On time splitting for NLS in the semiclassical regime

Rémi Carles

CNRS & Univ. Montpellier

Rémi Carles (Montpellier)

1 / 21

$$i\partial_t u + \frac{1}{2}\Delta u = f(|u|^2) u, \quad t \ge 0, \ x \in \mathbb{R}^d,$$

with $u: [0, T] \times \mathbb{R}^d \to \mathbb{C}$, and $f: \mathbb{R}_+ \to \mathbb{R}$.

Splitting: solve successively two parts of the equation.

ODE

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right)u.$$

Linear PDE:

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right)u \quad 0.$$

Interest: two equations which are easy to solve.

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right)u, \quad t \ge 0, \ x \in \mathbb{R}^d,$$

with $u : [0, T] \times \mathbb{R}^d \to \mathbb{C}$, and $f : \mathbb{R}_+ \to \mathbb{R}$. Splitting: solve successively two parts of the equation.

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right)u.$$

2 Linear PDE:

$$i\partial_t u + \frac{1}{2}\Delta u = \underline{f}\left(|u|^2\right) \underline{u} \quad 0.$$

Interest: two equations which are easy to solve.

- ∢ ∃ →

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right)u, \quad t \ge 0, \ x \in \mathbb{R}^d,$$

with $u : [0, T] \times \mathbb{R}^d \to \mathbb{C}$, and $f : \mathbb{R}_+ \to \mathbb{R}$. Splitting: solve successively two parts of the equation. ODE:

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right) u.$$

2 Linear PDE:

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right)u \quad 0.$$

Interest: two equations which are easy to solve.

- ∢ ∃ ▶

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right)u, \quad t \ge 0, \ x \in \mathbb{R}^d,$$

with $u : [0, T] \times \mathbb{R}^d \to \mathbb{C}$, and $f : \mathbb{R}_+ \to \mathbb{R}$. Splitting: solve successively two parts of the equation. ODE:

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right) u.$$

2 Linear PDE:

$$i\partial_t u + \frac{1}{2}\Delta u = \underline{f}\left(|\underline{u}|^2\right)\underline{u} \quad 0.$$

Interest: two equations which are easy to solve.

- ∢ ∃ ▶

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right)u, \quad t \ge 0, \ x \in \mathbb{R}^d,$$

with $u : [0, T] \times \mathbb{R}^d \to \mathbb{C}$, and $f : \mathbb{R}_+ \to \mathbb{R}$. Splitting: solve successively two parts of the equation. ODE:

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right) u.$$

2 Linear PDE:

$$i\partial_t u + \frac{1}{2}\Delta u = \underline{f}(|u|^2)u$$
 0.

Interest: two equations which are easy to solve.

くロト (過) (ヨヨ (ヨト (ヨト (四))

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right)u.$$

ODE:

$$i\partial_t u = f\left(|u|^2\right) u.$$

It is a linear equation! Indeed, $\partial_t (|u|^2) = 0$ since $f : \mathbb{R}_+ \to \mathbb{R}$. Linear PDE:

$$i\partial_t u + \frac{1}{2}\Delta u = 0.$$

Same thing, thanks to Fourier (in space):

$$i\partial_t \widehat{u} - \frac{|\xi|^2}{2}\widehat{u} = 0.$$

→ explicit formula for the ODE, and FFT for the PDE.

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right)u.$$

ODE:

$$i\partial_t u = f\left(|u|^2\right) u.$$

It is a linear equation! Indeed, $\partial_t (|u|^2) = 0$ since $f : \mathbb{R}_+ \to \mathbb{R}$. Linear PDE:

$$i\partial_t u + \frac{1}{2}\Delta u = 0.$$

Same thing, thanks to Fourier (in space):

$$i\partial_t \widehat{u} - \frac{|\xi|^2}{2}\widehat{u} = 0.$$

→ explicit formula for the ODE, and FFT for the PDE.

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right)u.$$

ODE:

2

$$i\partial_t u = f\left(|u|^2\right) u.$$

It is a linear equation! Indeed, $\partial_t (|u|^2) = 0$ since $f : \mathbb{R}_+ \to \mathbb{R}$. Linear PDE:

$$i\partial_t u + \frac{1}{2}\Delta u = 0.$$

Same thing, thanks to Fourier (in space):

$$i\partial_t \widehat{u} - \frac{|\xi|^2}{2}\widehat{u} = 0.$$

→ explicit formula for the ODE, and FFT for the PDE.

$$i\partial_t u + \frac{1}{2}\Delta u = f\left(|u|^2\right)u.$$

ODE:

2

$$i\partial_t u = f\left(|u|^2\right) u.$$

It is a linear equation! Indeed, $\partial_t (|u|^2) = 0$ since $f : \mathbb{R}_+ \to \mathbb{R}$. Linear PDE:

$$i\partial_t u + \frac{1}{2}\Delta u = 0.$$

Same thing, thanks to Fourier (in space):

$$i\partial_t \widehat{u} - \frac{|\xi|^2}{2}\widehat{u} = 0.$$

 \rightsquigarrow explicit formula for the ODE, and FFT for the PDE.

Splitting scheme(s)

Denote by X^t the linear flow: $X^t u_0 = u(t)$, where

$$i\partial_t u + \frac{1}{2}\Delta u = 0$$
 ; $u_{|t=0} = u_0$,

and by Y^t the "nonlinear" flow: $Y^t u_0 = u(t)$, where

$$i\partial_t u = f(|u|^2) u$$
; $u_{|t=0} = u_0$.

• Lie-Trotter: $Z_L^{\Delta t} = Y^{\Delta t} \circ X^{\Delta t}$ or $Z_L^{\Delta t} = X^{\Delta t} \circ Y^{\Delta t}$.

- Strang: $Z_S^{\Delta t} = X^{\Delta t/2} \circ Y^{\Delta t} \circ X^{\Delta t/2}$ or (\dots) .
- Higher order...

A 回 > A E > A E > E E < のQの</p>

Splitting scheme(s)

Denote by X^t the linear flow: $X^t u_0 = u(t)$, where

$$i\partial_t u + \frac{1}{2}\Delta u = 0$$
 ; $u_{|t=0} = u_0$,

and by Y^t the "nonlinear" flow: $Y^t u_0 = u(t)$, where

$$i\partial_t u = f\left(|u|^2\right) u$$
 ; $u_{|t=0} = u_0$.

• Lie-Trotter:
$$Z_I^{\Delta t} = Y^{\Delta t} \circ X^{\Delta t}$$
 or $Z_I^{\Delta t} = X^{\Delta t} \circ Y^{\Delta t}$.

• Strang:
$$Z_S^{\Delta t} = X^{\Delta t/2} \circ Y^{\Delta t} \circ X^{\Delta t/2}$$
 or $(...)$.

• Higher order...

- ₹ 🖬 🕨

$$i\partial_t u + \frac{1}{2}\Delta u = |u|^2 u$$
; $u_{|t=0} = u_0$.

Theorem (Besse-Bidégaray-Descombes 02; Lubich 08)

Case $d \leq 2$: for $u_0 \in H^2(\mathbb{R}^d)$ and all T > 0, $\exists C, h_0$ such as if $\Delta t \in]0, h_0]$, $\forall n \in \mathbb{N}$ with $n\Delta t \in [0, T]$,

$$\left\|\left(Z_L^{\Delta t}\right)^n u_0 - u(n\Delta t)\right\|_{L^2} \leqslant C(m_2, T) \Delta t,$$

with $m_j = \max_{0 \leqslant t \leqslant T} \|u(t)\|_{H^j(\mathbb{R}^d)}$. If d = 3 and $u_0 \in H^4(\mathbb{R}^d)$,

$$\left\|\left(Z_{S}^{\Delta t}\right)^{n}u_{0}-u(n\Delta t)\right\|_{L^{2}}\leqslant C(m_{4},T)(\Delta t)^{2}.$$

$$i\varepsilon\partial_t u^\varepsilon + \frac{\varepsilon^2}{2}\Delta u^\varepsilon = f\left(|u^\varepsilon|^2\right)u^\varepsilon,$$

and $\varepsilon \to 0$. Initial datum of WKB type: $u_0^{\varepsilon}(0, x) = a_0(x)e^{i\phi_0(x)/\varepsilon}$. Conserved quantities:

$$\begin{array}{l} \text{Mass:} \ \frac{d}{dt} \| u^{\varepsilon}(t) \|_{L^{2}}^{2} = 0. \\ \text{Energy:} \ \frac{d}{dt} \left(\| \varepsilon \nabla u^{\varepsilon}(t) \|_{L^{2}}^{2} + \int_{\mathbb{R}^{d}} F\left(|u^{\varepsilon}(t,x)|^{2} \right) dx \right) = 0. \end{array}$$

 $\rightsquigarrow \|u^{\varepsilon}\|_{H^1} \approx \varepsilon^{-1}$. More generally, $m_j = \mathcal{O}(\varepsilon^{-j})$ (sharp). The splitting error estimates become useless in the limit $\varepsilon \to 0$.

・得 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$$i\varepsilon\partial_t u^{\varepsilon} + rac{\varepsilon^2}{2}\Delta u^{\varepsilon} = f\left(|u^{\varepsilon}|^2\right)u^{\varepsilon},$$

and $\varepsilon \to 0$. Initial datum of WKB type: $u_0^{\varepsilon}(0, x) = a_0(x)e^{i\phi_0(x)/\varepsilon}$. Conserved quantities:

Mass:
$$\frac{d}{dt} \| u^{\varepsilon}(t) \|_{L^{2}}^{2} = 0.$$

Energy: $\frac{d}{dt} \left(\| \varepsilon \nabla u^{\varepsilon}(t) \|_{L^{2}}^{2} + \int_{\mathbb{R}^{d}} F\left(|u^{\varepsilon}(t,x)|^{2} \right) dx \right) = 0.$

 $\rightsquigarrow \|u^{\varepsilon}\|_{H^1} \approx \varepsilon^{-1}.$ More generally, $m_j = \mathcal{O}(\varepsilon^{-j})$ (sharp). The splitting error estimates become useless in the limit $\varepsilon \to 0$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ●

$$i\varepsilon\partial_t u^{\varepsilon} + rac{\varepsilon^2}{2}\Delta u^{\varepsilon} = f\left(|u^{\varepsilon}|^2\right)u^{\varepsilon},$$

and $\varepsilon \to 0$. Initial datum of WKB type: $u_0^{\varepsilon}(0, x) = a_0(x)e^{i\phi_0(x)/\varepsilon}$. Conserved quantities:

Mass:
$$\frac{d}{dt} \| u^{\varepsilon}(t) \|_{L^2}^2 = 0.$$

Energy: $\frac{d}{dt} \left(\| \varepsilon \nabla u^{\varepsilon}(t) \|_{L^2}^2 + \int_{\mathbb{R}^d} F\left(|u^{\varepsilon}(t,x)|^2 \right) dx \right) = 0.$

 $\rightsquigarrow \|u^{\varepsilon}\|_{H^1} \approx \varepsilon^{-1}.$ More generally, $m_j = \mathcal{O}(\varepsilon^{-j})$ (sharp). The splitting error estimates become useless in the limit $\varepsilon \to 0$. $i\varepsilon\partial_t u^{\varepsilon} + rac{\varepsilon^2}{2}\Delta u^{\varepsilon} = f\left(|u^{\varepsilon}|^2\right)u^{\varepsilon}$; $u_0^{\varepsilon}(0,x) = a_0(x)e^{i\phi_0(x)/\varepsilon}$.

WKB type approximation: $u^{\varepsilon}(t,x) \approx a(t,x)e^{i\phi(t,x)/\varepsilon}$.

Position density:
$$\rho^{\varepsilon}(t, x) = |u^{\varepsilon}(t, x)|^{2}$$
.
Current density: $J^{\varepsilon}(t, x) = \varepsilon \operatorname{Im} \left(\overline{u}^{\varepsilon}(t, x) \nabla u^{\varepsilon}(t, x)\right)$.

Formally (justifications exist), ρ^{ε} and J^{ε} converge to:

$$\begin{cases} \partial_t \rho + \operatorname{div} J = 0 \quad ; \quad \rho_{|t=0} = |a_0|^2, \\ \partial_t J + \operatorname{div} \left(\frac{J \otimes J}{\rho} \right) + \rho \nabla f(\rho) = 0 \quad ; \quad J_{|t=0} = |a_0|^2 \nabla \phi_0. \end{cases}$$

Identifying terms: $\rho = |a|^2$, $J = |a|^2 \nabla \phi$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $u^{\varepsilon}(t,x) = a^{\varepsilon}(t,x)e^{i\phi^{\varepsilon}(t,x)/\varepsilon}, \quad (a^{\varepsilon},\phi^{\varepsilon} \text{ uniformly bounded } H^{s}),$

then so does the numerical solution obtained by splitting.

ODE: $i\varepsilon\partial_t u^{\varepsilon} = f(|u^{\varepsilon}|^2)u^{\varepsilon}, \ u^{\varepsilon}_{|t=0} = a_0^{\varepsilon}e^{i\phi_0^{\varepsilon}/\varepsilon}.$ $\rightsquigarrow u^{\varepsilon}(t,x) = a_0^{\varepsilon}(x)e^{i\phi_0^{\varepsilon}(x)/\varepsilon - itf(|a_0^{\varepsilon}(x)|^2)/\varepsilon}.$ Amounts to considering the system:

$$\begin{cases} \partial_t \phi^{\varepsilon} = -f\left(|a^{\varepsilon}|^2\right) \quad ; \quad \phi^{\varepsilon}_{|t=0} = \phi^{\varepsilon}_0, \\ \partial_t a^{\varepsilon} = 0 \quad ; \quad a^{\varepsilon}_{|t=0} = a^{\varepsilon}_0. \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$u^{\varepsilon}(t,x) = a^{\varepsilon}(t,x)e^{i\phi^{\varepsilon}(t,x)/\varepsilon}, \quad (a^{\varepsilon},\phi^{\varepsilon} \text{ uniformly bounded } H^{s}),$$

then so does the numerical solution obtained by splitting.

ODE: $i\varepsilon\partial_t u^{\varepsilon} = f(|u^{\varepsilon}|^2)u^{\varepsilon}, \ u^{\varepsilon}_{|t=0} = a_0^{\varepsilon}e^{i\phi_0^{\varepsilon}/\varepsilon}.$ $\rightsquigarrow u^{\varepsilon}(t,x) = a_0^{\varepsilon}(x)e^{i\phi_0^{\varepsilon}(x)/\varepsilon - itf(|a_0^{\varepsilon}(x)|^2)/\varepsilon}.$ Amounts to considering the system:

$$\begin{cases} \partial_t \phi^{\varepsilon} = -f\left(|a^{\varepsilon}|^2\right) \quad ; \quad \phi^{\varepsilon}_{|t=0} = \phi^{\varepsilon}_0, \\ \partial_t a^{\varepsilon} = 0 \quad ; \quad a^{\varepsilon}_{|t=0} = a^{\varepsilon}_0. \end{cases}$$

向下 イヨト イヨト ヨヨ のなら

$$u^{\varepsilon}(t,x) = a^{\varepsilon}(t,x)e^{i\phi^{\varepsilon}(t,x)/\varepsilon}, \quad (a^{\varepsilon},\phi^{\varepsilon} \text{ uniformly bounded } H^{s}),$$

then so does the numerical solution obtained by splitting.

ODE: $i\varepsilon\partial_t u^{\varepsilon} = f(|u^{\varepsilon}|^2)u^{\varepsilon}, \ u^{\varepsilon}_{|t=0} = a_0^{\varepsilon}e^{i\phi_0^{\varepsilon}/\varepsilon}.$ $\rightsquigarrow u^{\varepsilon}(t,x) = a_0^{\varepsilon}(x)e^{i\phi_0^{\varepsilon}(x)/\varepsilon - itf(|a_0^{\varepsilon}(x)|^2)/\varepsilon}.$ Amounts to considering the system:

$$\begin{cases} \partial_t \phi^{\varepsilon} = -f\left(|a^{\varepsilon}|^2\right) \quad ; \quad \phi^{\varepsilon}_{|t=0} = \phi^{\varepsilon}_0, \\ \partial_t a^{\varepsilon} = 0 \quad ; \quad a^{\varepsilon}_{|t=0} = a^{\varepsilon}_0. \end{cases}$$

$$u^{\varepsilon}(t,x) = a^{\varepsilon}(t,x)e^{i\phi^{\varepsilon}(t,x)/\varepsilon}, \quad (a^{\varepsilon},\phi^{\varepsilon} \text{ uniformly bounded } H^{s}),$$

then so does the numerical solution obtained by splitting.

ODE: $i\varepsilon\partial_t u^{\varepsilon} = f(|u^{\varepsilon}|^2)u^{\varepsilon}, \ u^{\varepsilon}_{|t=0} = a_0^{\varepsilon}e^{i\phi_0^{\varepsilon}/\varepsilon}.$ $\rightsquigarrow u^{\varepsilon}(t,x) = a_0^{\varepsilon}(x)e^{i\phi_0^{\varepsilon}(x)/\varepsilon - itf(|a_0^{\varepsilon}(x)|^2)/\varepsilon}.$ Amounts to considering the system:

$$\begin{cases} \partial_t \phi^{\varepsilon} = -f\left(|a^{\varepsilon}|^2\right) \quad ; \quad \phi^{\varepsilon}_{|t=0} = \phi^{\varepsilon}_0, \\ \partial_t a^{\varepsilon} = 0 \quad ; \quad a^{\varepsilon}_{|t=0} = a^{\varepsilon}_0. \end{cases}$$

Linear PDE: $i\varepsilon \partial_t u^{\varepsilon} + \frac{\varepsilon^2}{2} \Delta u^{\varepsilon} = 0$, $u_{|t=0}^{\varepsilon} = a_0^{\varepsilon} e^{i\phi_0^{\varepsilon}/\varepsilon}$. The solution can be written as $u^{\varepsilon} = a^{\varepsilon} e^{i\phi^{\varepsilon}/\varepsilon}$, with

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = 0 \quad ; \quad \phi^{\varepsilon}_{|t=0} = \phi^{\varepsilon}_0, \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon} \quad ; \quad a^{\varepsilon}_{|t=0} = a^{\varepsilon}_0. \end{cases}$$

 \rightsquigarrow The system is *decoupled*: $\nabla \phi^{\varepsilon}$ solves Burgers. Before singularity formation, solve the first equation (ϕ^{ε} uniformly bounded H^{s}), then the second is a linear PDE with bounded coefficients (a^{ε} uniformly bounded H^{s-2}). Linear PDE: $i\varepsilon\partial_t u^{\varepsilon} + \frac{\varepsilon^2}{2}\Delta u^{\varepsilon} = 0$, $u_{|t=0}^{\varepsilon} = a_0^{\varepsilon}e^{i\phi_0^{\varepsilon}/\varepsilon}$. The solution can be written as $u^{\varepsilon} = a^{\varepsilon}e^{i\phi^{\varepsilon}/\varepsilon}$, with

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = 0 \quad ; \quad \phi^{\varepsilon}_{|t=0} = \phi^{\varepsilon}_0, \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon} \quad ; \quad a^{\varepsilon}_{|t=0} = a^{\varepsilon}_0. \end{cases}$$

 \rightsquigarrow The system is *decoupled*: $\nabla \phi^{\varepsilon}$ solves Burgers. Before singularity formation, solve the first equation (ϕ^{ε} uniformly bounded H^{s}), then the second is a linear PDE with bounded coefficients (a^{ε} uniformly bounded H^{s-2}). Linear PDE: $i\varepsilon\partial_t u^{\varepsilon} + \frac{\varepsilon^2}{2}\Delta u^{\varepsilon} = 0$, $u_{|t=0}^{\varepsilon} = a_0^{\varepsilon}e^{i\phi_0^{\varepsilon}/\varepsilon}$. The solution can be written as $u^{\varepsilon} = a^{\varepsilon}e^{i\phi^{\varepsilon}/\varepsilon}$, with

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = 0 \quad ; \quad \phi^{\varepsilon}_{|t=0} = \phi^{\varepsilon}_0, \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon} \quad ; \quad a^{\varepsilon}_{|t=0} = a^{\varepsilon}_0. \end{cases}$$

 \rightsquigarrow The system is *decoupled*: $\nabla \phi^{\varepsilon}$ solves Burgers. Before singularity formation, solve the first equation (ϕ^{ε} uniformly bounded H^{s}), then the second is a linear PDE with bounded coefficients (a^{ε} uniformly bounded H^{s-2}).

Outcome

The numerical solution is written as $a^{\varepsilon}e^{i\phi^{\varepsilon}/\varepsilon}$, by solving successively

$$\begin{cases} \partial_t \phi^{\varepsilon} = -f\left(|\boldsymbol{a}^{\varepsilon}|^2\right), \\ \partial_t \boldsymbol{a}^{\varepsilon} = \boldsymbol{0}. \end{cases}$$

and

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = 0, \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon}. \end{cases}$$

Amounts to do some splitting on

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = -f\left(|a^{\varepsilon}|^2\right), \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon}. \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outcome

The numerical solution is written as $a^{\varepsilon}e^{i\phi^{\varepsilon}/\varepsilon}$, by solving successively

$$\begin{cases} \partial_t \phi^{\varepsilon} = -f\left(|\mathbf{a}^{\varepsilon}|^2\right), \\ \partial_t \mathbf{a}^{\varepsilon} = \mathbf{0}. \end{cases}$$

and

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = 0, \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon}. \end{cases}$$

 \rightsquigarrow Amounts to do some splitting on

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = -f\left(|a^{\varepsilon}|^2\right), \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon}. \end{cases}$$

(日) (周) (日) (日) (日) (日) (000)

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = -f\left(|a^{\varepsilon}|^2\right), \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon}. \end{cases}$$

 \rightsquigarrow Without $i\frac{\varepsilon}{2}\Delta a^{\varepsilon}$, for $f(\rho) = +\rho^{\gamma-1}$, symmetrised version of isentropic Euler.

→ With $i\frac{\varepsilon}{2}\Delta a^{\varepsilon}$, system introduced by Emmanuel Grenier (f' > 0). → Generalizations: WKB regime for other equations ($f' \ge 0$, Schrödinger-Poisson, $f(\rho) = \lambda \rho^{\sigma}$).

(日) (周) (日) (日) (日) (日) (000)

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = -f\left(|a^{\varepsilon}|^2\right), \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon}. \end{cases}$$

 \rightsquigarrow Without $i\frac{\varepsilon}{2}\Delta a^{\varepsilon}$, for $f(\rho) = +\rho^{\gamma-1}$, symmetrised version of isentropic Euler.

→ With $i\frac{\varepsilon}{2}\Delta a^{\varepsilon}$, system introduced by Emmanuel Grenier (f' > 0). → Generalizations: WKB regime for other equations ($f' \ge 0$, Schrödinger-Poisson, $f(\rho) = \lambda \rho^{\sigma}$).

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 三国社 ののの

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = -f\left(|a^{\varepsilon}|^2\right), \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon} \end{cases}$$

 \rightsquigarrow Without $i\frac{\varepsilon}{2}\Delta a^{\varepsilon}$, for $f(\rho) = +\rho^{\gamma-1}$, symmetrised version of isentropic Euler.

→ With $i\frac{\varepsilon}{2}\Delta a^{\varepsilon}$, system introduced by Emmanuel Grenier (f' > 0). → Generalizations: WKB regime for other equations ($f' \ge 0$, Schrödinger-Poisson, $f(\rho) = \lambda \rho^{\sigma}$).

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = 0, \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon}. \end{cases}$$

- The linear PDE has been replaced by a nonlinear system.
- $\nabla \phi^{\varepsilon}$ solves (multiD) Burgers: local resolution, propagation of H^{s} regularity (s > d/2 + 1), tame estimates.
- If $\nabla \phi^{\varepsilon} \in L^{\infty}([0, \tau]; H^s)$, s > d/2 + 1, one cannot hope better than $a^{\varepsilon} \in L^{\infty}([0, \tau]; H^{s-1})$.

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = 0, \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon}. \end{cases}$$

• The linear PDE has been replaced by a nonlinear system.

- $\nabla \phi^{\varepsilon}$ solves (multiD) Burgers: local resolution, propagation of H^{s} regularity (s > d/2 + 1), tame estimates.
- If $\nabla \phi^{\varepsilon} \in L^{\infty}([0, \tau]; H^s)$, s > d/2 + 1, one cannot hope better than $a^{\varepsilon} \in L^{\infty}([0, \tau]; H^{s-1})$.

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = 0, \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon}. \end{cases}$$

- The linear PDE has been replaced by a nonlinear system.
- ∇φ^ε solves (multiD) Burgers: local resolution, propagation of H^s regularity (s > d/2 + 1), tame estimates.
- If $\nabla \phi^{\varepsilon} \in L^{\infty}([0, \tau]; H^s)$, s > d/2 + 1, one cannot hope better than $a^{\varepsilon} \in L^{\infty}([0, \tau]; H^{s-1})$.

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = 0, \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon} \end{cases}$$

- The linear PDE has been replaced by a nonlinear system.
- $\nabla \phi^{\varepsilon}$ solves (multiD) Burgers: local resolution, propagation of H^{s} regularity (s > d/2 + 1), tame estimates.
- If $\nabla \phi^{\varepsilon} \in L^{\infty}([0, \tau]; H^s)$, s > d/2 + 1, one cannot hope better than $a^{\varepsilon} \in L^{\infty}([0, \tau]; H^{s-1})$.

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = 0, \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon} \end{cases}$$

- The linear PDE has been replaced by a nonlinear system.
- $\nabla \phi^{\varepsilon}$ solves (multiD) Burgers: local resolution, propagation of H^{s} regularity (s > d/2 + 1), tame estimates.
- If $\nabla \phi^{\varepsilon} \in L^{\infty}([0, \tau]; H^{s})$, s > d/2 + 1, one cannot hope better than $a^{\varepsilon} \in L^{\infty}([0, \tau]; H^{s-1})$.

Propagating Sobolev regularity: ODE

$$\begin{cases} \partial_t \phi^{\varepsilon} = -f\left(|\boldsymbol{a}^{\varepsilon}|^2\right), \\ \partial_t \boldsymbol{a}^{\varepsilon} = \boldsymbol{0}. \end{cases}$$

- If f is local (f(ρ) = ρ^{γ−1}), then for a^ε ∈ L[∞]([0, τ]; H^σ), σ > d/2, φ^ε ∈ L[∞]([0, τ]; H^σ) and not better: the numerical scheme does not preserve the regularity.
- The issue of loss of regularity vanishes if a Poisson type nonlinearity is considered.
- Other way to overcome the loss of regularity (linear equation): work in time dependent analytic regularity (joint work with C. Gallo).

Propagating Sobolev regularity: ODE

$$\begin{cases} \partial_t \phi^{\varepsilon} = -f\left(|\mathbf{a}^{\varepsilon}|^2\right), \\ \partial_t \mathbf{a}^{\varepsilon} = \mathbf{0}. \end{cases}$$

- If f is local (f(ρ) = ρ^{γ-1}), then for a^ε ∈ L[∞]([0, τ]; H^σ), σ > d/2, φ^ε ∈ L[∞]([0, τ]; H^σ) and not better: the numerical scheme does not preserve the regularity.
- The issue of loss of regularity vanishes if a Poisson type nonlinearity is considered.
- Other way to overcome the loss of regularity (linear equation): work in time dependent analytic regularity (joint work with C. Gallo).

Propagating Sobolev regularity: ODE

$$\begin{cases} \partial_t \phi^{\varepsilon} = -f\left(|\mathbf{a}^{\varepsilon}|^2\right), \\ \partial_t \mathbf{a}^{\varepsilon} = \mathbf{0}. \end{cases}$$

- If f is local (f(ρ) = ρ^{γ-1}), then for a^ε ∈ L[∞]([0, τ]; H^σ), σ > d/2, φ^ε ∈ L[∞]([0, τ]; H^σ) and not better: the numerical scheme does not preserve the regularity.
- The issue of loss of regularity vanishes if a Poisson type nonlinearity is considered.
- Other way to overcome the loss of regularity (linear equation): work in time dependent analytic regularity (joint work with C. Gallo).

$$\begin{cases} \partial_t \phi^{\varepsilon} = -f\left(|\mathbf{a}^{\varepsilon}|^2\right), \\ \partial_t \mathbf{a}^{\varepsilon} = \mathbf{0}. \end{cases}$$

- If f is local (f(ρ) = ρ^{γ-1}), then for a^ε ∈ L[∞]([0, τ]; H^σ), σ > d/2, φ^ε ∈ L[∞]([0, τ]; H^σ) and not better: the numerical scheme does not preserve the regularity.
- The issue of loss of regularity vanishes if a Poisson type nonlinearity is considered.
- Other way to overcome the loss of regularity (linear equation): work in time dependent analytic regularity (joint work with C. Gallo).

$$\begin{cases} \partial_t \phi^{\varepsilon} = -f\left(|\mathbf{a}^{\varepsilon}|^2\right), \\ \partial_t \mathbf{a}^{\varepsilon} = \mathbf{0}. \end{cases}$$

- If f is local (f(ρ) = ρ^{γ-1}), then for a^ε ∈ L[∞]([0, τ]; H^σ), σ > d/2, φ^ε ∈ L[∞]([0, τ]; H^σ) and not better: the numerical scheme does not preserve the regularity.
- The issue of loss of regularity vanishes if a Poisson type nonlinearity is considered.
- Other way to overcome the loss of regularity (linear equation): work in time dependent analytic regularity (joint work with C. Gallo).

Sobolev regularity

Hypothesis

 $f(\rho) = K * \rho$, where the Fourier transform of K,

$$\widehat{K}(\xi) = rac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} e^{-ix\cdot\xi} K(x) dx,$$

satisfies:

• If
$$d \leq 2$$
, $\sup_{\xi \in \mathbb{R}^d} (1 + |\xi|^2) |\widehat{K}(\xi)| < \infty$;
• If $d \geq 3$, $\sup_{\xi \in \mathbb{R}^d} |\xi|^2 |\widehat{K}(\xi)| < \infty$.

Example

If $d \ge 3$, Schrödinger-Poisson: $f(|u|^2)u = V_p u$, where $\Delta V_p = \lambda |u|^2$, $\lambda \in \mathbb{R}$.

ъ

< 注→ < 注→

< A

If for s > d/2 + 1, $\phi_0 \in L^{\infty}$, $(\nabla \phi_0, a_0) \in H^{s+1} \times H^s$, then there exists T > 0 such that the system

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = -f\left(|a^{\varepsilon}|^2\right) \quad ; \quad \phi_0^{\varepsilon} = \phi_0, \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon} \quad ; \quad a_0^{\varepsilon} = a_0, \end{cases}$$

has a unique solution $(\phi^{\varepsilon}, a^{\varepsilon}) \in C([0, T]; L^{\infty} \times H^{s})$ such that $\nabla \phi^{\varepsilon} \in C([0, T]; H^{s+1})$. In addition, the bounds are uniform in $\varepsilon \in]0, 1]$. We can take $T = T_{\max} - \delta$, where T_{\max} is the lifespan of the Euler-Poisson system (if $T_{\max} < \infty$). \rightsquigarrow WKB form preserved for the exact solution, on [0, T]. If for s > d/2 + 1, $\phi_0 \in L^{\infty}$, $(\nabla \phi_0, a_0) \in H^{s+1} \times H^s$, then there exists T > 0 such that the system

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = -f\left(|a^{\varepsilon}|^2\right) \quad ; \quad \phi_0^{\varepsilon} = \phi_0, \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon} \quad ; \quad a_0^{\varepsilon} = a_0, \end{cases}$$

has a unique solution $(\phi^{\varepsilon}, a^{\varepsilon}) \in C([0, T]; L^{\infty} \times H^{s})$ such that $\nabla \phi^{\varepsilon} \in C([0, T]; H^{s+1})$. In addition, the bounds are uniform in $\varepsilon \in]0, 1]$. We can take $T = T_{\max} - \delta$, where T_{\max} is the lifespan of the Euler-Poisson system (if $T_{\max} < \infty$).

 \rightsquigarrow WKB form preserved for the exact solution, on [0, I

・ロト ・ 一 ・ ・ ミト ・ ヨート ・ ショー

If for s > d/2 + 1, $\phi_0 \in L^{\infty}$, $(\nabla \phi_0, a_0) \in H^{s+1} \times H^s$, then there exists T > 0 such that the system

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = -f\left(|a^{\varepsilon}|^2\right) \quad ; \quad \phi_0^{\varepsilon} = \phi_0, \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon} \quad ; \quad a_0^{\varepsilon} = a_0, \end{cases}$$

has a unique solution $(\phi^{\varepsilon}, a^{\varepsilon}) \in C([0, T]; L^{\infty} \times H^{s})$ such that $\nabla \phi^{\varepsilon} \in C([0, T]; H^{s+1})$. In addition, the bounds are uniform in $\varepsilon \in]0, 1]$. We can take $T = T_{\max} - \delta$, where T_{\max} is the lifespan of the Euler-Poisson system (if $T_{\max} < \infty$). \rightsquigarrow WKB form preserved for the exact solution, on [0, T].

・ロト ・ 一 ・ ・ ミト ・ ヨート ・ ショー

Main result

Theorem

There exist $\varepsilon_0 > 0$ and C, c_0 independent of $\varepsilon \in]0, \varepsilon_0]$ such that for all $\Delta t \in (0, c_0]$, for all $n \in \mathbb{N}$ such that $t_n = n\Delta t \in [0, T]$, we have: 1. There exist ϕ^{ε} and a^{ε} with

 $\sup_{t\in[0,T]}\left(\|a^{\varepsilon}(t)\|_{H^{s}(\mathbb{R}^{d})}+\|\nabla\phi^{\varepsilon}(t)\|_{H^{s+1}(\mathbb{R}^{d})}+\|\phi^{\varepsilon}(t)\|_{L^{\infty}(\mathbb{R}^{d})}\right)\leqslant C,$

such that $u^{\varepsilon} = a^{\varepsilon} e^{i\phi^{\varepsilon}/\varepsilon}$ on $[0, T] \times \mathbb{R}^{d}$. 2. There exist ϕ_{n}^{ε} and a_{n}^{ε} with

 $\|a_n^{\varepsilon}\|_{H^{s}(\mathbb{R}^d)} + \|\nabla\phi_n^{\varepsilon}\|_{H^{s+1}(\mathbb{R}^d)} + \|\phi_n^{\varepsilon}\|_{L^{\infty}(\mathbb{R}^d)} \leqslant C,$

such that $(Z_{\varepsilon}^{\Delta t})^n (a_0 e^{i\phi_0/\varepsilon}) = a_n^{\varepsilon} e^{i\phi_n/\varepsilon}$, and the following error estimate holds:

 $\|a_n^{\varepsilon}-a^{\varepsilon}(t_n)\|_{H^{s-1}}+\|\nabla\phi_n^{\varepsilon}-\nabla\phi^{\varepsilon}(t_n)\|_{H^s}+\|\phi_n^{\varepsilon}-\phi^{\varepsilon}(t_n)\|_{L^{\infty}}\leqslant C\Delta t.$

Corollary

Under the previous assumptions, with previous notations:

$$\left\| (Z_{\varepsilon}^{\Delta t})^n u_0^{\varepsilon} - S_{\varepsilon}^{t_n} u_0^{\varepsilon} \right\|_{L^2(\mathbb{R}^d)} \leqslant C \frac{\Delta t}{\varepsilon}.$$

Main quadratic observables:

$$\left\| \left| (Z_{\varepsilon}^{\Delta t})^{n} u_{0}^{\varepsilon} \right|^{2} - |u^{\varepsilon}(t_{n})|^{2} \right\|_{L^{1}(\mathbb{R}^{d}) \cap L^{\infty}(\mathbb{R}^{d})} \leqslant C \Delta t,$$

$$\left\| \operatorname{Im} \left(\varepsilon \overline{(Z_{\varepsilon}^{\Delta t})^{n} u_{0}^{\varepsilon}} \nabla (Z_{\varepsilon}^{\Delta t})^{n} u_{0}^{\varepsilon} \right) - J^{\varepsilon}(t_{n}) \right\|_{L^{1}(\mathbb{R}^{d}) \cap L^{\infty}(\mathbb{R}^{d})} \leqslant C \Delta t.$$

Remark

In agreement with numerical experiments by Bao-Jin-Markowich '03.

Rémi Carles (Montpellier)

• Regularity estimates on the exact solution.

- (Local) regularity estimates on the numerical scheme.
- Local error estimate (after Descombes-Thalhammer).
- From local to global: Lady Windermere's fan and induction (after Holden-Lubich-Risebro).

Remark

Working in phase/amplitude representation yields L^{∞} bounds independent of $\varepsilon \in]0,1]$, which were not known.

- Regularity estimates on the exact solution.
- (Local) regularity estimates on the numerical scheme.
- Local error estimate (after Descombes-Thalhammer).
- From local to global: Lady Windermere's fan and induction (after Holden-Lubich-Risebro).

Remark

Working in phase/amplitude representation yields L^{∞} bounds independent of $\varepsilon \in]0,1]$, which were not known.

- Regularity estimates on the exact solution.
- (Local) regularity estimates on the numerical scheme.
- Local error estimate (after Descombes-Thalhammer).
- From local to global: Lady Windermere's fan and induction (after Holden-Lubich-Risebro).

Remark

Working in phase/amplitude representation yields L^{∞} bounds independent of $\varepsilon \in]0, 1]$, which were not known.

- Regularity estimates on the exact solution.
- (Local) regularity estimates on the numerical scheme.
- Local error estimate (after Descombes-Thalhammer).
- From local to global: Lady Windermere's fan and induction (after Holden-Lubich-Risebro).

Remark

Working in phase/amplitude representation yields L^{∞} bounds independent of $\varepsilon \in]0,1]$, which were not known.

$$\|\psi\|_{\mathcal{H}^{\ell}_{\rho}}^{2} = \int_{\mathbb{R}^{d}} \langle \xi \rangle^{2\ell} \, e^{2\rho \langle \xi \rangle} |\hat{\psi}(\xi)|^{2} d\xi,$$

with a time dependent weight ρ .

Inspired by the analysis of Ginibre & Velo '01. Requirements:

 ρ(t) ≥ δ > 0 on [0, T],

• $-\dot{
ho}(t) \gg 1.$

For instance, $\rho(t) = M_0 - Mt$, with $M_0, M \gg 1$. Advantages:

- The previous loss of regularity issue disappears,
- No symmetry needed in the hydrodynamical form (unlike in Grenier's approach).

Typically, we can consider $f(|u|^2)u=\lambda|u|^{2\sigma}u,~\sigma\in\mathbb{N},~\lambda\in\mathbb{R}.$

$$\|\psi\|_{\mathcal{H}^{\ell}_{\rho}}^{2} = \int_{\mathbb{R}^{d}} \langle \xi \rangle^{2\ell} \, e^{2\rho \langle \xi \rangle} |\hat{\psi}(\xi)|^{2} d\xi,$$

with a time dependent weight ρ . Inspired by the analysis of Ginibre & Velo '01. Requirements:

•
$$ho(t) \geqslant \delta > 0$$
 on $[0, T]$,

• $-\dot{
ho}(t) \gg 1.$

For instance, $ho(t)=M_0-Mt$, with $M_0,M\gg 1$. Advantages:

- The previous loss of regularity issue disappears,
- No symmetry needed in the hydrodynamical form (unlike in Grenier's approach).

Typically, we can consider $f(|u|^2)u=\lambda|u|^{2\sigma}u,\,\sigma\in\mathbb{N},\,\lambda\in\mathbb{R}.$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ 三百 ののの

$$\|\psi\|_{\mathcal{H}^{\ell}_{\rho}}^{2} = \int_{\mathbb{R}^{d}} \langle \xi \rangle^{2\ell} \, e^{2\rho \langle \xi \rangle} |\hat{\psi}(\xi)|^{2} d\xi,$$

with a time dependent weight ρ .

Inspired by the analysis of Ginibre & Velo '01. Requirements:

- $\rho(t) \geqslant \delta > 0$ on [0, T],
- $-\dot{
 ho}(t) \gg 1.$

For instance, $\rho(t) = M_0 - Mt$, with $M_0, M \gg 1$. Advantages:

- The previous loss of regularity issue disappears,
- No symmetry needed in the hydrodynamical form (unlike in Grenier's approach).

Typically, we can consider $f(|u|^2)u=\lambda|u|^{2\sigma}u,~\sigma\in\mathbb{N},~\lambda\in\mathbb{R}.$

うしつ 正正 ヘビト ヘビト ヘビー

$$\|\psi\|_{\mathcal{H}^{\ell}_{\rho}}^{2} = \int_{\mathbb{R}^{d}} \langle \xi \rangle^{2\ell} \, e^{2\rho \langle \xi \rangle} |\hat{\psi}(\xi)|^{2} d\xi,$$

with a time dependent weight ρ .

Inspired by the analysis of Ginibre & Velo '01. Requirements:

- $\rho(t) \geqslant \delta > 0$ on [0, T],
- $-\dot{
 ho}(t) \gg 1.$

For instance, $\rho(t) = M_0 - Mt$, with $M_0, M \gg 1$. Advantages:

- The previous loss of regularity issue disappears,
- No symmetry needed in the hydrodynamical form (unlike in Grenier's approach).

Typically, we can consider $f(|u|^2)u=\lambda|u|^{2\sigma}u,~\sigma\in\mathbb{N},~\lambda\in\mathbb{R}.$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ 三百 ののの

$$\|\psi\|_{\mathcal{H}^{\ell}_{\rho}}^{2} = \int_{\mathbb{R}^{d}} \langle \xi \rangle^{2\ell} \, e^{2\rho \langle \xi \rangle} |\hat{\psi}(\xi)|^{2} d\xi,$$

with a time dependent weight ρ .

Inspired by the analysis of Ginibre & Velo '01. Requirements:

- ρ(t) ≥ δ > 0 on [0, T],
- $-\dot{
 ho}(t)\gg 1.$

For instance, $\rho(t) = M_0 - Mt$, with $M_0, M \gg 1$. Advantages:

- The previous loss of regularity issue disappears,
- No symmetry needed in the hydrodynamical form (unlike in Grenier's approach).

Typically, we can consider $f(|u|^2)u=\lambda|u|^{2\sigma}u,\,\sigma\in\mathbb{N},\,\lambda\in\mathbb{R}.$

$$\|\psi\|_{\mathcal{H}^{\ell}_{\rho}}^{2} = \int_{\mathbb{R}^{d}} \langle \xi \rangle^{2\ell} \, e^{2\rho \langle \xi \rangle} |\hat{\psi}(\xi)|^{2} d\xi,$$

with a time dependent weight ρ .

Inspired by the analysis of Ginibre & Velo '01. Requirements:

- ρ(t) ≥ δ > 0 on [0, T],
- $-\dot{
 ho}(t)\gg 1.$

For instance, $\rho(t) = M_0 - Mt$, with $M_0, M \gg 1$. Advantages:

- The previous loss of regularity issue disappears,
- No symmetry needed in the hydrodynamical form (unlike in Grenier's approach).

Typically, we can consider $f(|u|^2)u=\lambda|u|^{2\sigma}u,\,\sigma\in\mathbb{N},\,\lambda\in\mathbb{R}$

$$\|\psi\|_{\mathcal{H}^{\ell}_{\rho}}^{2} = \int_{\mathbb{R}^{d}} \langle \xi \rangle^{2\ell} \, e^{2\rho \langle \xi \rangle} |\hat{\psi}(\xi)|^{2} d\xi,$$

with a time dependent weight ρ .

Inspired by the analysis of Ginibre & Velo '01. Requirements:

- ρ(t) ≥ δ > 0 on [0, T],
- $-\dot{
 ho}(t) \gg 1.$

For instance, $\rho(t) = M_0 - Mt$, with $M_0, M \gg 1$. Advantages:

- The previous loss of regularity issue disappears,
- No symmetry needed in the hydrodynamical form (unlike in Grenier's approach).

Typically, we can consider $f(|u|^2)u = \lambda |u|^{2\sigma}u, \sigma \in \mathbb{N}, \lambda \in \mathbb{R}$.

A 回 > A E > A E > E E < のQの</p>

Parabolization of the Euler system

The time dependent analytic norm

$$\|\psi\|^2_{\mathcal{H}^\ell_
ho} = \int_{\mathbb{R}^d} \langle \xi
angle^{2\ell} e^{2
ho\langle \xi
angle} |\hat{\psi}(\xi)|^2 d\xi$$

implies the general property

$$\frac{d}{dt}\|\psi\|_{\mathcal{H}_{\rho}^{\ell}}^{2}=2\langle\partial_{t}\psi,\psi\rangle_{\mathcal{H}_{\rho}^{\ell}}+2\dot{\rho}\|\psi\|_{\mathcal{H}_{\rho}^{\ell+1/2}}^{2}.$$

Last term: as if a parabolic term (of order 1) had been added ($\dot{\rho} < 0$). \rightarrow Implicit dependence of $M = -\dot{\rho}$ in the computations: assume that the initial data a_0 and ϕ_0 satisfy

$$\int_{\mathbb{R}^d} e^{\langle \xi
angle^{1+\delta}} \left(|\hat{a}_0(\xi)|^2 + |\hat{\phi}_0(\xi)|^2
ight) d\xi < \infty,$$

for some $\delta > 0$ (e.g.: Gaussian data, or compact support on Fourier side). \sim Same error estimate as before (in all H^s , with T > 0 independent of $\varepsilon_{0,\infty}$

Parabolization of the Euler system

The time dependent analytic norm

$$\|\psi\|^2_{\mathcal{H}^\ell_
ho} = \int_{\mathbb{R}^d} \langle \xi
angle^{2\ell} e^{2
ho\langle \xi
angle} |\hat{\psi}(\xi)|^2 d\xi$$

implies the general property

$$\frac{d}{dt}\|\psi\|_{\mathcal{H}_{\rho}^{\ell}}^{2}=2\langle\partial_{t}\psi,\psi\rangle_{\mathcal{H}_{\rho}^{\ell}}+2\dot{\rho}\|\psi\|_{\mathcal{H}_{\rho}^{\ell+1/2}}^{2}.$$

Last term: as if a parabolic term (of order 1) had been added ($\dot{\rho} < 0$). \rightsquigarrow Implicit dependence of $M = -\dot{\rho}$ in the computations: assume that the initial data a_0 and ϕ_0 satisfy

$$\int_{\mathbb{R}^d} e^{\langle \xi \rangle^{1+\delta}} \left(|\hat{a}_0(\xi)|^2 + |\hat{\phi}_0(\xi)|^2 \right) d\xi < \infty,$$

for some $\delta > 0$ (e.g.: Gaussian data, or compact support on Fourier side). \sim Same error estimate as before (in all H^s , with T > 0 independent of $\varepsilon_{0,\infty}$

Rémi Carles (Montpellier)

Parabolization of the Euler system

The time dependent analytic norm

$$\|\psi\|^2_{\mathcal{H}^\ell_
ho} = \int_{\mathbb{R}^d} \langle \xi
angle^{2\ell} e^{2
ho\langle \xi
angle} |\hat{\psi}(\xi)|^2 d\xi$$

implies the general property

$$\frac{d}{dt}\|\psi\|_{\mathcal{H}_{\rho}^{\ell}}^{2}=2\langle\partial_{t}\psi,\psi\rangle_{\mathcal{H}_{\rho}^{\ell}}+2\dot{\rho}\|\psi\|_{\mathcal{H}_{\rho}^{\ell+1/2}}^{2}.$$

Last term: as if a parabolic term (of order 1) had been added ($\dot{\rho} < 0$). \rightsquigarrow Implicit dependence of $M = -\dot{\rho}$ in the computations: assume that the initial data a_0 and ϕ_0 satisfy

$$\int_{\mathbb{R}^d} e^{\langle \xi \rangle^{1+\delta}} \left(|\hat{a}_0(\xi)|^2 + |\hat{\phi}_0(\xi)|^2 \right) d\xi < \infty,$$

for some $\delta > 0$ (e.g.: Gaussian data, or compact support on Fourier side). \sim Same error estimate as before (in all H^s , with T > 0 independent of ε).

Theorem

Suppose that $d, \sigma \in \mathbb{N}$, $d, \sigma \ge 1$, and $\lambda \in \mathbb{R}$. Let ϕ_0, a_0 such that

$$\int_{\mathbb{R}^d} e^{\langle \xi \rangle^{1+\delta}} \left(|\hat{\phi}_0(\xi)|^2 + |\hat{a}_0(\xi)|^2 \right) d\xi < \infty, \, \, \textit{for some} \, \, \delta > 0.$$

 $\exists T, \varepsilon_0, c_0 > 0$ and $(C_k)_{k \in \mathbb{N}}$ s. t. $\forall \varepsilon \in (0, \varepsilon_0]$, the following holds: 1. $\exists ! u^{\varepsilon} = S_{\varepsilon}^t u_0^{\varepsilon} \in C([0, T], \cap_s H^s)$. Moreover, there exist ϕ^{ε} and a^{ε} with

$$\sup_{t\in[0,T]}\left(\|a^{\varepsilon}(t)\|_{H^{k}(\mathbb{R}^{d})}+\|\phi^{\varepsilon}(t)\|_{H^{k}(\mathbb{R}^{d})}\right)\leqslant C_{k},\quad\forall k\in\mathbb{N},$$

such that $u^{\varepsilon}(t,x) = a^{\varepsilon}(t,x)e^{i\phi^{\varepsilon}(t,x)/\varepsilon}$ for all $(t,x) \in [0,T] \times \mathbb{R}^d$. 2. There exist ϕ_n^{ε} and a_n^{ε} with

 $\|a_n^{\varepsilon}\|_{H^k(\mathbb{R}^d)} + \|\phi_n^{\varepsilon}\|_{H^k(\mathbb{R}^d)} \leqslant C_k, \quad \forall k \in \mathbb{N}$

such that $(Z_{\varepsilon}^{\Delta t})^n \left(a_0 e^{i\phi_0/\varepsilon}\right) = a_n^{\varepsilon} e^{i\phi_n/\varepsilon}$, and:

 $\|a_n^{\varepsilon}-a^{\varepsilon}(t_n)\|_{H^k}+\|\phi_n^{\varepsilon}-\phi^{\varepsilon}(t_n)\|_{H^k}\leqslant C_k\Delta t.$

Local error estimate

Let A an operator, and \mathcal{E}_A its propagator:

$$\partial_t \mathcal{E}_A(t,v) = A(\mathcal{E}_A(t,v)); \quad \mathcal{E}_A(0,v) = v.$$

Theorem (Descombes-Thalhammer)

Suppose that F(u) = A(u) + B(u), and denote

$$\mathcal{S}^{t}(u) = \mathcal{E}_{F}(t, u)$$
 and $\mathcal{Z}^{t}(u) = \mathcal{E}_{B}(t, \mathcal{E}_{A}(t, u))$

the exact and numerical flows, respectively. The exact formula holds

 $\mathcal{Z}^{t}(u) - \mathcal{S}^{t}(u) = \int_{0}^{t} \int_{0}^{\tau_{1}} \partial_{2} \mathcal{E}_{F} \left(t - \tau_{1}, \mathcal{Z}^{\tau_{1}}(u) \right) \partial_{2} \mathcal{E}_{B} \left(\tau_{1} - \tau_{2}, \mathcal{E}_{A}(\tau_{1}, u) \right) \\ \times \left[B, A \right] \left(\mathcal{E}_{B} \left(\tau_{2}, \mathcal{E}_{A}(\tau_{1}, u) \right) \right) d\tau_{2} d\tau_{1}.$

NB: $\partial_2 \mathcal{E} =$ linearized flow.

Standard framework for NLS:

$$A = i \frac{\varepsilon}{2} \Delta;$$
 $B(v) = -\frac{i}{\varepsilon} f(|v|^2) v;$ $F(v) = A(v) + B(v).$

Linearized exact flow: $\partial_2 \mathcal{E}_F(t, u) w_0 = w$, where

$$i\varepsilon\partial_t w + \frac{\varepsilon^2}{2}\Delta w = f(|u|^2)w + f(\overline{u}w + u\overline{w})u; \quad w_{|t=0} = w_0.$$

Drawback: does not preserve the (monokinetic) WKB structure. If $u = ae^{i\phi/\varepsilon}$, then

$$i\varepsilon\partial_t w + \frac{\varepsilon^2}{2}\Delta w = f\left(|a|^2\right)w + f\left(\overline{a}e^{-i\phi/\varepsilon}w + ae^{i\phi/\varepsilon}\overline{w}\right)ae^{i\phi/\varepsilon}.$$

For $w_0 = b_0 e^{i\varphi_0/\varepsilon}$, in general, there does not hold

 $w = b^{\varepsilon} e^{i \varphi^{\varepsilon} / \varepsilon}, \quad b^{\varepsilon}, \varphi^{\varepsilon}$ uniformly bounded in H^{s} .

Remark

More simply, $a_n^{\varepsilon} e^{i\phi_n^{\varepsilon}/\varepsilon} - a^{\varepsilon} e^{i\phi^{\varepsilon}/\varepsilon}$ has no reason to be factored $\alpha_n^{\varepsilon} e^{i\varphi_n^{\varepsilon}/\varepsilon}$ (with uniform bounds).

Rémi Carles (Montpellier)

That is another reason to work on systems:

$$\begin{cases} \partial_t \phi^{\varepsilon} = -f\left(|\boldsymbol{a}^{\varepsilon}|^2\right), \\ \partial_t \boldsymbol{a}^{\varepsilon} = 0. \end{cases}$$

 and

$$\begin{cases} \partial_t \phi^{\varepsilon} + \frac{1}{2} |\nabla \phi^{\varepsilon}|^2 = 0, \\ \partial_t a^{\varepsilon} + \nabla \phi^{\varepsilon} \cdot \nabla a^{\varepsilon} + \frac{1}{2} a^{\varepsilon} \Delta \phi^{\varepsilon} = i \frac{\varepsilon}{2} \Delta a^{\varepsilon}. \end{cases}$$

三日 のへの

3 K 4 3 K

Precised framework

$$\begin{split} A\begin{pmatrix}\phi\\a\end{pmatrix} &= \begin{pmatrix} -\frac{1}{2}|\nabla\phi|^2\\ -\nabla\phi\cdot\nabla a - \frac{1}{2}a\Delta\phi + i\frac{\varepsilon}{2}\Delta a \end{pmatrix},\\ B\begin{pmatrix}\phi\\a\end{pmatrix} &= \begin{pmatrix} -f\left(|a|^2\right)\\ 0 \end{pmatrix}. \end{split}$$

Remark

Both operators are nonlinear.

$$[A,B]\begin{pmatrix}\phi\\a\end{pmatrix} = \begin{pmatrix}\nabla\phi\cdot\nabla f\left(|a|^2\right) - \operatorname{div} f\left(|a|^2\nabla\phi\right) - \varepsilon\operatorname{div} f\left(\operatorname{Im}\left(\overline{a}\nabla a\right)\right)\\\nabla a\cdot\nabla f\left(|a|^2\right) + \frac{1}{2}a\Delta f\left(|a|^2\right)\end{pmatrix}.$$

-

Theorem (Local error estimate for WKB states)

Let s > d/2 + 1 and $\mu > 0$. Suppose that

 $\|\nabla \phi^{\varepsilon}\|_{\mathcal{H}^{s+1}} \leqslant \mu, \quad \|\mathbf{a}^{\varepsilon}\|_{\mathcal{H}^{s}} \leqslant \mu.$

There exist $C, c_0 > 0$ (depending on μ) independent of $\varepsilon \in (0, 1]$ such that

$$\mathcal{L}\left(t, \begin{pmatrix} \phi^{\varepsilon} \\ a^{\varepsilon} \end{pmatrix}\right) := \mathcal{Z}_{\varepsilon}^{t} \begin{pmatrix} \phi^{\varepsilon} \\ a^{\varepsilon} \end{pmatrix} - \mathcal{S}_{\varepsilon}^{t} \begin{pmatrix} \phi^{\varepsilon} \\ a^{\varepsilon} \end{pmatrix} = \begin{pmatrix} \Psi^{\varepsilon}(t) \\ A^{\varepsilon}(t) \end{pmatrix},$$

where A^{ε} and Ψ^{ε} satisfy

$$\|
abla \Psi^arepsilon(t)\|_{H^s}+\|A^arepsilon(t)\|_{H^{s-1}}\leqslant Ct^2, \quad 0\leqslant t\leqslant c_0.$$

○ A E ► E E ■ ● 0 A C