
A survey of recent advances in quantitative
and algorithmic real algebraic geometry

Saugata Basu

Department of Mathematics
Purdue University, West Lafayette, IN

CIRM conference on Ordered Algebraic Structures and
Related Topics, Oct 12-16, 2015



Motivations behind quantitative results
I Useful in obtaining upper bounds on numbers of

combinatorially distinct configurations – finite sets of points
in Rd , or polytopes with fixed number of vertices, oriented
matroids etc. (eg. Goodman, Pollack (1986) ...).

I Has become very important in discrete geometry, because
of the “polynomial-partitioning” technique introduced by
Guth and Katz (2015). The bounds needed here are more
refined than the classical ones. (Solymosi and Tao (2013),
Zahl (2015), B., Sombra (2015) ... etc.)

I Good quantitative bounds often are indications of the
algorithmic complexity of computing the Betti numbers in
specific situations. This has in turn formal connections with
computational complexity theory in the sense of Blum,
Shub and Smale.

I Upper bounds on Betti numbers of a semi-algebraic set
translate into lower bounds for the membership in that set
in certain models of computations. (Yao (1994), Montana,
Morais and Pardo (1996), Gabrielov and Vorobjov (2015)).

I Has become very important in discrete geometry, because
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Fixing some notation

I Throughout, R will denote a real closed field.
I Given P ∈ R[X1, . . . ,Xk ] we denote by Z(P,Rk ) the set of

zeros of P in Rk .
I Given a finite set P ⊂ R[X1, . . . ,Xk ], a subset S ⊂ Rk is
P-semi-algebraic if S is the realization of a Boolean
formula with atoms P = 0, P > 0 or P < 0 with P ∈ P (we
will call such a formula a quantifier-free P-formula).

I We call a semi-algebraic set a P-closed semi-algebraic set
if it is defined by a Boolean formula with no negations with
atoms P = 0, P ≥ 0, or P ≤ 0 with P ∈ P.

I For any semi-algebraic set S, we will denote

b(S,F) =
∑

i

bi(S,F).
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Fixing notation (cont)

We will usually denote:
I k the dimension of the ambient space.
I s = card(P).
I d = maxP∈P deg(P).
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Critical point method
Method of complex complete intersection and Smith theory
Method using Kouchnirenko-Bernstein-Khovanskiı̆
Quadratic case: different methods
Even more refined bounds
Fewnomial bounds
Symmetric semi-algebraic sets



Upper bounds on Betti numbers: via effective
triangulation

I Upper bounds on the Betti numbers of semi-algebraic sets
follow from results on effective triangulation of
semi-algebraic sets.

I Effective triangulation in turn uses cylindrical algebraic
decomposition – Collins (1976), Wüthrich (1976).

I This yields bounds that are doubly exponential in k . That
is,

b(S,F) ≤ (sd)2O(k)
.
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Open problems 1

I Prove or disprove the existence of a semi-algebraic
triangulation or stratification of semi-algebraic sets with
single exponential complexity.

I Corresponding algorithmic question.
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Upper bounds on Betti numbers: via the critical point
method

I Main idea was to use make a perturbation to reduce to the
compact, non-singular, situation and then use Morse
theory in order to bound the Betti numbers by the number
of critical points of some affine function restricted to the
hypersurface. The number of critical point is bounded by
Bezout’s theorem.

I In this way one obtains (Oleı̆nik and Petrovskiı̆ (1949),
Thom, Milnor (1960s)) b(Z(P,Rk ),F) ≤ d(2d − 1)k−1.

I Generalized to more general semi-algebraic sets – ( to
P-closed s.a. sets by B.-Pollack-Roy (2005), and then to
arbitrary P-s.a. sets Gabrielov-Vorobjov (2005)).

I Generalization uses additional techniques such as
generalized Mayer-Vietoris inequalities, homotopic
approximations by compact sets (Gabrielov-Vorobjov) etc.
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Upper bounds via critical points (cont).

For completeness ...

Theorem (B.(1999), B.,Pollack,Roy(2005))
Let S be a P-closed semi-algebraic set S ⊂ Rk , with
s = card(P), and d = maxP∈P deg(P), and V a real algebraic
variety of dimension k ′ ≤ k also defined by a polynomial of
degree at most d. Then,

b(S ∩ V ,F) ≤
k ′∑

i=0

k ′−i∑
j=0

(
s + 1

j

)
6jd(2d − 1)k−1 = sk ′(O(d))k .
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Upper bounds on Betti numbers: via complex bounds
and Smith theory

I Perturbations and then bounding the Z2-Betti numbers of
generic complete intersections in complex projective space
using classical formulas for their Euler-Poincaré
characteristic (for example, from Hirzebruch’s book) and
then using Smith inequalities.

I Theorem (Benedetti-Loeser-Risler (1991))

b0(Z(P,Rk ),Z2) ≤
(

1
2
(`+ 1)k `−1 + O`(k `−2)

)
dk +Ok ,`(dk−1),

where ` = card(P).
I Notice that for fixed `, k large enough and d →∞, the

leading coefficient is a polynomial in k (of degree `− 1),
rather being exponential 2k as in the Oleı̆nik-Petrovskiı̆
bound, and the leading coefficient of this polynomial is
1
2(`+ 1).
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Upper bounds on Betti numbers : using
Kouchnirenko-Bernstein-Khovanskiı̆

I Perturbations and then bounding the Z2-Betti numbers of
generic complete intersections in complex affine space
using formulas for the Euler-Poincaré characteristic in
terms of the mixed volumes of Newton polytopes (using
formula due to Khovanskiı̆ (1976)) generalizing earlier
theorem of Kouchnirenko and Bernstein, and then using
Smith inequalities.

I First exploited by Benedetti, Risler and Loeser (1991) for
bounding the number of connected components of real
varieties.

I Made into a general method (B. and Rizzie (2015)) for
obtaining bounds for Z2-Betti numbers of real algebraic
varieties and semi-algebraic sets, recovering (and
improving slightly) all known bounds.

I Warning: Z2-Betti numbers only, unlike in the critical point
method.
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Upper bounds on Betti numbers : using
Kouchnirenko-Bernstein-Khovanskiı̆ II

I Two sample theorems.

I Theorem (B., Rizzie (2015))

b(Z(P,Rk ),Z2) ≤
(
`(3` − 1)
(`− 1)!

k `−1 + O`(k `−2)

)
dk +Ok ,`(dk−1),

where ` = card(P).
I Improves the leading coefficient in the

Benedetti-Risler-Loeser bound from 1
2(`+ 1) to `(3`−1)

(`−1)!
which goes to 0 as `→∞.

I Applies to the sum of all the Betti numbers – not just the
number of connected components.
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Upper bounds on Betti numbers : using
Kouchnirenko-Bernstein-Khovanskiı̆ III

I Can be used to give “multi-degree” bounds – which are
useful in many situations, where different variables can
have very different degree dependences.

I Theorem (B., Rizzie (2015))
Let P ⊂ R[X(1), . . . ,X(p)] where for 1 ≤ i ≤ p,
X(i) = (X (i)

1 , . . . ,X (i)
ki
), and degX(i)(P) ≤ di , di ≥ 2, for all P ∈ P.

Let k =
∑p

i=1 ki . Then,

b(Z(P,Rk ),Z2) ≤ O(1)kp3kdk1
1 · · · d

kp
p .
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An application

I The following theorem proved Gabrielov and Vorobjov
allows one to bound the Betti numbers of the image of a
closed and bounded semi-algebraic set S under a
polynomial map F in terms of the Betti numbers of the
iterated fibered product of S over F. More precisely:

I Theorem (Gabrielov-Vorobjov (2004))
Let S ⊂ Rk be a closed and bounded semi-algebraic set, and
F = (F1, . . . ,Fm) : Rk → Rm be a polynomial map.
Then, for for all p,0 ≤ p ≤ m,

bp(F(S),F) ≤
∑

i+j=p

bi(S ×F · · · ×F S︸ ︷︷ ︸
(j+1)

,F).
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An application (cont).

I Theorem (B., Rizzie (2015))
Let

I F = {F1, . . . ,Fm} ⊂ R[X1, . . . ,Xk ], with deg(F ) ≤ d ,F ∈ F ;
I G ⊂ R[X1, . . . ,Xk ] deg(G) ≤ D,G ∈ G, and let card(G) = s;
I F : Rk → Rm denote the polynomial map

x 7→ (F1(x), . . . ,Fm(x));
I and T ⊂ Rk be a bounded G-closed semi-algebraic set.
I Suppose also that d ≥ D.

Then, for 0 ≤ i ≤ m,

bi(F(T ),Z2) ≤ O(i)αi (m + s)αi d (i+1)kDm

where αi = (i + 1)k + m.



An application (cont).

I Theorem (B., Rizzie (2015))
Let

I F = {F1, . . . ,Fm} ⊂ R[X1, . . . ,Xk ], with deg(F ) ≤ d ,F ∈ F ;
I G ⊂ R[X1, . . . ,Xk ] deg(G) ≤ D,G ∈ G, and let card(G) = s;
I F : Rk → Rm denote the polynomial map

x 7→ (F1(x), . . . ,Fm(x));
I and T ⊂ Rk be a bounded G-closed semi-algebraic set.
I Suppose also that d ≥ D.

Then, for 0 ≤ i ≤ m,

bi(F(T ),Z2) ≤ O(i)αi (m + s)αi d (i+1)kDm

where αi = (i + 1)k + m.



An application (cont).

I Theorem (B., Rizzie (2015))
Let

I F = {F1, . . . ,Fm} ⊂ R[X1, . . . ,Xk ], with deg(F ) ≤ d ,F ∈ F ;
I G ⊂ R[X1, . . . ,Xk ] deg(G) ≤ D,G ∈ G, and let card(G) = s;
I F : Rk → Rm denote the polynomial map

x 7→ (F1(x), . . . ,Fm(x));
I and T ⊂ Rk be a bounded G-closed semi-algebraic set.
I Suppose also that d ≥ D.

Then, for 0 ≤ i ≤ m,

bi(F(T ),Z2) ≤ O(i)αi (m + s)αi d (i+1)kDm

where αi = (i + 1)k + m.



An application (cont).

I Theorem (B., Rizzie (2015))
Let

I F = {F1, . . . ,Fm} ⊂ R[X1, . . . ,Xk ], with deg(F ) ≤ d ,F ∈ F ;
I G ⊂ R[X1, . . . ,Xk ] deg(G) ≤ D,G ∈ G, and let card(G) = s;
I F : Rk → Rm denote the polynomial map

x 7→ (F1(x), . . . ,Fm(x));
I and T ⊂ Rk be a bounded G-closed semi-algebraic set.
I Suppose also that d ≥ D.

Then, for 0 ≤ i ≤ m,

bi(F(T ),Z2) ≤ O(i)αi (m + s)αi d (i+1)kDm

where αi = (i + 1)k + m.



An application (cont).

I Theorem (B., Rizzie (2015))
Let

I F = {F1, . . . ,Fm} ⊂ R[X1, . . . ,Xk ], with deg(F ) ≤ d ,F ∈ F ;
I G ⊂ R[X1, . . . ,Xk ] deg(G) ≤ D,G ∈ G, and let card(G) = s;
I F : Rk → Rm denote the polynomial map

x 7→ (F1(x), . . . ,Fm(x));
I and T ⊂ Rk be a bounded G-closed semi-algebraic set.
I Suppose also that d ≥ D.

Then, for 0 ≤ i ≤ m,

bi(F(T ),Z2) ≤ O(i)αi (m + s)αi d (i+1)kDm

where αi = (i + 1)k + m.



An application (cont).

I Theorem (B., Rizzie (2015))
Let

I F = {F1, . . . ,Fm} ⊂ R[X1, . . . ,Xk ], with deg(F ) ≤ d ,F ∈ F ;
I G ⊂ R[X1, . . . ,Xk ] deg(G) ≤ D,G ∈ G, and let card(G) = s;
I F : Rk → Rm denote the polynomial map

x 7→ (F1(x), . . . ,Fm(x));
I and T ⊂ Rk be a bounded G-closed semi-algebraic set.
I Suppose also that d ≥ D.

Then, for 0 ≤ i ≤ m,

bi(F(T ),Z2) ≤ O(i)αi (m + s)αi d (i+1)kDm

where αi = (i + 1)k + m.



An application (cont).

I Theorem (B., Rizzie (2015))
Let

I F = {F1, . . . ,Fm} ⊂ R[X1, . . . ,Xk ], with deg(F ) ≤ d ,F ∈ F ;
I G ⊂ R[X1, . . . ,Xk ] deg(G) ≤ D,G ∈ G, and let card(G) = s;
I F : Rk → Rm denote the polynomial map

x 7→ (F1(x), . . . ,Fm(x));
I and T ⊂ Rk be a bounded G-closed semi-algebraic set.
I Suppose also that d ≥ D.

Then, for 0 ≤ i ≤ m,

bi(F(T ),Z2) ≤ O(i)αi (m + s)αi d (i+1)kDm

where αi = (i + 1)k + m.



An application (cont).

I Theorem (B., Rizzie (2015))
Let

I F = {F1, . . . ,Fm} ⊂ R[X1, . . . ,Xk ], with deg(F ) ≤ d ,F ∈ F ;
I G ⊂ R[X1, . . . ,Xk ] deg(G) ≤ D,G ∈ G, and let card(G) = s;
I F : Rk → Rm denote the polynomial map

x 7→ (F1(x), . . . ,Fm(x));
I and T ⊂ Rk be a bounded G-closed semi-algebraic set.
I Suppose also that d ≥ D.

Then, for 0 ≤ i ≤ m,

bi(F(T ),Z2) ≤ O(i)αi (m + s)αi d (i+1)kDm

where αi = (i + 1)k + m.



An application (cont).

I Theorem (B., Rizzie (2015))
Let

I F = {F1, . . . ,Fm} ⊂ R[X1, . . . ,Xk ], with deg(F ) ≤ d ,F ∈ F ;
I G ⊂ R[X1, . . . ,Xk ] deg(G) ≤ D,G ∈ G, and let card(G) = s;
I F : Rk → Rm denote the polynomial map

x 7→ (F1(x), . . . ,Fm(x));
I and T ⊂ Rk be a bounded G-closed semi-algebraic set.
I Suppose also that d ≥ D.

Then, for 0 ≤ i ≤ m,

bi(F(T ),Z2) ≤ O(i)αi (m + s)αi d (i+1)kDm

where αi = (i + 1)k + m.



Outline

Introduction

Bounds on Betti numbers
Method of effective triangulation
Critical point method
Method of complex complete intersection and Smith theory
Method using Kouchnirenko-Bernstein-Khovanskiı̆
Quadratic case: different methods
Even more refined bounds
Fewnomial bounds
Symmetric semi-algebraic sets



Upper bounds on the Betti numbers: the quadratic
case

I Theorem (Barvinok (1997))
Let S ⊂ Rk be defined by
P1 ≥ 0, . . . ,Ps ≥ 0, deg(Pi) ≤ 2, 1 ≤ i ≤ s. Then,
b(S,Z2) ≤ kO(s).

I Theorem (Lerario (2012))
Let Q ⊂ R[X0, . . . ,Xk ] be a set of ` quadratic forms. Then,
b(Z(Q,Pk

R),Z2) ≤ (O(k))`−1 .
I Uses a spectral sequence introduced by Agrachev (1988).
I Using Khovanskiı̆-method, B. and Rizzie (2015) improved

the last bound to (
O
(

k
`

))`−1

.
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Upper bounds on the Betti numbers: the quadratic
case III

I B., Pasechnik and Roy (2013) considered the case of
semi-algebraic sets defined by “partially quadratic”
polynomials generalizing the previous theorems. Their
result was tightened in B. and Rizzie (2015).

I Theorem (B.,Rizzie (2015))
Let

I P1 ⊂ R[X1, . . . ,Xk1 ], with
degX (P) ≤ d ,P ∈ P1, card(P1) = s;

I P2 ⊂ R[X1, . . . ,Xk1 ,Y1, . . . ,Yk2 ],
degX (P) ≤ d ,degY (P) ≤ 2,P ∈ P2, card(P2) = m ;

I S ⊂ Rk1+k2 a (P1 ∪ P2)-closed semi-algebraic set.

Then,

b(S,Z2) ≤ (O(k2))
k1+m+3(O(sd))k1 , for m, k1 < k2.
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Open problems 2

I What about bounds on the Betti numbers of complex
varieties defined by polynomials ? Paradoxically, complex
methods produce reasonably tight bounds in the real case,
but not in the complex case.

I Best bounds in the complex case appear to come from
work of Bombieri, Adolphson and Sperber, and Katz –
using bounds on exponential sums and descent theory. But
these this still do not match in tightness the real bounds.

I Let V ⊂ Ck be defined by real polynomials of degrees
bounded by d . Let X ⊂ V be an irreducible component of
V . Then is it true that b(V ,Z2) ≤ O(d)k ?

I A more involved conjecture which involves the “complex
part” of real varieties, which if true would be very useful for
incidence problems appear in [B., Sombra (2015)].
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A real analogue of Bezout inequality I

I (Example in Fulton’s book) Let k = 3 and let

Q1 = X3,

Q2 = X3,

Q3 =
2∑

i=1

 d∏
j=1

(Xi − j)2

 .

The real variety defined by {Q1,Q2,Q3} is 0-dimensional,
and has d2 isolated (in R3) points.

I In particular, this example shows that the (naive version of)
Bezout inequality which states that the number of isolated
complex zeros of a system of polynomial equations is
bounded by the product of the degrees of the polynomials
appearing in the system, is not true over if we replace the
complex numbers by a real closed field.
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Real analogue of Bezout bound II

Theorem (B., Barone (2013))
Let

I Q1, . . . ,Q` ∈ R[X1, . . . ,Xk ] with deg(Qi) = di ;
I Suppose that

2 ≤ d1 ≤ d2 ≤
1

k + 1
d3 ≤

1
(k + 1)2 d4 ≤ · · · ≤

1
(k + 1)`−2 d`.

I For 1 ≤ i ≤ `, let dimR(Z({Q1, . . . ,Qi},Rk )) ≤ ki and let
k0 = k.

Then,

b0(V`,Z2) ≤ O(1)`O(k)2k

 ∏
1≤j<`

dkj−1−kj
j

dk`−1
` .
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Open problems 3

I Extend the bound to all Betti numbers. A small progress is
reported in [B., Rizzie (2015)] where this is proved in the
case ` = 2, and k1 = k − 1.

I Improve the dependence on `, k in the bound.
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Fewnomials and sparse systems I

I Theorem (Khovanskiı̆(1980))
A system of k polynomials in R[X1, . . . ,Xk ] having m + k + 1
distinct monomials has at most
2(

m+k
2 )(k + 1)m+n non-degenerate positive solutions.

I Consequence of more general theory of real Pffafian
functions.

I Generalizes Descartes’ rule of sign.
I Using Gale-duality Bihan and Sottile improved this bound

(with certain added assumptions) to O(1)2(
m
2)km .

I They also extended their bound to sums of Betti numbers
using stratified Morse theory.
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Fewnomials and sparse systems II

I Theorem ( Koiran-Portier-Tavenas (2014))
Let P,Q ∈ R[X ,Y ], where 0 < deg(P) ≤ d and the number of
monomials in Q bounded by m. Then,

b0(Z({P,Q},Z2) = O(d3m + d2m3).

I Key lemma is bounding the number of zeros of a sum of a
finite number of analytic functions (in one variable) in terms
of the zeros of their Wronskians.

I No genericity is assumed, but note the restriction that
deg(P) > 0.
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Open problems 4

I Improve Khovanskiı̆’s bound – especially the quadratic
dependence on m in the exponent.

I Generalize Koiran-Portier-Tavenas to higher dimensions.
Remove the restriction deg(P) > 0 ?
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Upper bounds on the Betti numbers: the symmetric
case I

I For any fixed d ≥ 2, we have singly exponential lower
bound.

I Let Fd ,k =
∑k

i=1

(∏d
j=1(Xi − j)

)2
− ε, and

Vd ,k = Z(Fd ,k ,R〈ε〉k ).
I b0(Vd ,k ,F) = bk−1(Vd ,k ,F) = dk , which is singly

exponential in k .
I Notice moreover that each Fd ,k is a symmetric polynomial.
I Symmetric varieties defined by polynomials of bounded

degrees are “simple”. For example, for every fixed degree
d there is a polynomial-time algorithm to test whether such
a variety is empty (Timofte, Riener).

I But clearly from the topological point of view they are not
so simple.
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Upper bounds on the Betti numbers: symmetric case II

I Theorem (B., Riener (2013))
Let P ∈ R[X1, . . . ,Xk ], be non-negative polynomial of degree
bounded by d, and and such that V = Z(P,Rk ) is invariant
under the action of Sk . Then,

b(V/Sk ,Q) ≤ (k)2d(O(d))2d+1.

I Note that H∗(V/Sk ,Q) is isomorphic to the isotypic
component of H∗(V ,Q) belonging to the trivial
representation 1Sk , and b(V/Sk ,Q) is its multiplicity.

I Uses the “degree principle” and equivariant Morse theory.
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More notation

I For any Sk -symmetric semi-algebraic subset S ⊂ Rk , and
λ ` k , we denote

mi,λ(S,F) = mult(Sλ,Hi(S,F)),

mλ(S,F) =
∑
i≥0

mi,λ(S,Q).



Upper bounds on the Betti numbers: the symmetric
case III

Theorem (B., Riener (2014))
Let P ∈ R[X1, . . . ,Xk ] be a Sk -symmetric polynomial, with
deg(P) ≤ d. Let V = Z(P,RK ). Then, for all
µ = (µ1, µ2, . . .) ` k, mµ(V ,Q) > 0 implies that

card({i | µi ≥ 2d}) ≤ 2d , card({j | µ̃j ≥ 2d}) ≤ 2d .

Moreover,
mµ(V ,F) ≤ kO(d2)dd .

I Proof uses the degree principle. equivariant Morse theory,
equivariant Mayer-Vietoris sequence and some tableau
combinatorics. Pieri’s rule.
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Open Problems 5

I Conjecture
For any fixed d > 0, there is an algorithm that takes as input the
description of a symmetric semi-algebraic set S ⊂ Rk , defined
by a P-closed formula, where P is a set symmetric polynomials
of degrees bounded by d, and computes mi,λ(S,Q), for each
λ ` k with mi,λ(S,Q) > 0, as well as all the Betti numbers
bi(S,Q), with complexity which is polynomial in card(P) and k.

I Investigate connections with representational stability
theorem as in FI modules (Church-Ellenberg-Farb).
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Other quantitative results not discussed in this talk

I Singly exponential bounds on the number of homotopy
types of fibers of semi-algebraic maps.

I Bounds on the topology of Hausdorff limits.
I Other measures of “complexity” of real polynomials,

different from degree and sparsity, such as additive
complexity.

I Analogous quantitative results in o-minimal geometry.
I Quantitative questions in the category of constructible

sheaves.



Other quantitative results not discussed in this talk

I Singly exponential bounds on the number of homotopy
types of fibers of semi-algebraic maps.

I Bounds on the topology of Hausdorff limits.
I Other measures of “complexity” of real polynomials,

different from degree and sparsity, such as additive
complexity.

I Analogous quantitative results in o-minimal geometry.
I Quantitative questions in the category of constructible

sheaves.



Other quantitative results not discussed in this talk

I Singly exponential bounds on the number of homotopy
types of fibers of semi-algebraic maps.

I Bounds on the topology of Hausdorff limits.
I Other measures of “complexity” of real polynomials,

different from degree and sparsity, such as additive
complexity.

I Analogous quantitative results in o-minimal geometry.
I Quantitative questions in the category of constructible

sheaves.



Other quantitative results not discussed in this talk

I Singly exponential bounds on the number of homotopy
types of fibers of semi-algebraic maps.

I Bounds on the topology of Hausdorff limits.
I Other measures of “complexity” of real polynomials,

different from degree and sparsity, such as additive
complexity.

I Analogous quantitative results in o-minimal geometry.
I Quantitative questions in the category of constructible

sheaves.



Other quantitative results not discussed in this talk

I Singly exponential bounds on the number of homotopy
types of fibers of semi-algebraic maps.

I Bounds on the topology of Hausdorff limits.
I Other measures of “complexity” of real polynomials,

different from degree and sparsity, such as additive
complexity.

I Analogous quantitative results in o-minimal geometry.
I Quantitative questions in the category of constructible

sheaves.


	Introduction
	Bounds on Betti numbers
	Method of effective triangulation
	Critical point method
	Method of complex complete intersection and Smith theory
	Method using Kouchnirenko-Bernstein-Khovanskiı
	Quadratic case: different methods
	Even more refined bounds
	Fewnomial bounds
	Symmetric semi-algebraic sets


