of elastic mean free path)

Quantum point contacts as beam splitters

Single electron sources

Driven mesoscopic capacitor in the integer quantum Hall effect

Moskalets et al., Phys. Rev. Lett. 100, 086601 (2008); G. Fève et al., Science 316, 1169 (2007)

One electron and one hole with exponential wave-packets in time emitted at every period

 $\phi(t) \propto e^{-\frac{\gamma}{2}t} e^{-i\omega_0 t} \Theta(t)$

Lorentzian voltage pulse in time L. S. Levitov *et al.*, J. Math. Phys. **37**, 4845 (1996)

Zero particle-hole contribution at zero temperature

$$V(t) = \frac{n\hbar}{e} \sum_{m=-\infty}^{+\infty} \frac{2\tau_0}{(t-mT)^2 + \tau_0^2}$$

Individual electrons interferometry Hanbury-Brown-Twiss (HBT) and Hong-Ou-Mandel (HOM)

E. Bocquillon et al., Science 339, 1054 (2013)

J. Dubois et al., Nature 502, 659 (2013)

New physics related to Pauli principle and electron-electron interaction

T. Jonckheere, J. Rech, C. Wahl, <u>T. Martin</u>, Phys. Rev. B **86**, 125425 (2012); C. Wahl, J. Rech, T. Jonckheere, <u>T. Martin</u>, Phys. Rev. Lett. **112**, 046802 (2014)

Quantum spin Hall effect (QSHE)

CdTe/HgTe/CdTe quantum wells

X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

Topological insulator: gapless edge states at zero magnetic field, robust against backscattering A. B. Bernevig *et al.*, Science **314**, 1757 (2006)

Helical edge states

Two terminal measurements

M. König et al., Science 318, 766 (2007)

Two counter-propagating edge channels, conductance quantization consistent with Landauer-Büttiker M. Büttiker, Science 325, 278 (2009)

Pair electron source

Driven mesoscopic capacitor coupled to helical edge states

A. Inhofer and D. Bercioux, Phys. Rev. B **88**, 235412 (2013); P. P. Hofer and M. Buttiker, Phys. Rev. B **88**, 241308(R) (2013)

Spin-preserving and spin-flipping tunneling at the QPC

Injection of electrons pairs with opposite spin and propagating in opposite directions

Creation of exponential wave-packets

HOM experiments: two-electrons injection (1)

D. Ferraro, C. Wahl, J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 89, 075407 (2014)

Equal spin injection (analogous to IQH)

Loss of Pauli dip contrast *without* interaction, only due to additional channels Visibility of the dip depends on QPC properties

Synchronized case: suppression of the noise due to Pauli principle and topology Not synchronized case: exploring different interference contributions

Source of individual Bogoliubov quasiparticles

Hall edge channels at filling factor 2 degenerate in spin (neglect Zeeman and interaction) coupled with a SC contact

Action of the transfer matrix on the Nambu spinor

C. W. J. Beenakker, Phys. Rev. Lett. 112, 070604 (2014)

$$\mathcal{M}(\xi) = e^{i\xi\delta} e^{i\Gamma\tau_z} \mathcal{U}(\tilde{\theta}, \phi, 0) e^{i\Gamma'\tau_z}$$
$$\mathcal{U}(\tilde{\theta}, \phi, 0) = \begin{pmatrix} \cos\tilde{\theta} & 0 & 0 & e^{-i\phi}\sin\tilde{\theta} \\ 0 & \cos\tilde{\theta} & -e^{-i\phi}\sin\tilde{\theta} & 0 \\ 0 & e^{i\phi}\sin\tilde{\theta} & \cos\tilde{\theta} & 0 \\ -e^{i\phi}\sin\tilde{\theta} & 0 & 0 & \cos\tilde{\theta} \end{pmatrix}$$

Consistent with unitarity and particle-hole symmetry

 $|e,\uparrow\rangle \Rightarrow \mathcal{W}_e|e,\uparrow\rangle + \mathcal{W}_h|h,\downarrow\rangle = \cos\tilde{\theta}|e,\uparrow\rangle + \sin\tilde{\theta}e^{i(\phi-2\Gamma)}|h,\downarrow\rangle$ Electrons emerge as Bogoliubov quasiparticles

"Majorino" vs "Majorana"

Zero energy modes of topological p-wave SC

A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001)

Non-abelian statistical properties with remarkable applications in topological quantum computation

C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008)

Various proposals for engineering them in condensed matter systems like: quantum wires, topological insulators, magnetic chains...

J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)

But...

... "the constraints imposed by fermionic statistics on the symmetries of Bogoliubov-de Gennes Hamiltonians always allow one to bring the Hamiltonian in the Nambu representation to an imaginary form. In turn, Schrödinger's equation with this imaginary Hamiltonian leads to a real equation of motion for the fields, as in Majorana's construction". C. Chamon et al., Phys, Rev. B **81**, 224515 (2010)

Majorana (real) fermionic field even in absence of zero modes

Experiments with Niobium contacts on Graphene: P. Rickhaus et al., Nano Lett. 12, 1942 (2012)

Andreev edge states

H. Hoppe et al., Phys. Rev. Lett. 84, 1804 (2000)

Characterization of the source (1)

D. Ferraro, J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 91, 075406 (2015)

$$\langle e, \uparrow \rangle = \int_{-\infty}^{+\infty} d\tau \varphi_e(\tau) \Psi_{\uparrow}^{\dagger}(\tau) |F\rangle$$

Current and charge

$$\begin{aligned} \langle e, \uparrow | I(t) | e, \uparrow \rangle &= -ev \langle e, \uparrow | : \Psi^{\dagger}(t) \tau_z \Psi(t) : | e, \uparrow \rangle = -e\cos(2\tilde{\theta}) \varphi_e(t-\delta) \varphi_e^*(t-\delta) \\ \mathcal{Q} &= \int dt \langle e, \uparrow | I(t) | e, \uparrow \rangle = -e\cos(2\tilde{\theta}) \\ &\propto |\mathcal{W}_e|^2 - |\mathcal{W}_h|^2 \end{aligned}$$

Non conservation of the charge due to Andreev reflections

A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964)

$$\tilde{\theta} = \frac{\pi}{4}$$

Particle and hole contributions compensate: zero outgoing current

Particle density and number $\langle e, \uparrow | \rho(t) | e, \uparrow \rangle = v \langle e, \uparrow | : \Psi^{\dagger}(t) \Psi(t) : | e, \uparrow \rangle = \varphi_e(t - \delta) \varphi_e^*(t - \delta)$ $\mathcal{N} = \int dt \langle e, \uparrow | \rho(t) | e, \uparrow \rangle = 1$ $\propto |\mathcal{W}_e|^2 + |\mathcal{W}_h|^2$

Conservation of the particle number

Characterization of the source (2) D. Ferraro, J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 91, 075406 (2015) Zero frequency noise at the output of the SC region $S_{source} = \int dt dt' [\langle e, \uparrow | I(t) I(t') | e, \uparrow \rangle_c] = e^2 \sin^2(2\tilde{\theta})$ $\propto |\mathcal{W}_e|^2 \times |\mathcal{W}_h|^2$

Variance of the charge

 $\tilde{\theta} = 0$

Zero noise: perfect emission of one electron

A. Mahé et al., Phys. Rev. B 82, 201309 (2010)

$$ilde{ heta} = rac{\pi}{2}$$

Zero noise: perfect conversion of the electron into an hole

$$\tilde{\theta} = \frac{\pi}{4}$$

Maximum noise associated to zero emitted charge

HBT noise

D. Ferraro, J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 91, 075406 (2015)

$$S_1^{HBT} = -e^2 R(1-R) \cos^2(2\tilde{\theta}_1)$$
$$\propto \mathcal{Q}^2$$

Partition noise associated to a non-integer charged wave-packet $\tilde{\theta} = 0, \frac{\pi}{2}$

We recover the standard result for electrons and holes

E. Bocquillon et al., Phys. Rev. Lett. 108, 196803 (2012)

$$\tilde{\theta} = \frac{\pi}{4}$$

Zero partition noise associated to a zero emitted charge

HOM noise for two Bogoliubov quasiparticles

D. Ferraro, J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 91, 075406 (2015)

$$S^{HOM} = \Delta S^{HOM} + S_1^{HBT} + S_2^{HBT}$$
$$\Delta S^{HOM} \propto |\mathcal{W}_e^1 \mathcal{W}_e^{2^*} - \mathcal{W}_h^1 \mathcal{W}_h^{2^*}|^2$$

Synchronized emission through SC differing only on the order parameter phase

$$S_{2SC}^{HOM} = e^2 R(1-R) \sin^2(2\tilde{\theta}) \left[1 - \cos(\phi_1 - \phi_2)\right]$$

Non local dependence on the order parameter phase C. W. J. Beenakker, Phys. Rev. Lett. **112**, 070604 (2014)

No dependence on SC phase in the current (first order coherence), oscillatory modulation in the noise (second order coherence)

HOM noise as a spectroscopic tool (1)

D. Ferraro, J. Rech, T. Jonckheere, T. Martin, Phys. Rev. B 91, 075406 (2015)

Interference between one Bogoliubov quasiparticle and one electron

$$S_{1SC}^{HOM} = e^2 R(1-R) \left\{ \begin{bmatrix} 1 + \cos(2\tilde{\theta}) & A(\delta_1 - \eta) - \cos^2(2\tilde{\theta}) - 1 \end{bmatrix} \right\}$$

Overlap of the wave-packets
$$\mathcal{R}_{1SC} = \frac{S_{1SC}^{HOM}}{(S_1^{HBT} + S_2^{HBT})} = 1 - \frac{1 + \cos(2\tilde{\theta})}{1 + \cos^2(2\tilde{\theta})} A(\delta_1 - \eta)$$

Ratio usually considered in experiments
E. Bognillon *et al.*, Science 339, 1054 (2013)

Spectroscopy of Bogoliubov excitations

Conclusions

- HBT and HOM interferometers as milestones in electron quantum optics
- Two and three electron interferometry in quantum spin Hall systems
- Interferometry and spectroscopy of individual Bogoliubov quasiparticles

Further perspectives

• Robustness of the discussed results in presence of electronelectron interaction