
On time splitting for NLS in the semiclassical regime
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Splitting for NLS

i∂tu +
1

2
∆u = f

(
|u|2
)
u, t > 0, x ∈ Rd ,

with u : [0,T ]× Rd → C, and f : R+ → R.
Splitting: solve successively two parts of the equation.

1 ODE:

i∂tu +
�
�
�1

2
∆u = f

(
|u|2
)
u.

2 Linear PDE:

i∂tu +
1

2
∆u = �����f

(
|u|2
)
u 0.

Interest: two equations which are easy to solve.
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Rémi Carles (Montpellier) Splitting for semiclassical NLS 2 / 21



Solving the equations

i∂tu +
1

2
∆u = f

(
|u|2
)
u.

1 ODE:
i∂tu = f

(
|u|2
)
u.

It is a linear equation! Indeed, ∂t
(
|u|2
)

= 0 since f : R+ → R.

2 Linear PDE:

i∂tu +
1

2
∆u = 0.

Same thing, thanks to Fourier (in space):

i∂t û −
|ξ|2

2
û = 0.

 explicit formula for the ODE, and FFT for the PDE.
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Splitting scheme(s)

Denote by X t the linear flow: X tu0 = u(t), where

i∂tu +
1

2
∆u = 0 ; u|t=0 = u0,

and by Y t the “nonlinear” flow: Y tu0 = u(t), where

i∂tu = f
(
|u|2
)
u ; u|t=0 = u0.

Lie-Trotter: Z∆t
L = Y ∆t ◦ X∆t or Z∆t

L = X∆t ◦ Y ∆t .

Strang: Z∆t
S = X∆t/2 ◦ Y ∆t ◦ X∆t/2 or (. . . ).

Higher order. . .
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Convergence of the approximation

i∂tu +
1

2
∆u = |u|2u ; u|t=0 = u0.

Theorem (Besse-Bidégaray-Descombes 02; Lubich 08)

Case d 6 2: for u0 ∈ H2(Rd) and all T > 0, ∃C , h0 such as if ∆t ∈]0, h0],
∀n ∈ N with n∆t ∈ [0,T ],∥∥∥(Z∆t

L

)n
u0 − u(n∆t)

∥∥∥
L2
6 C (m2,T ) ∆t,

with mj = max
06t6T

‖u(t)‖H j (Rd ). If d = 3 and u0 ∈ H4(Rd),

∥∥∥(Z∆t
S

)n
u0 − u(n∆t)

∥∥∥
L2
6 C (m4,T ) (∆t)2.
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Semiclassical regime

iε∂tu
ε +

ε2

2
∆uε = f

(
|uε|2

)
uε,

and ε→ 0. Initial datum of WKB type: uε0(0, x) = a0(x)e iφ0(x)/ε.
Conserved quantities:

Mass:
d

dt
‖uε(t)‖2

L2 = 0.

Energy:
d

dt

(
‖ε∇uε(t)‖2

L2 +

∫
Rd

F
(
|uε(t, x)|2

)
dx

)
= 0.

 ‖uε‖H1 ≈ ε−1. More generally, mj = O(ε−j) (sharp).
The splitting error estimates become useless in the limit ε→ 0.
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Rémi Carles (Montpellier) Splitting for semiclassical NLS 6 / 21



Hydrodynamics

iε∂tu
ε +

ε2

2
∆uε = f

(
|uε|2

)
uε ; uε0(0, x) = a0(x)e iφ0(x)/ε.

WKB type approximation: uε(t, x) ≈ a(t, x)e iφ(t,x)/ε.

Position density: ρε(t, x) = |uε(t, x)|2.
Current density: Jε(t, x) = ε Im (uε(t, x)∇uε(t, x)) .

Formally (justifications exist), ρε and Jε converge to:
∂tρ+ div J = 0 ; ρ|t=0 = |a0|2,

∂tJ + div

(
J ⊗ J

ρ

)
+ ρ∇f (ρ) = 0 ; J|t=0 = |a0|2∇φ0.

Identifying terms: ρ = |a|2, J = |a|2∇φ.
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Splitting in the semiclassical limit

Idea: as long as the solution to the exact equation writes

uε(t, x)=aε(t, x)e iφ
ε(t,x)/ε, (aε, φε uniformly bounded Hs),

then so does the numerical solution obtained by splitting.

ODE: iε∂tu
ε = f (|uε|2)uε, uε|t=0 = aε0e

iφε0/ε.

 uε(t, x) = aε0(x)e iφ
ε
0(x)/ε−itf (|aε0 (x)|2)/ε.

Amounts to considering the system:{
∂tφ

ε = −f
(
|aε|2

)
; φε|t=0 = φε0,

∂ta
ε = 0 ; aε|t=0 = aε0.
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Linear PDE: iε∂tu
ε +

ε2

2
∆uε = 0, uε|t=0 = aε0e

iφε0/ε.

The solution can be written as uε = aεe iφ
ε/ε, with

∂tφ
ε +

1

2
|∇φε|2 = 0 ; φε|t=0 = φε0,

∂ta
ε +∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε ; aε|t=0 = aε0.

 The system is decoupled: ∇φε solves Burgers.
Before singularity formation, solve the first equation (φε uniformly
bounded Hs), then the second is a linear PDE with bounded coefficients
(aε uniformly bounded Hs−2).
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Outcome

The numerical solution is written as aεe iφ
ε/ε, by solving successively{

∂tφ
ε = −f

(
|aε|2

)
,

∂ta
ε = 0.

and 
∂tφ

ε +
1

2
|∇φε|2 = 0,

∂ta
ε +∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε.

 Amounts to do some splitting on
∂tφ

ε +
1

2
|∇φε|2 = −f

(
|aε|2

)
,

∂ta
ε +∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε.
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Déjà vu


∂tφ

ε +
1

2
|∇φε|2 = −f

(
|aε|2

)
,

∂ta
ε +∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε.

 Without i ε2 ∆aε, for f (ρ) = +ργ−1, symmetrised version of isentropic
Euler.
 With i ε2 ∆aε, system introduced by Emmanuel Grenier (f ′ > 0).
 Generalizations: WKB regime for other equations (f ′ > 0,
Schrödinger-Poisson, f (ρ) = λρσ).
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Propagating Sobolev regularity: linear PDE


∂tφ

ε +
1

2
|∇φε|2 = 0,

∂ta
ε +∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε.

The linear PDE has been replaced by a nonlinear system.

∇φε solves (multiD) Burgers: local resolution, propagation of Hs

regularity (s > d/2 + 1), tame estimates.

If ∇φε ∈ L∞([0, τ ];Hs), s > d/2 + 1, one cannot hope better than
aε ∈ L∞([0, τ ];Hs−1).

Rémi Carles (Montpellier) Splitting for semiclassical NLS 12 / 21



Propagating Sobolev regularity: linear PDE


∂tφ

ε +
1

2
|∇φε|2 = 0,

∂ta
ε +∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε.

The linear PDE has been replaced by a nonlinear system.

∇φε solves (multiD) Burgers: local resolution, propagation of Hs

regularity (s > d/2 + 1), tame estimates.

If ∇φε ∈ L∞([0, τ ];Hs), s > d/2 + 1, one cannot hope better than
aε ∈ L∞([0, τ ];Hs−1).
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Propagating Sobolev regularity: ODE

{
∂tφ

ε = −f
(
|aε|2

)
,

∂ta
ε = 0.

If f is local (f (ρ) = ργ−1), then for aε ∈ L∞([0, τ ];Hσ), σ > d/2,
φε ∈ L∞([0, τ ];Hσ) and not better: the numerical scheme does not
preserve the regularity.

The issue of loss of regularity vanishes if a Poisson type nonlinearity is
considered.

Other way to overcome the loss of regularity (linear equation): work
in time dependent analytic regularity (joint work with C. Gallo).
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Sobolev regularity

Hypothesis

f (ρ) = K ∗ ρ, where the Fourier transform of K ,

K̂ (ξ) =
1

(2π)d/2

∫
Rd

e−ix ·ξK (x)dx ,

satisfies:

If d 6 2, sup
ξ∈Rd

(1 + |ξ|2)|K̂ (ξ)| <∞ ;

If d > 3, sup
ξ∈Rd

|ξ|2|K̂ (ξ)| <∞.

Example

If d > 3, Schrödinger-Poisson: f (|u|2)u = Vpu, where ∆Vp = λ|u|2,
λ ∈ R.
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The exact solution

If for s > d/2 + 1, φ0 ∈ L∞, (∇φ0, a0) ∈ Hs+1 × Hs , then there exists
T > 0 such that the system

∂tφ
ε +

1

2
|∇φε|2 = −f

(
|aε|2

)
; φε0 = φ0,

∂ta
ε +∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε ; aε0 = a0,

has a unique solution (φε, aε) ∈ C ([0,T ]; L∞ × Hs) such that
∇φε ∈ C ([0,T ];Hs+1). In addition, the bounds are uniform in ε ∈]0, 1].
We can take T = Tmax − δ, where Tmax is the lifespan of the
Euler-Poisson system (if Tmax <∞).
 WKB form preserved for the exact solution, on [0,T ].
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Main result

Theorem

There exist ε0 > 0 and C , c0 independent of ε ∈]0, ε0] such that for all
∆t ∈ (0, c0], for all n ∈ N such that tn = n∆t ∈ [0,T ], we have:
1. There exist φε and aε with

sup
t∈[0,T ]

(
‖aε(t)‖Hs(Rd ) + ‖∇φε(t)‖Hs+1(Rd ) + ‖φε(t)‖L∞(Rd )

)
6 C ,

such that uε = aεe iφ
ε/ε on [0,T ]× Rd .

2. There exist φεn and aεn with

‖aεn‖Hs(Rd ) + ‖∇φεn‖Hs+1(Rd ) + ‖φεn‖L∞(Rd ) 6 C ,

such that (Z∆t
ε )n

(
a0e

iφ0/ε
)

= aεne
iφn/ε, and the following error estimate

holds:

‖aεn − aε(tn)‖Hs−1 + ‖∇φεn −∇φε(tn)‖Hs + ‖φεn − φε(tn)‖L∞ 6 C∆t.
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Back to initial unknowns

Corollary

Under the previous assumptions, with previous notations:∥∥∥(Z∆t
ε )nuε0 − S tn

ε uε0

∥∥∥
L2(Rd )

6 C
∆t

ε
.

Main quadratic observables:∥∥∥∥∣∣∣(Z∆t
ε )nuε0

∣∣∣2 − |uε(tn)|2
∥∥∥∥
L1(Rd )∩L∞(Rd )

6 C∆t,∥∥∥Im
(
ε(Z∆t

ε )nuε0∇(Z∆t
ε )nuε0

)
− Jε(tn)

∥∥∥
L1(Rd )∩L∞(Rd )

6 C∆t.

Remark

In agreement with numerical experiments by Bao-Jin-Markowich ’03.
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Scheme of the proof

Regularity estimates on the exact solution.

(Local) regularity estimates on the numerical scheme.

Local error estimate (after Descombes-Thalhammer).

From local to global: Lady Windermere’s fan and induction (after
Holden-Lubich-Risebro).

Remark

Working in phase/amplitude representation yields L∞ bounds independent
of ε ∈]0, 1], which were not known.
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Analytic regularity

The phase φε and the amplitude aε belong to H`ρ, ` > d/2 + 1, where

‖ψ‖2
H`ρ

=

∫
Rd

〈ξ〉2` e2ρ〈ξ〉|ψ̂(ξ)|2dξ,

with a time dependent weight ρ.
Inspired by the analysis of Ginibre & Velo ’01. Requirements:

ρ(t) > δ > 0 on [0,T ],

−ρ̇(t)� 1.

For instance, ρ(t) = M0 −Mt, with M0,M � 1. Advantages:

The previous loss of regularity issue disappears,

No symmetry needed in the hydrodynamical form (unlike in Grenier’s
approach).

Typically, we can consider f (|u|2)u = λ|u|2σu, σ ∈ N, λ ∈ R.
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Parabolization of the Euler system

The time dependent analytic norm

‖ψ‖2
H`ρ

=

∫
Rd

〈ξ〉2` e2ρ〈ξ〉|ψ̂(ξ)|2dξ

implies the general property

d

dt
‖ψ‖2

H`ρ
= 2 〈∂tψ,ψ〉H`ρ + 2ρ̇‖ψ‖2

H`+1/2
ρ

.

Last term: as if a parabolic term (of order 1) had been added (ρ̇ < 0).
 Implicit dependence of M = −ρ̇ in the computations: assume that the
initial data a0 and φ0 satisfy∫

Rd

e〈ξ〉
1+δ
(
|â0(ξ)|2 + |φ̂0(ξ)|2

)
dξ <∞,

for some δ > 0 (e.g.: Gaussian data, or compact support on Fourier side).
 Same error estimate as before (in all Hs , with T > 0 independent of ε).
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Theorem

Suppose that d , σ ∈ N, d , σ > 1, and λ ∈ R. Let φ0, a0 such that∫
Rd

e〈ξ〉
1+δ
(
|φ̂0(ξ)|2 + |â0(ξ)|2

)
dξ <∞, for some δ > 0.

∃T , ε0, c0 > 0 and (Ck)k∈N s. t. ∀ε ∈ (0, ε0], the following holds:
1. ∃!uε = S t

εu
ε
0 ∈ C ([0,T ],∩sHs). Moreover, there exist φε and aε with

sup
t∈[0,T ]

(
‖aε(t)‖Hk (Rd ) + ‖φε(t)‖Hk (Rd )

)
6 Ck , ∀k ∈ N,

such that uε(t, x) = aε(t, x)e iφ
ε(t,x)/ε for all (t, x) ∈ [0,T ]× Rd .

2. There exist φεn and aεn with

‖aεn‖Hk (Rd ) + ‖φεn‖Hk (Rd ) 6 Ck , ∀k ∈ N

such that (Z∆t
ε )n

(
a0e

iφ0/ε
)

= aεne
iφn/ε, and:

‖aεn − aε(tn)‖Hk + ‖φεn − φε(tn)‖Hk 6 Ck∆t.
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Local error estimate

Let A an operator, and EA its propagator:

∂tEA(t, v) = A (EA(t, v)) ; EA(0, v) = v .

Theorem (Descombes-Thalhammer)

Suppose that F (u) = A(u) + B(u), and denote

St(u) = EF (t, u) and Zt(u) = EB (t, EA(t, u))

the exact and numerical flows, respectively. The exact formula holds

Zt(u)− St(u) =

∫ t

0

∫ τ1

0
∂2EF (t − τ1,Zτ1(u)) ∂2EB (τ1 − τ2, EA(τ1, u))

× [B,A] (EB (τ2, EA (τ1, u))) dτ2dτ1.

NB: ∂2E = linearized flow.
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Standard framework for NLS:

A = i
ε

2
∆; B(v) = − i

ε
f
(
|v |2
)
v ; F (v) = A(v) + B(v).

Linearized exact flow: ∂2EF (t, u)w0 = w , where

iε∂tw +
ε2

2
∆w = f

(
|u|2
)
w + f (uw + uw) u; w|t=0 = w0.

Drawback: does not preserve the (monokinetic) WKB structure. If
u = ae iφ/ε, then

iε∂tw +
ε2

2
∆w = f

(
|a|2
)
w + f

(
ae−iφ/εw + ae iφ/εw

)
ae iφ/ε.

For w0 = b0e
iϕ0/ε, in general, there does not hold

w = bεe iϕ
ε/ε, bε, ϕε uniformly bounded in Hs .

Remark

More simply, aεne
iφεn/ε − aεe iφ

ε/ε has no reason to be factored αεne
iϕεn/ε

(with uniform bounds).
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That is another reason to work on systems:{
∂tφ

ε = −f
(
|aε|2

)
,

∂ta
ε = 0.

and 
∂tφ

ε +
1

2
|∇φε|2 = 0,

∂ta
ε +∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε.
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Precised framework

A

(
φ
a

)
=

(
−1

2 |∇φ|
2

−∇φ · ∇a− 1
2a∆φ+ i ε2 ∆a

)
,

B

(
φ
a

)
=

(
−f
(
|a|2
)

0

)
.

Remark

Both operators are nonlinear.

[A,B]

(
φ
a

)
=

(
∇φ · ∇f

(
|a|2
)
− div f

(
|a|2∇φ

)
− εdiv f (Im (a∇a))

∇a · ∇f
(
|a|2
)

+ 1
2a∆f

(
|a|2
) )

.

Rémi Carles (Montpellier) Splitting for semiclassical NLS 4 / 5



Local error

Theorem (Local error estimate for WKB states)

Let s > d/2 + 1 and µ > 0. Suppose that

‖∇φε‖Hs+1 6 µ, ‖aε‖Hs 6 µ.

There exist C , c0 > 0 (depending on µ) independent of ε ∈ (0, 1] such that

L
(
t,

(
φε

aε

))
:= Zt

ε

(
φε

aε

)
− Stε

(
φε

aε

)
=

(
Ψε(t)
Aε(t)

)
,

where Aε and Ψε satisfy

‖∇Ψε(t)‖Hs + ‖Aε(t)‖Hs−1 6 Ct2, 0 6 t 6 c0.
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