On polynomial, regular and Nash images of Euclidean spaces (joint work mith IM Gamboa & C. Uleno)

SCHEDULE

- §1. Statement of the problem
- \$ 2. The open quarkant problem
- of 3. The 1-objectional case
- § 4. Semialgehair sets with piece wise linear boundary
- \$ 5. General properties
- \$ 6. The Nash case

\$ 1. Statement of the problem

Definitions:

A map $f:=(f_1,...,f_n):\mathbb{R}^n \to \mathbb{R}^m$ is of polynomial of each component for is prepulser Noch Definitions:

- fu is regular of $fu = \frac{gu}{h_N}$ where gu, h_N are polynomials and $\frac{1}{2}h_N = 0$ $\frac{1}{2} = \frac{1}{2}$
- · fu is Nash if it is smooth and semialphanic of fu is analytic and there exists a polynomial Pu & IR[x][y] \ 104 mich that Pu (x, fu (x)) = 0 \ x & IR...

Problems propond by Gambon at the 1990 Oberwolfach RAG week:

- (1) To characterite the sets $5 \subseteq \mathbb{R}^n$ that are the image of a polynomial map f: Rm - R" (open sets deserve special attention in relation to Jacobian Conjecture, see Jelonek 1980)
 - (2) Same problem for regular maps
 - (3) Open quadrant problem: To determine if Q:= 4x>0, y>0 4 \(\text{IR}^2 is a polynounal)

Digussión: Greeks before going to war consult Delphis oracle. Gumboa consulted Nagoya's Oracle (Shiota) to determine the difficulty of the Polynomial case: Very very difficult (Translation: Impossible) Regular case: Very difficult (Tradation: Al most curposible)

He suggested to study the Nash case and Gamboa also announced in the 1990 Obernolfach RAG Shiota's conjecture concerning Nosh images:

"A semialghair set 5 = R" of dimension d is a Nosh image of Rd (5 is pure dimensional and there exists an analytic path a: [0,1] -> S whose image meets all the connected components of the set of regular points + of 5"

* Regular points of a semialphair set S

- (1) Z S C" algebraic set of dimension d. Z + Reg (Z) (> 3 analytic diffeo Ψ: Δd (0, ε) → WZ c Z ↔ the way P(Z) mz is a regular local wing.
- (2) X ⊆ R" algebraic set. Reg (X) = X ∩ Reg (X): X is a complexification of X
- (3) Reg (5):= Int Reg (5°01) (5) Reg (5°01))

To simplify notations:

P(S) := inf { p31: S= f(IRP), f: IRP - IR" is polynomial} r(s):= inf frx1: S= f(R"), f: R" -> R" is polynomial 4 n(S): = inf hm = 1: S= f(Rm), f: Rm > R" is North

dim (S) < n (S) < r (S) < p(S) < + 00 (Special interest: When i (S) = dim (S)?

- O Sia polynomial image ← p(S) <+∞.
- @ Sin a regular image (> r(s) <+00.
- 3 Sin a North image (n(S) <+00.

Thu: n(S) & & d, + 00 4 : d = dem (S) Feeling: p(S) & dd, d+1, +00 8 d:= dim (5) r(5) e 1 d, d+1, + 0 {

Alternatively: Is there 5 = IR": dim (5) < r(5) < p(5) <+00?

Torski Seidenberg: SEIR" with p(S), r(S) o' n(S) <+ 0 => S is a semialgebraic set

\$ 2. The open quadrant problem (The first demanding result)

Is the open quadrant Q= {x>0, y>0} a polynomial image of R?? 1st solution: Presented on the 2002 Oberwolfach RAG week. Required computer another for Sturm's algorithm 2nd solution: The shortest proof (ArXiv: 1502.07866) f:= foot : R2 - R2 P2 1. P3 P2 P3 /////

(x,y) → ((xy-1)2+x2, (xy-1)2+y2); (x,y) → (x, y(xy-2)2+x(xy-1)2); (x,y) → (x(xy-2)2+ xy2,y)

3rd solution: The sparsest Known polynomial map to represent the open graduant. A topological argument shows that the image of the following map is a.

f(x,5):= ((x2y4+x4y2-y2-1)2+x6y4, (x4y2+x3y2-x2-1)2+x4y4) deg 12, 11 monomials; deg 16, 11 anonomials

(Anxio: 1502.08035)

Homework: To find a simpler polynomial map (with report to degree or nounder of monounces)

Dispinities: To find a polynomial map whose potential image is a presuited s.a. at SSR"

To prove that the image of the constructed map is S.

i Are there algorithms to compute explicitly the image of a semialy strange

Strategies to approach the general problem:

- (1) Explicit construction of polynomial and regular representations of large families of sants (so far with precenise linear boundary)
- (2) Search of general obstructions to be polynomial or regular images.

& 3. The 1-dimensional case (Full characterization)

Let 5 = R be a 1-dimensional s.a. set.

3.1. Polynomial case:

P(S) <+00 (> S is conducible (N(S) is a domain), unbounded, claps (S) is an invariant rational wave, el apr (5) 1 Ho = 4p4 and the gom el pr (5) p is medmible

p(s) <+00 => p(s) ≤2. In addition p(s)=1 (Sis cloud in R"

3.2. Regular case:

r(s) (+00 (S is meduible and cl Ripu (S) is a rational curve r(5) (+00 => r(5) ≤2. In addition r(5)=1 (-> | cl_RP4(5) = 5 or cl_RP4(5) = 5 or 5 p is induable

3.3. Nosh case

n(S) <+ 00 (n(S) = 1 (Sis onedwible

§ 4. Piecewise-linear boundary s.a. sets

We have focused on | K convex polyhedron of dim n 17,2 | Jut(K), IR" K, R" Jut(K) (Full characterization)

Thm: r(K) = r (Jut(K)) = n if n > 2

Recession cone: C(K):= 4 v & R": p+ 2 v & K +2 > 0 and p & K} C(K)≠ foly ← Kis unbounded

Thm: p(K) < +00 => dim C(K) = n => p(K) = n & p(Jut(K)) < +10 n+1

Thm: p(K Jut(K)) = n (dim C(K)= n & no bounded faces of dimension n-1

S= R"(K, S= R". Int(K)

Thu. $p(S) < +\infty$ or $p(\overline{S}) < +\infty \Rightarrow K \neq \mathbb{R}^{n-1} \times [-a, a] \Rightarrow p(S) = p(\overline{S}) = n$

	N =	1	N72		
S=IR4.K	K bounded	Kunbounded	Kbounded	Kunbounded	
	+ ×	1	+00	(n,+∞)	
P(K)	+ ~	2	+00	(n, n+1, +00)	
p (Iut (k))	+ 00				
P(S)	+ 00	2			
p(5)	+00	1			
r(K)	1	1		n	
r(Jut(u))	2	2			
r(5)	+ 00	2			
r(3)	+00	1			

& S. General properties

r(5) <+00 => 5 is s.a. set, pure dimensional, imdurible, connected by rational paths p(5) <+ 00 => In addition, S is connected by parametric similares, inbounded or a singleton and with unbounded or ningleton projections.

B) Advances properties

Thu: p(s) <+ 00 = So:= el RPM (s) 1 Hoo is connected (inspired by Jelonek 1999, 2002) RMK: Not true for r(S).

Quotions: (1) Let So & Hoo be a commeted s.a. set. Is there a polynomial map f: IRM - IR" such that f(IR") = So? For n=2 time

(2) Let So S Has be a s.a. set. Is there a rigular map f: Rm > R" such that $J(\mathbb{R}^m)_\infty = S_0$? For n=2 and S_0 fruit true

Thu: If p(S) = dem(S) = d, then:

(1) Let T:= (cl(s)(s)dy. **ET IT parametric semiline, x ET c T = nd(s)

(1) If d=2, T = UT; c = Far ncl(s): Ti is a parametric semiline.

i Are the following s.a. st polynomial images of R2?

No, but p(s) = 3, p(s) = 2 No

No best p(5)=3 P(5)=2. In general

P(IR", B(0,11) = n+1 P(1R" \ B(3,1)) = n

Yes p(5)=2

For details email C. Vemo

\$ 6. The Nosh case (Full characterization)

Theorem (2015) Let S be a semialgebraic set of dimenson of. The following assertions are equivalent:

(1) n(5) = d

(2) n(5) <+00

(3) S is connected by Nosh paths

(4) S is connected by analytic paths

(5) S is pure dimensional and there exists a North path or: [0,1] -> S such that im(a) justs all the connected components of Reg (S)

(6) Sir pure dimensoral and there exits an analytic path x. To. 17 -> S such that im (x) meets all the commetted components of Ry(5) (Shiota's conjuture)

Proof imoles, (1) Rosolition of singularities

- (2) Externon of North manifolds with boundary, North double of a North manifold with boundary.
- (3) Relative approximation of 5° maps on Noch manifolds with boundary
- (h) Triangulations of Nach manifolds with Nash streets, etc.

Remarks: . K convex polygon. Then n(K)=n(Int(K))=n(S)=n(S)=dim(S)

· Ineduable #> connected by North paths =

Farticular due case: Let $H \in \mathbb{R}^n$ be a connected Nash manifold with boundary of observement of them H is a Nash emays of \mathbb{R}^d .

CONSE QUENCES

- (1) Let $S \subseteq \mathbb{R}^n$ be an conducible pure dimensional s.a. set with cl(S) are-symmetric. Then n(S) = dim(S).
 - " arc-segmentic (Murdylla, 1988): if $\alpha: (-1,1) \to \mathbb{R}^n$ analytic are satisfies $\alpha: (-1,0) \in S$ then $\alpha: (-1,1) \in S$.
- (2) Elimination of impulities (converse of Tarolli-Seidenberg)
 - (a) Hotzkin (1967): SER" Sa is TI(X)=S for an algebraic set XER" (very udurible X and very complicated construction)
 - (b) Andredon Gambon (1986): S⊆ IRh dond semialgebase set + 5 200 ineducible >> S= T(X) for an ineducible algebraic set X ⊆ IRM+K
 - (c) Peebler (1990):). Simplify Kotz Vin construction (simplest and clearer) $S \subseteq \mathbb{R}^n \text{ locally doed } S \text{ a. nt } \text{ with an interior point } S = \Pi(X)$ for an ineducible algebraic set $X \subseteq \mathbb{R}^{n+1}$
 - (d) Bordlary (2015): S ⊆ IR" s.a. nt commeted by North paths ⇒ S = TI(X) where X ⊆ IR" is a non-singular algebraic set whose commeted components C: are Nash diffeomorphic to IRd. However, TI(Ci) = X and there exist P: X → X automorphism such that Q(Ci) = G;
 - · For general semialphane sets one the decomposition of S into finitely many connected components by Noch paths

X may be not committed

(3) Compact connected smooth manifolds with boundary

- · Nach proved (1952): a compact smooth manifold is diffeomorphic to a union of conveled components of an smooth alphane set
- · A K bulut King (1981): a pair (M,N) of a compact smooth manifold and a cloud smooth submanifold (of smaller dimension) is diffeomorphic to a pair (X, Y) where X is a smooth algebraic manifold and Y is a smooth algebraic submanifold Corollary (2015): A commeted compact smooth manifold with boundary of dimensional is the smooth image of IRd

Polynomial and Regular Images of \mathbb{R}^n

José F. Fernando and Carlos Ueno (joint work with J.M. Gamboa)

CIRM 2015

Introduction

A map $f := (f_1, \dots, f_m) : \mathbb{R}^n \to \mathbb{R}^m$ is **polynomial** if its components f_k are polynomials. Analogously, f is **regular** if its components can be represented as quotients $f_k = \frac{g_k}{h_k}$ of two polynomials g_k, h_k such that h_k never vanishes on \mathbb{R}^n . By Tarski-Seidenberg's principle the image of an either polynomial or regular map is a **semialgebraic set**, that is, it has a description by a finite boolean combination of polynomial equalities and inequalities. In 1990 *Oberwolfach reelle algebraische Geometrie* week Gamboa proposed:

Main Problem. Characterize the semialgebraic sets in \mathbb{R}^m which are either polynomial or regular images of some \mathbb{R}^n .

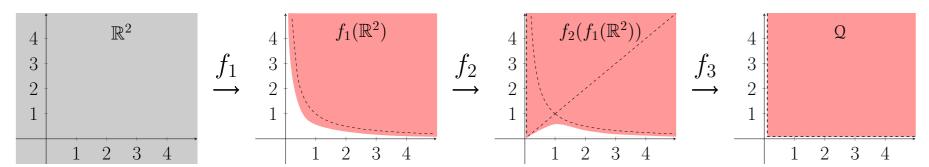
Two approaches to this problem: (1) Explicit construction of polynomial and regular representations for large families of semialgebraic sets, so far with **piecewise linear boundary**; and (2) Search for obstructions to be polynomial/regular images of \mathbb{R}^n . Potential applications. Optimization, Positivstellensätze or parametrizations of semialgebraic sets.

The Open Quadrant Problem

Is the set $\Omega := \{x > 0, y > 0\} \subset \mathbb{R}^2$ a polynomial image of \mathbb{R}^2 ? Answer: **YES**

First solution. The initial answer was presented in 2002 *Oberwolfach reelle algebraische Geometrie* week. Required computer assistance for Sturm's algorithm.

Second solution. The shortest proof (sketched below).



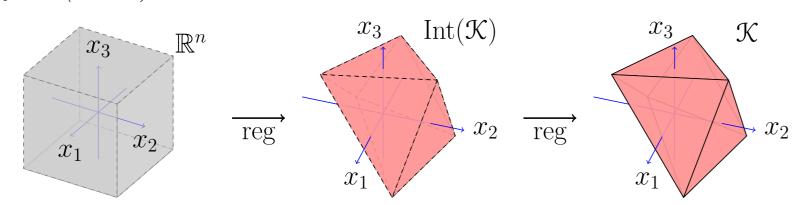
 $f_1(x,y) := ((xy-1)^2 + x^2, (xy-1)^2 + y^2), \quad f_2(x,y) := (x, y(xy-2)^2 + x(xy-1)^2), \quad f_3(x,y) := (x(xy-2)^2 + \frac{1}{2}xy^2, y).$

Third solution. The sparsest (known) polynomial map. A topological argument shows that the image of the map below is Q.

$$f(x,y) := ((x^2y^4 + x^4y^2 - y^2 - 1)^2 + x^6y^4, (x^6y^2 + x^2y^2 - x^2 - 1)^2 + x^6y^4).$$

On Convex Polyhedra

Theorem 1. An n-dimensional convex polyhedron and its interior are regular images of \mathbb{R}^n $(n \geq 2)$.



Definition. Let $\mathcal{K} \subset \mathbb{R}^n$ be a convex polyhedron. Its *recession cone* is

$$\vec{\mathcal{C}}(\mathcal{K}) := \{ \vec{v} \in \mathbb{R}^n : p + \lambda \vec{v} \in \mathcal{K} \mid \forall p \in \mathcal{K}, \ \lambda \ge 0 \}.$$

Theorem 2. Let $\mathcal{K} \subset \mathbb{R}^n$ be an unbounded, n-dimensional convex polyhedron whose recession cone $\vec{\mathcal{C}}(\mathcal{K})$ is n-dimensional. Then \mathcal{K} is a polynomial image of \mathbb{R}^n . In addition, if \mathcal{K} has not bounded facets, then $\operatorname{Int}(\mathcal{K})$ is also a polynomial image of \mathbb{R}^n .

Theorem 3. Let $\mathcal{K} \subset \mathbb{R}^n$ be an n-dimensional convex polyhedron that is not affinely equivalent to a layer $[-a,a] \times \mathbb{R}^{n-1}$. Then the semialgebraic sets $\mathbb{R}^n \setminus \mathcal{K}$ and $\mathbb{R}^n \setminus \operatorname{Int}(\mathcal{K})$ are polynomial images of \mathbb{R}^n .

Full picture for convex polyhedra

Definition of p and r invariants:

 $p(S) := \min\{n \in \mathbb{N} : S = f(\mathbb{R}^n), f \text{ polynomial}\}$ $r(S) := \min\{n \in \mathbb{N} : S = f(\mathbb{R}^n), f \text{ regular}\}$

\mathcal{K} conv. pol.	${\mathcal K}$ bounded		${\mathcal K}$ unbounded	
$S = \mathbb{R}^n \setminus \mathcal{K}$	n = 1	$n \ge 2$	n = 1	$n \ge 2$
$r(\mathcal{K})$	1	m	1	m
$r(Int(\mathcal{K}))$	2	n	2	n
$p(\mathcal{K})$	$+\infty$		1	$n, +\infty$
$p(Int(\mathcal{K}))$			2	$n, n+1, +\infty$
r(S)			2	
$r(\overline{S})$		n	1	
p(S)	$+\infty$		2	n
$p(\overline{S})$			1	

General Properties

Basic properties. A regular image of \mathbb{R}^n is connected, irreducible and pure dimensional. Polynomial images are in addition either unbounded or singletons and have either unbounded or singleton projections.

Advanced Properties. The set of points at infinity of $S \subset \mathbb{R}^n \subset \mathbb{RP}^n$ is

$$S_{\infty} := \mathrm{Cl}_{\mathbb{RP}^n}(S) \cap \mathsf{H}_{\infty}(\mathbb{R})$$
 $(\mathsf{H}_{\infty}(\mathbb{R}) \text{ hyperplane at infinity}).$

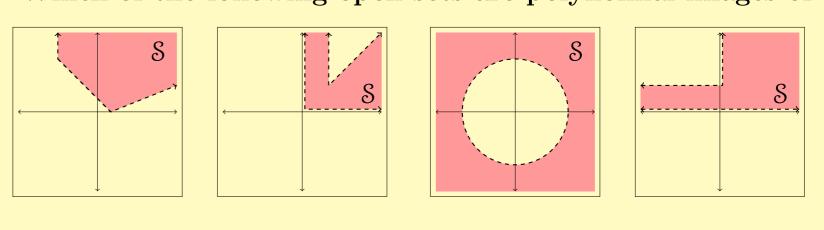
Theorem 4. Let $S \subset \mathbb{R}^m$ be a polynomial image of \mathbb{R}^n . Then $S_{\infty} \neq \emptyset$ is connected.

Remark. This condition does not hold in general for regular images.

Theorem 5. Let $S \subset \mathbb{R}^m$ be an n-dimensional polynomial image of \mathbb{R}^n . Let \mathfrak{T} be the set of points of dimension n-1 of $Cl(S) \setminus S$. We have:

- (i) For any $x \in \mathcal{T}$ there is a non-constant polynomial image Γ of \mathbb{R} such that $x \in \Gamma \subset \overline{\mathcal{T}}^{\operatorname{zar}} \cap \operatorname{Cl}(S)$.
- (ii) If n = 2, $\mathfrak{T} \subset \bigcup_{i=1}^r \Gamma_i \subset \overline{\mathfrak{T}}^{\operatorname{zar}} \cap \operatorname{Cl}(\mathfrak{S})$ where each Γ_i is a polynomial image of \mathbb{R} .

Which of the following open sets are polynomial images of \mathbb{R}^2 ?



Characterization for the 1-Dimensional Case

Let $S \subset \mathbb{R}^m$ be a 1-dimensional semialgebraic set.

Theorem 6. The following assertions are equivalent:

- (i) S is a polynomial image of \mathbb{R}^n for some $n \geq 1$.
- (ii) S is irreducible, unbounded and $Cl_{\mathbb{CP}^m}^{zar}(S)$ is an invariant rational curve such that $Cl_{\mathbb{CP}^m}^{zar}(S) \cap H_{\infty}(\mathbb{C}) = \{p\}$ and the germ $Cl_{\mathbb{CP}^m}^{zar}(S)_p$ is irreducible.

If that is the case, $p(S) \leq 2$. In addition, $p(S) = 1 \iff S$ is closed in \mathbb{R}^m .

Theorem 7. The following assertions are equivalent:

- (i) S is a regular image of \mathbb{R}^n for some $n \geq 1$.
- (ii) S is irreducible and $Cl_{\mathbb{RP}^m}^{zar}(S)$ is a rational curve.

If that is the case, then $r(S) \leq 2$. In addition, $r(S) = 1 \iff either Cl_{\mathbb{RP}^m}(S) = S$, or $Cl_{\mathbb{RP}^m}(S) \setminus S = \{p\}$ and the analytic closure of the germ S_p is irreducible.

S	$\mathbb{R} \text{ or } [0,+\infty)$	#	[0, 1)	$(0,+\infty)$	(0,1)	Any non-rational algebraic curve
r(S)	1	1	1	2	2	$+\infty$
p(S)	1	2	$+\infty$	2	$+\infty$	$+\infty$

Related Problems

A map $f: \mathbb{R}^n \to \mathbb{R}^m$ is *Nash* if each component of f is a *Nash function*, that is, a smooth function with semialgebraic graph. Let $S \subset \mathbb{R}^m$ be a semialgebraic set of dimension d.

Shiota's conjecture. S is a Nash image of \mathbb{R}^d if and only if S is pure dimensional and there exists an analytic path $\alpha:[0,1]\to S$ whose image meets all connected components of the set of regular points of S.

Corollary 8. Assume S is pure dimensional, irreducible and with arc-symmetric closure. Then S is a Nash image of \mathbb{R}^d .

Corollary 9. Assume S is Nash path connected. Then S is the projection of an irreducible algebraic set $X \subset \mathbb{R}^n$ whose connected components are Nash diffeomorphic to \mathbb{R}^d . In addition, each connected component of X maps onto S.

Selected References

[1] J.F. Fernando: On the one-dimensional polynomial and regular images of \mathbb{R}^n . J. Pure Appl. Algebra (2014)

AIAS: The last one

- [2] J.F. Fernando, J.M. Gamboa: Polynomial images of \mathbb{R}^n . J. Pure Appl. Algebra (2003)
- [3] J.F. Fernando, J.M. Gamboa: Polynomial and regular images of \mathbb{R}^n . Israel J. Math. (2006)
- [4] J.F. Fernando, J.M. Gamboa, C. Ueno: On convex polyhedra as regular images of \mathbb{R}^n . *Proc. London Math. Soc.* (2011)
- [5] J.F. Fernando, C. Ueno: On the set of points at infinity of a polynomial image of \mathbb{R}^n . Disc. & Comp. Geometry (2014).
- [6] J.F. Fernando, C. Ueno: On complements of convex polyhedra as polynomial and regular images of \mathbb{R}^n . Int. Math. Res. Notices (2014)