Rectilinear Polygon Exchange Transformations via Cut-and-Project Methods

Ren Yi (joint work with Ian Alevy and Richard Kenyon)

Zero Entropy System, CIRM

Outline

- 1. Polygon Exchange Transformations (PETs)
- 2. Cut-and-Project Sets
- 3. (1) + (2) \Rightarrow Rectilinear PETs (RETs)

Outline

- 1. Polygon Exchange Transformations (PETs)
- 2. Cut-and-Project Sets
- 3. (1) + (2) \Rightarrow Rectilinear PETs (RETs) (Renormalization)

Outline

- 1. Polygon Exchange Transformations (PETs)
- 2. Cut-and-Project Sets
- 3. (1) + (2) \Rightarrow Rectilinear PETs (RETs) (Renormalization)
- 4. Multi-Stage RETs
- 5. Parameter Space of Multi-Stage RETs

(Polygon Exchange Transformation)

<ロ > < 合 > < 三 > < 三 > < 三 > 三 の へ C 3/39

▶ Let X be a polygon.

Let X be a polygon.

Let A = {A_k}^N_{k=0} and B = {B_k}^N_{k=0} be two partitions of X into polygons such that

$$B_k = A_k + v_k, \quad \forall k = 0, \cdots, N.$$

For each k, the polygons A_k and B_k are translation equivalent.

Let X be a polygon.

Let A = {A_k}^N_{k=0} and B = {B_k}^N_{k=0} be two partitions of X into polygons such that

$$B_k = A_k + v_k, \quad \forall k = 0, \cdots, N.$$

For each k, the polygons A_k and B_k are translation equivalent.

► A polygon exchange transformation (PET) is a dynamical system on X. The map T : X → X is defined by

$$\mathbf{x} \mapsto \mathbf{x} + v_k, \quad \forall \mathbf{x} \in \mathsf{Int}(A_k).$$

Figure: 1-dim example (interval exchange transformation)

Figure: 1-dim example (interval exchange transformation)

Figure: An example of PETs

(中) (문) (문) (문) (문) (6/39)

(中) (문) (문) (문) (문) (6/39)

(中) (문) (문) (문) (문) (6/39)

4 ロ ト 4 戸 ト 4 三 ト 4 三 ト 三 つへで 6/39

Products of IETs

- Products of IETs
- Covering maps of some piecewise isometries (Goetz, Akiyama, Lowenstein, N. Bedaride, ···)

- Products of IETs
- Covering maps of some piecewise isometries (Goetz, Akiyama, Lowenstein, N. Bedaride, ···) (studied by most of the participants!)

- Products of IETs
- Covering maps of some piecewise isometries (Goetz, Akiyama, Lowenstein, N. Bedaride, ···) (studied by most of the participants!)
- Outer billiards on regular n-gons for n = 5, 7, 8, 12 (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz)

- Products of IETs
- Covering maps of some piecewise isometries (Goetz, Akiyama, Lowenstein, N. Bedaride, ···) (studied by most of the participants!)
- Outer billiards on regular n-gons for n = 5, 7, 8, 12 (Tabachnikov, Bedaride & Cassaigne); outer billiards on kites (Schwartz)

Multigraph PETs (R. Schwartz and R. Yi)

Rectilinear PETs (RETs)

We consider the case when all $A_k \in \mathcal{A}$ and $B_k \in \mathcal{B}$ in the partitions are rectilinear polygons.

Figure: An example of rectilinear PETs

Renormalization: An approach to study PETs

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 シ 9 9 9 10/39

Renormalization

Renormalization is a tool to zoom the space and accelerate the orbits of points along time.

Renormalization is a tool to zoom the space and accelerate the orbits of points along time.

▶ Let $T: X \to X$ be a PET and Y be a subset of X. The first return map $\hat{T}|_Y: Y \to Y$ is given by

 $\hat{T}|_{Y}(p) = T^{n}(p), \text{ where } n = \min\{T^{k}(p) \in Y | k > 0\}.$

Renormalization is a tool to zoom the space and accelerate the orbits of points along time.

▶ Let $T: X \to X$ be a PET and Y be a subset of X. The first return map $\hat{T}|_Y: Y \to Y$ is given by

$$\hat{T}|_{Y}(p) = T^{n}(p), \text{ where } n = \min\{T^{k}(p) \in Y | k > 0\}$$

Definition (Renormalization)

A PET $T: X \to X$ is **renormalizable** if there exists a subset $Y \subset X$ such that $\hat{T}|_Y$ is conjugate to T by a affine map.

Renormalization

An example of piecewise isometric maps and its renormalization (A. Goetz).

Renormalization

An example of piecewise isometric maps and its renormalization (A. Goetz).

4 ロ ト 4 部 ト 4 差 ト 4 差 り 4 で 13/39

For $n \ge 6$, let M_n be the matrix

$$M_n = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -n & n+1 \end{bmatrix}.$$

For $n \ge 6$, let M_n be the matrix

$$M_n = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -n & n+1 \end{bmatrix}.$$

Characteristic polynomial:

$$q(x) = x^3 - (n+1)x^2 + nx - 1$$

<ロト < 母 ト < 三 ト < 三 ト ミ の へ C 14/39

For $n \ge 6$, let M_n be the matrix

$$M_n = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -n & n+1 \end{bmatrix}.$$

► Characteristic polynomial:

$$q(x) = x^3 - (n+1)x^2 + nx - 1$$

 \blacktriangleright Eigenvalues:
$$0 < \lambda_1 < \lambda_2 < 1 < \lambda_3$$

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の Q で 14/39

For $n \ge 6$, let M_n be the matrix

$$M_n = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -n & n+1 \end{bmatrix}.$$

Characteristic polynomial:

$$q(x) = x^3 - (n+1)x^2 + nx - 1$$

• Eigenvalues: $0 < \lambda_1 < \lambda_2 < 1 < \lambda_3$

 \Rightarrow The dominant eigenvalue λ_3 is a Pisot number.

For $n \ge 6$, let M_n be the matrix

$$M_n = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -n & n+1 \end{bmatrix}.$$

Characteristic polynomial:

$$q(x) = x^3 - (n+1)x^2 + nx - 1$$

• Eigenvalues: $0 < \lambda_1 < \lambda_2 < 1 < \lambda_3$

 \Rightarrow The dominant eigenvalue λ_3 is a Pisot number.

• Eigenvectors (corresponding to λ_i):

$$\xi_i = (1, \lambda_i, \lambda_i^2).$$

<ロト < 回ト < 三ト < 三ト 三 のへで 14/39

For each matrix M_n ,

For each matrix M_n ,

 \blacktriangleright $\mathbb{H}_e :=$ the expanding line

For each matrix M_n ,

▶ $\mathbb{H}_e :=$ the expanding line

 \blacktriangleright $\mathbb{H}_c :=$ the contracting hyperplane

For each matrix M_n ,

▶ ℍ_e := the expanding line
 ▶ ℍ_c := the contracting hyperplane
 ▶ π_e := the projection of ℝ³ onto ℍ_e along ℍ_c

$$\pi_e: \mathbf{x} \mapsto \mathbf{x} \cdot \xi_3$$

For each matrix M_n ,

▶ $\mathbb{H}_e :=$ the expanding line

 ■ *H_c* := the contracting hyperplane

 π_e := the projection of ℝ³ onto 𝓕_e
 along 𝓕_c

$$\pi_e: \mathbf{x} \mapsto \mathbf{x} \cdot \xi_3$$

▶ $\pi_c :=$ the projection of \mathbb{R}^3 onto \mathbb{H}_c along \mathbb{H}_e

$$\pi_c: \mathbf{x} \mapsto (\mathbf{x} \cdot \xi_1, \mathbf{x} \cdot \xi_2)$$

<ロト < 団ト < 三ト < 三ト 三 のへで 15/39

Let X be the unit square in ℝ² centered at (¹/₂, ¹/₂).

▶ Let X be the unit square in ℝ² centered at (¹/₂, ¹/₂).

Define

$$\Lambda_X = \{ \mathbf{x} \in \mathbb{Z}^3 : \pi_c(\mathbf{x}) \in X) \}.$$

▶ Let X be the unit square in \mathbb{R}^2 centered at $(\frac{1}{2}, \frac{1}{2})$.

Define

$$\Lambda_X = \{ \mathbf{x} \in \mathbb{Z}^3 : \pi_c(\mathbf{x}) \in X \} \}.$$

For $p \in \Lambda_X$, define $w_p \in \Lambda_X$ to be the point such that

$$\pi_e(w_p) - \pi_e(p) = \min_{w \in \Lambda_X} \{\pi_e(w) - \pi_e(p) > 0\}$$

<ロト < 母 ト < 臣 ト < 臣 ト 王 の < で 16/39

Let X be the unit square in ℝ² centered at (¹/₂, ¹/₂).

Define

$$\Lambda_X = \{ \mathbf{x} \in \mathbb{Z}^3 : \pi_c(\mathbf{x}) \in X \} \}.$$

For $p \in \Lambda_X$, define $w_p \in \Lambda_X$ to be the point such that

$$\pi_e(w_p) - \pi_e(p) = \min_{w \in \Lambda_X} \{\pi_e(w) - \pi_e(p) > 0\}$$

• Let
$$\mathcal{E} = \{ w_p - p | p \in \Lambda_X \}.$$

<ロト < 母 ト < 臣 ト < 臣 ト 王 の < で 16/39

▶ Let X be the unit square in \mathbb{R}^2 centered at $(\frac{1}{2}, \frac{1}{2})$.

Define

$$\Lambda_X = \{ \mathbf{x} \in \mathbb{Z}^3 : \pi_c(\mathbf{x}) \in X \} \}.$$

For $p \in \Lambda_X$, define $w_p \in \Lambda_X$ to be the point such that

$$\pi_e(w_p) - \pi_e(p) = \min_{w \in \Lambda_X} \{\pi_e(w) - \pi_e(p) > 0\}$$

• Let
$$\mathcal{E} = \{w_p - p | p \in \Lambda_X\}.$$

 $|\mathcal{E}| = N < \infty$

<ロト < 母 ト < 主 ト < 主 ト ミ の < 16/39

Rectilinear PET

via

Cut-and-Project Methods

<ロト < 母 ト < 三 ト < 三 ト 三 のへで 17/39

► Recall that X is a unit square centered at (¹/₂, ¹/₂).

Translation vectors on X:

$$V = \pi_c(\mathcal{E})$$

► Recall that X is a unit square centered at (¹/₂, ¹/₂).

Translation vectors on X:

$$V = \pi_c(\mathcal{E})$$

We define an order on the elements in *E* by

$$\eta_i < \eta_j$$
 if $\pi_e(\eta_i) < \pi_e(\eta_j)$.

The partition $\mathcal{A} = \{A_k\}_{k=0}^{N-1}$ of X as follows:

The partition $\mathcal{A} = \{A_k\}_{k=0}^{N-1}$ of X as follows:

▶ Let f_v be the map of translation by v, i.e. $f_v : x \mapsto x + v$.

The partition $\mathcal{A} = \{A_k\}_{k=0}^{N-1}$ of X as follows:

▶ Let f_v be the map of translation by v, i.e. $f_v : x \mapsto x + v$.

►
$$A_0 = f_{v_0}^{-1}(X) \cap X$$
.

The partition $\mathcal{A} = \{A_k\}_{k=0}^{N-1}$ of X as follows:

▶ Let f_v be the map of translation by v, i.e. $f_v : x \mapsto x + v$.

►
$$A_0 = f_{v_0}^{-1}(X) \cap X$$
.

The partition $\mathcal{A} = \{A_k\}_{k=0}^{N-1}$ of X as follows:

▶ Let f_v be the map of translation by v, i.e. $f_v : x \mapsto x + v$.

►
$$A_0 = f_{v_0}^{-1}(X) \cap X$$
.

 $A_k = (f_{v_k}^{-1}(X) \cap X) \setminus (\bigcup_{i=0}^{k-1} A_i).$

The partition $\mathcal{A} = \{A_k\}_{k=0}^{N-1}$ of X as follows:

▶ Let f_v be the map of translation by v, i.e. $f_v : x \mapsto x + v$.

 $A_k = (f_{v_k}^{-1}(X) \cap X) \setminus (\bigcup_{i=0}^{k-1} A_i).$

▶ An example of the rectilinear PET $T_n: X \to X$ constructed from cut-and-project method via matrix

$$M_n = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -n & n+1 \end{bmatrix} \text{ for } n = 6.$$

An example of the rectilinear PET $T_n : X \to X$ constructed from cut-and-project method via matrix $M_n = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -n & n+1 \end{bmatrix}$ for n = 6.

Each orbit of point $x \in X$ corresponds to a lattice walk.

20/39

Theorem

Let $Y \subset X$ be the rectangle with top right vertex (1,1) with width λ_1 and height λ_2 where $0 < \lambda_1 < \lambda_2 < 1$ are two eigenvalues of M_n .

Theorem

Let $Y \subset X$ be the rectangle with top right vertex (1,1) with width λ_1 and height λ_2 where $0 < \lambda_1 < \lambda_2 < 1$ are two eigenvalues of M_n . Let $T_n : X \to X$ be a rectilinear PET arisen from cut-and-project method via M_n . Then

$$\hat{T}_n|_Y = \psi^{-1} \circ T_n \circ \psi$$

Theorem

Let $Y \subset X$ be the rectangle with top right vertex (1,1) with width λ_1 and height λ_2 where $0 < \lambda_1 < \lambda_2 < 1$ are two eigenvalues of M_n . Let $T_n : X \to X$ be a rectilinear PET arisen from cut-and-project method via M_n . Then

$$\hat{T}_n|_Y = \psi^{-1} \circ T_n \circ \psi$$

where $\psi: X \to X$ is defined by

$$\psi: (x,y) \mapsto (\frac{x+\lambda_1-1}{\lambda_1}, \frac{y+\lambda_2-1}{\lambda_2}).$$

<ロト < 母 ト < 三 ト < 三 ト 三 の < C 21/39

Figure: An illustration of renormalization.

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 シ 4 C 22/39

Figure: An illustration of renormalization.

Proof Sketch:

► Define
$$\Lambda_Y = \{(a, b, c) \in \mathbb{Z}^3 | \pi_c(a, b, c) \in Y\}.$$

Note the fact that $\Lambda_Y \subset \Lambda_X$.

Proof Sketch:

► Define
$$\Lambda_Y = \{(a, b, c) \in \mathbb{Z}^3 | \pi_c(a, b, c) \in Y\}.$$

Note the fact that $\Lambda_Y \subset \Lambda_X$.

 \blacktriangleright Define $\Psi:\Lambda_X\to\Lambda_X$ to be the acceleration map defined by

$$\Psi: \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mapsto \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -n \\ 0 & 1 & n+1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

Proof Sketch:

► Define $\Lambda_Y = \{(a, b, c) \in \mathbb{Z}^3 | \pi_c(a, b, c) \in Y\}.$ Note the fact that $\Lambda_Y \subset \Lambda_X$.

▶ Define $\Psi : \Lambda_X \to \Lambda_X$ to be the acceleration map defined by

$$\Psi: \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mapsto \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -n \\ 0 & 1 & n+1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

We show that $\Psi : \Lambda_Y \to \Lambda_Y$ corresponds to $\hat{T}|_Y : Y \to Y$.

Proof Sketch:

► Return

$$\pi_c \left(\begin{bmatrix} a \\ b \\ c \end{bmatrix} \right) = (x, y) \quad \Rightarrow \quad \pi_c \circ \Psi \left(\begin{bmatrix} a \\ b \\ c \end{bmatrix} \right) = (\lambda_1 x, \lambda_2 y)$$

where $0 < \lambda_1 < \lambda_2 < 1$ are eigenvalues of M_n .

Proof Sketch:

► Return

$$\pi_c \left(\begin{bmatrix} a \\ b \\ c \end{bmatrix} \right) = (x, y) \quad \Rightarrow \quad \pi_c \circ \Psi \left(\begin{bmatrix} a \\ b \\ c \end{bmatrix} \right) = (\lambda_1 x, \lambda_2 y)$$

where $0 < \lambda_1 < \lambda_2 < 1$ are eigenvalues of M_n .

▶ First return

The map Ψ preserves the order of the lattice walk $\{\omega_1,\omega_2,\cdots\},$ i.e.

$$\pi_e(\omega_i) < \pi_e(\omega_j) \quad \Rightarrow \quad \pi_e \circ \Psi(\omega_i) < \pi_e \circ \Psi(\omega_j).$$

Underlying substitution symbolic dynamics:

Underlying substitution symbolic dynamics:

Set
$$a = v_0$$
, $b = v_1$ and $c = v_3$.

Underlying substitution symbolic dynamics:

Set
$$a = v_0$$
, $b = v_1$ and $c = v_3$.

<ロ > < 日 > < 日 > < 三 > < 三 > 三 の < で 25/39

substitution of Pisot type

Underlying substitution symbolic dynamics:

- $\blacktriangleright \text{ Set } a = v_0, \ b = v_1 \text{ and } c = v_3.$
- substitution of Pisot type
 - $a\mapsto abc$, $b\mapsto abcb$, and
 - $c \mapsto (abc)^{n-3}bc$ for $n \ge 6$

Underlying substitution symbolic dynamics:

Set a = v₀, b = v₁ and c = v₃.
substitution of Pisot type a → abc, b → abcb, and c → (abc)ⁿ⁻³bc for n ≥ 6

Incidence matrix:

$$W_n = \begin{bmatrix} 1 & 1 & n-3 \\ 1 & 2 & n-2 \\ 1 & 1 & n-2 \end{bmatrix}$$

< ロ ト < 回 ト < 三 ト < 三 ト 三 の Q C 25/39</p>

Underlying substitution symbolic dynamics:

Set a = v₀, b = v₁ and c = v₃.
substitution of Pisot type a → abc, b → abcb, and c → (abc)ⁿ⁻³bc for n ≥ 6

Incidence matrix:

$$W_n = \begin{bmatrix} 1 & 1 & n-3 \\ 1 & 2 & n-2 \\ 1 & 1 & n-2 \end{bmatrix}$$

 \triangleright $W_n \sim M_n$

Multi-Stage Rectilinear PETs

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 シ 9 9 9 26/39

Multi-Stage Rectilinear PETs

Let P_n be the matrix of translation. Consider matrix products

$$P_0 = P_{n_1} \cdots P_{n_k}$$
 and $P_i = P_{n_1} \cdots P_{n_i}$ for $i \ge 1$.

For each stage $i \ge 0$, we want to construct a RET S_i by via P_i such that
Let P_n be the matrix of translation. Consider matrix products

$$P_0 = P_{n_1} \cdots P_{n_k}$$
 and $P_i = P_{n_1} \cdots P_{n_i}$ for $i \ge 1$.

For each stage $i \ge 0$, we want to construct a RET S_i by via P_i such that

 \triangleright each S_i has the same combinatorics as T_6 .

Let P_n be the matrix of translation. Consider matrix products

$$P_0 = P_{n_1} \cdots P_{n_k}$$
 and $P_i = P_{n_1} \cdots P_{n_i}$ for $i \ge 1$.

For each stage $i \ge 0$, we want to construct a RET S_i by via P_i such that

 \triangleright each S_i has the same combinatorics as T_6 .

 \blacktriangleright each S_i is renormalizable, i.e.

$$\sim \iota_1 I_1 \qquad \varphi_1 \qquad \sim \iota_1 I_1 \qquad \varphi_1$$

 $\hat{S}_{i}|_{\mathcal{X}} = i h_{i}^{-1} \circ S_{i+1} \circ i h_{i}$

27/39

The matrix of translation

$$P_n = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 & 2 & 2 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 2 \\ 0 & 0 & 0 & n-4 & n-3 & n-4 & n-4 \end{bmatrix}$$

4 ロ ト 4 伊 ト 4 三 ト 4 三 ト 三 のへで 28/39

The matrix of translation

$$P_n = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 & 2 & 2 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 2 \\ 0 & 0 & 0 & n-4 & n-3 & n-4 & n-4 \end{bmatrix}$$

The matrix P_n can be reduced to the incidence matrix W_n .

4 ロ ト 4 伊 ト 4 三 ト 4 三 ト 三 のへで 28/39

Figure: An illustration of renormalization.

Construction:

• Let
$$P = P_{n_1} \cdots P_{n_k}$$
.

Construction:

$$\blacktriangleright \text{ Let } P = P_{n_1} \cdots P_{n_k}.$$

Non-zero eigenvalues: $0 < \lambda_1 < \lambda_2 < 1 < \lambda_3$.

<ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < 30/39

Construction:

• Let
$$P = P_{n_1} \cdots P_{n_k}$$
.

Non-zero eigenvalues: $0 < \lambda_1 < \lambda_2 < 1 < \lambda_3$. Eigenvectors: $\zeta_1 = (x_0, x_1, \cdots, x_6)$ for $x_1 - x_0 = 1$. $\zeta_2 = (y_0, y_1, \cdots, y_6)$ for $y_1 - y_0 = 1$

Construction:

$$\blacktriangleright \text{ Let } P = P_{n_1} \cdots P_{n_k}.$$

Non-zero eigenvalues: $0 < \lambda_1 < \lambda_2 < 1 < \lambda_3$. Eigenvectors: $\zeta_1 = (x_0, x_1, \cdots, x_6)$ for $x_1 - x_0 = 1$. $\zeta_2 = (y_0, y_1, \cdots, y_6)$ for $y_1 - y_0 = 1$

• Let $V = \{v_0, \cdots, v_6\}$ be the set of vectors given by

$$v_j = (x_j, y_j).$$

Construction:

$$\blacktriangleright \text{ Let } P = P_{n_1} \cdots P_{n_k}.$$

Non-zero eigenvalues: $0 < \lambda_1 < \lambda_2 < 1 < \lambda_3$. Eigenvectors: $\zeta_1 = (x_0, x_1, \cdots, x_6)$ for $x_1 - x_0 = 1$. $\zeta_2 = (y_0, y_1, \cdots, y_6)$ for $y_1 - y_0 = 1$

• Let $V = \{v_0, \cdots, v_6\}$ be the set of vectors given by

$$v_j = (x_j, y_j).$$

There is a RET $S: X \to X$ with the set of translation vectors $V = \{v_j\}_{j=0}^6$ if $v_j \in (-1, 1) \times (-1, 1)$.

$$\triangleright$$
 $P = P_{n_1} \cdots P_{n_k}$ and $P_i = P_{n_1} \cdots P_{n_i}$.

►
$$P = P_{n_1} \cdots P_{n_k}$$
 and $P_i = P_{n_1} \cdots P_{n_i}$.
► $P_i \zeta_1 = (x_0^i, \cdots, x_6^i)$ and $P_i \zeta_2 = (y_0^i, \cdots, y_6^i)$.
Rescale $\Rightarrow -x_0^i + x_1^i = 1$ and $-y_0^i + y_1^i = 1$.

►
$$P = P_{n_1} \cdots P_{n_k}$$
 and $P_i = P_{n_1} \cdots P_{n_i}$.
► $P_i \zeta_1 = (x_0^i, \cdots, x_6^i)$ and $P_i \zeta_2 = (y_0^i, \cdots, y_6^i)$.
Rescale $\Rightarrow -x_0^i + x_1^i = 1$ and $-y_0^i + y_1^i = 1$.

► Translation vector for *i*th stage:

$$v_0^i = (x_0^i, y_0^i), \dots, v_6^i = (x_6^i, y_6^i).$$

<ロト < 母 ト < 三 ト < 三 ト ミ の < C 31/39

►
$$P = P_{n_1} \cdots P_{n_k}$$
 and $P_i = P_{n_1} \cdots P_{n_i}$.
► $P_i \zeta_1 = (x_0^i, \cdots, x_6^i)$ and $P_i \zeta_2 = (y_0^i, \cdots, y_6^i)$.
Rescale $\Rightarrow -x_0^i + x_1^i = 1$ and $-y_0^i + y_1^i = 1$.

Translation vector for *i*th stage:

$$v_0^i = (x_0^i, y_0^i), \dots, v_6^i = (x_6^i, y_6^i).$$

There is a **multi-stage RET** $S: X \to X$ if at each stage i, all translation vectors $v_i^i \in (-1, 1) \times (-1, 1)$.

►
$$P = P_{n_1} \cdots P_{n_k}$$
 and $P_i = P_{n_1} \cdots P_{n_i}$.
► $P_i \zeta_1 = (x_0^i, \cdots, x_6^i)$ and $P_i \zeta_2 = (y_0^i, \cdots, y_6^i)$.
Rescale $\Rightarrow -x_0^i + x_1^i = 1$ and $-y_0^i + y_1^i = 1$.

Translation vector for *i*th stage:

$$v_0^i = (x_0^i, y_0^i), \dots, v_6^i = (x_6^i, y_6^i).$$

There is a **multi-stage RET** $S: X \to X$ if at each stage i, all translation vectors $v_j^i \in (-1, 1) \times (-1, 1)$. A product P is called **admissible** if there is a multi-stage RET.

Figure: The multi-stage rectilinear PETs for $P = P_7 P_8 P_6 P_7$.

<ロト < 団ト < 巨ト < 巨ト < 巨 の へ 32/39

Multi-Stage RETs (Renormalization)

Theorem (Renormalization Scheme)

Let $P = P_{n_1} \cdots P_{n_k}$ be an admissible matrix product. Let $S: X \to X$ be a multi-stage RET determined by P. Then

Multi-Stage RETs (Renormalization)

Theorem (Renormalization Scheme)

Let $P = P_{n_1} \cdots P_{n_k}$ be an admissible matrix product. Let $S: X \to X$ be a a multi-stage RET determined by P. Then

1.

$$\hat{S}|_{Y_0} = \psi_0^{-1} \circ S_1 \circ \psi_0$$

for the affine map $\psi_0: Y_0 \mapsto X$.

Multi-Stage RETs (Renormalization)

Theorem (Renormalization Scheme)

Let $P = P_{n_1} \cdots P_{n_k}$ be an admissible matrix product. Let $S: X \to X$ be a a multi-stage RET determined by P. Then

1.

$$\hat{S}|_{Y_0} = \psi_0^{-1} \circ S_1 \circ \psi_0$$

for the affine map $\psi_0: Y_0 \mapsto X$.

2.

$$\hat{S}_i|_{Y_i} = \psi_i^{-1} \circ S_{i+1} \circ \psi_i$$

for the affine map $\psi_i: Y_i \mapsto X$

Figure: The parameter space of admissible rectilinear PETs in \mathbb{R}^4

500

34/39

P

イロト イポト イヨト イヨト

Figure: The parameter space of admissible rectilinear PETs in \mathbb{R}^4

Theorem (in process)

The parameter space \mathcal{M} of admissible rectilinear PETs is a Cantor set in \mathbb{R}^4 .

Figure: $P_n \mathcal{M}$ and $P_n^{-1} \mathcal{M}$

<ロ > < 団 > < 臣 > < 臣 > 三 の < で 35/39

We expect the dynamics on the parameter space to be a 'discrete horseshoe map'

36/39

Domain Exchange Transformation

We can construct domain exchange transformation on more general domains by the cut-and-project method.

Figure: An example of circle exchange transformation by the cut-and-project method

Domain Exchange Transformation

We can construct domain exchange transformation on more general domains by the cut-and-project method.

Figure: An example of circle exchange transformation by the cut-and-project method

(Conjecture) The domain exchange transformations on convex domains via cut-and-project methods are renormalizable.

Future Directions

- PETs on general domains and their renormalizations
- Piecewise isometries arisen from cut-and-project methods associated to quartic polynomials

<ロト < 目 > < 三 > < 三 > < 三 > へ つ 38/39

- Generalizations of the Three Gap Theorem
- Self-similar tilings from RETs?
- Generalizations of Rauzy inductions in PETs
- Complexity of the PETs

Thank you

<ロ > < 戸 > < 三 > < 三 > < 三 > 三 う へ (39/39