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What is a PET?

(Polygon Exchange Transformation)
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What is a PET?
> Let X be a polygon.

» Let A= {A;} ) and B = {By}, be two partitions of X
into polygons such that

By, = Ay + vy,

Vk=0,---,N.
For each k, the polygons Ay and By, are translation
equivalent.

Y 4/39



What is a PET?

> Let X be a polygon.

» Let A= {A;}} ) and B = {By}_, be two partitions of X
into polygons such that

By =Ap+vg, Vk=0,---,N.

For each k, the polygons Ay and By, are translation

equivalent.

» A polygon exchange transformation (PET) is a dynamical
system on X. The map T : X — X is defined by

X = X+ v, VxEInt(Ag).
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What is a PET?

o —1

Figure: 1-dim example (interval exchange transformation)
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What is a PET?

Figure: An example of PETs
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How to construct a PET?
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How to construct a PET?

» Products of IETs

» Covering maps of some piecewise isometries (Goetz, Akiyama,
Lowenstein, N. Bedaride, ---)
(studied by most of the participants!)

» Outer billiards on regular n-gons for n = 5,7,8,12
(Tabachnikov, Bedaride & Cassaigne); outer billiards on kites
(Schwartz)

x3,

x1

» Multigraph PETs (R. Schwartz and R. Yi)
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Rectilinear PETs (RETs)

We consider the case when all A;, € A and By, € B in the
partitions are rectilinear polygons.

]

Figure: An example of rectilinear PETs
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Renormalization: An approach to study PETs
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Renormalization

Renormalization is a tool to zoom the space and accelerate the
orbits of points along time.
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Renormalization is a tool to zoom the space and accelerate the
orbits of points along time.

» Let T : X — X bea PET and Y be a subset of X. The first
return map T|y 1Y — Y is given by

Tly(p) = T"(p), where n =min{T*(p) € Y| k> 0}.
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Renormalization

Renormalization is a tool to zoom the space and accelerate the
orbits of points along time.

» Let T : X — X bea PET and Y be a subset of X. The first
return map T|y 1Y — Y is given by

Tly(p) = T"(p), where n =min{T*(p) € Y| k> 0}.
Definition (Renormalization)

A PET T : X — X is renormalizable if there exists a subset
Y C X such that T|y is conjugate to I" by a affine map.
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Renormalization

An example of piecewise isometric maps and its renormalization
(A. Goetz).
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Renormalization

An example of piecewise isometric maps and its renormalization
(A. Goetz).
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Cut-and-Project Method
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Cut-and-Project Method

For n > 6, let M,, be the matrix

0 1 0
M,=10 0 1
1 —n n+1
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Cut-and-Project Method

For n > 6, let M,, be the matrix

0

1 0
M,=1{0 0 1

1 —n n+1
» Characteristic polynomial:

q(x) =2 —(n+1)a* +nx -1
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For n > 6, let M,, be the matrix

0

1 0
M,=1{0 0 1
1 —n n+1
» Characteristic polynomial:

q(x) =2 —(n+1)a* +nx -1
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= The dominant eigenvalue A3 is a Pisot number
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Cut-and-Project Method

For n > 6, let M,, be the matrix

0

1 0
M,=1{0 0 1
1 —n n+1
» Characteristic polynomial:

q(z) =2 -

(n+1)2® +nx—1
» Eigenvalues:

D<M <XA<l<Ag

= The dominant eigenvalue A3 is a Pisot number.

» Eigenvectors (corresponding to \;):

&= (1, M, \2).

[m]

=

v 14/39



Cut-and-Project Method

For each matrix M,
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Cut-and-Project Method

For each matrix M,

» H. := the expanding line
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Cut-and-Project Method
For each matrix M,
» H, := the expanding line

» H. := the contracting hyperplane

» 7, := the projection of R3 onto H,
along H,

Te: X+ X-&3
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Cut-and-Project Method

For each matrix M,
» H, := the expanding line

» H. := the contracting hyperplane

» 7, := the projection of R3 onto H,
along H,

Te: X+ X-&3

» 7, := the projection of R? onto H,
along H

Te: X (x-&,x-&)
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Cut-and-Project Method

» Let X be the unit square in R?
centered at (1,1

2:3)-
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Cut-and-Project Method

» Let X be the unit square in R?
centered at (1,1

29 5)
» Define

Ax ={x€Z:7m.(x) € X)}
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Cut-and-Project Method

» Let X be the unit square in R?
centered at (3,1

29 5)
» Define

Ax ={x€Z: 7m.(x) € X)}.

» For p € Ax, define w, € Ax to be
the point such that

Te(wp) — Te(p) = Jnin {me(w) —me(p) > 0}
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Cut-and-Project Method

» Let X be the unit square in R?
centered at (3,3).

» Define
Ax ={x€Z: 7m.(x) € X)}.

» For p € Ax, define w, € Ax to be
the point such that

Te(wp) — Te(p) = Jnin {me(w) —me(p) > 0}

» Let & ={w, —p|peAx}.
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Cut-and-Project Method

» Let X be the unit square in R?
centered at (3,3).

» Define
Ax ={x€Z: 7m.(x) € X)}.

» For p € Ax, define w, € Ax to be
the point such that

Te(wp) — Te(p) = Jnin {me(w) —me(p) > 0}

» Let & ={w, —p|peAx}.
€| =N < 00
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Rectilinear PET
via

Cut-and-Project Methods
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Construction

» Recall that X is a unit square

centered at (1,1).

Translation vectors on X:

V =m7.(€)
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Construction

» Recall that X is a unit square
centered at (1,1).
Translation vectors on X:

V =m7.(€)

» We define an order on the elements
in £ by

ni <my if me(m) < me(nj)-
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Construction

The partition A = {Ak}fcv_*ol of X as follows:
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Construction

The partition A = {Ak}fcv:Ol of X as follows:

» Let f, be the map of translation by v, i.e. f, : 2 — 2+ v.
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The partition A = {A;} 2} of X as follows:
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Construction

The partition A = {A;} 2} of X as follows:

» Let f, be the map of translation by v, i.e. f, :z— x4+ v.

> Ag=frl(X)nX.
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Construction

The partition A = {A;} 2} of X as follows:

» Let f, be the map of translation by v, i.e. f, :z— x4+ v.

> Ag=frl(X)nX.

> Ar = (£ 1) N X))\ (U 4.
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Construction

from cut-and-project method via matrix
0 1 0
M —

L= 10 0
1

1
-n n+1

for n = 6.

«0O0» «F»r <«

» An example of the rectilinear PET T, : X — X constructed
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Construction

» An example of the rectilinear PET T}, : X — X constructed
from cut-and-project method via matrix

0 1 0
M, =10 o0 1 for n = 6.
1 —n n+1

» Each orbit of point x € X corresponds to a lattice walk.

u]
8]
1
n
it
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Renormalization

Theorem

Let Y C X be the rectangle with top right vertex (1,1) with
width A1 and height Ao where 0 < A\; < A9 < 1 are two
eigenvalues of M,,.
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Renormalization

Theorem

Let Y C X be the rectangle with top right vertex (1,1) with
width A1 and height Ao where 0 < A\; < A9 < 1 are two
eigenvalues of M,,. Let T,, : X — X be a rectilinear PET
arisen from cut-and-project method via M,,. Then

Tn|y :w_IOTnO@Z)
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Renormalization

Theorem

Let Y C X be the rectangle with top right vertex (1,1) with
width A1 and height Ao where 0 < A\; < A9 < 1 are two
eigenvalues of M,,. Let T,, : X — X be a rectilinear PET
arisen from cut-and-project method via M,,. Then

Tn|Y :¢_10Tn0¢

where ¢ : X — X is defined by

r4+M—1 y+A-—1

Y (z,y) = ( N N J
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Renormalization

Figure: An illustration of renormalization.
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Renormalization

Figure: An illustration of renormalization.
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Renormalization

Proof Sketch:

» Define Ay = {(a,b,c) € Z3| 7.(a,b,c) € Y}
Note the fact that Ay C Ax.
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Renormalization

Proof Sketch:
» Define Ay = {(a,b,c) € Z3| 7.(a,b,c) € Y}.
Note the fact that Ay C Ax.
» Define ¥ : Ax — Ax to be the acceleration map defined by
a 1 a 1

0 0
v bl— 1|1 0 -—n bl + |—1
0 1

c n+1 c 0
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Renormalization

Proof Sketch:

» Define Ay = {(a,b,c) € Z3| 7.(a,b,c) € Y}.
Note the fact that Ay C Ax.

» Define ¥ : Ax — Ax to be the acceleration map defined by
a 0 0 1 a 1
v bl— |1 0 -—n -1
C

0

bl +
01 n+1
We show that ¥ : Ay — Ay corresponds to T|y Y =Y.

c

—
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Renormalization

Proof Sketch:

» Return

| [b] | =(x,y) = @m0V | [b
c

= (A1z, Aa2y)
c
where 0 < A1 < Ao < 1 are eigenvalues of M,.
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Renormalization

Proof Sketch:
» Return
e b =(z,y) = w0V b = (A\1z, Aoy)
c c

where 0 < A1 < Ao < 1 are eigenvalues of M,.

» First return
The map W preserves the order of the lattice walk

{wi,wa, -}, ie.

Te(wi) < Me(wj) =  7eo VU(w;) < me 0 U(wj).
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Renormalization

Underlying substitution symbolic dynamics:
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Renormalization

Underlying substitution symbolic dynamics:

» Seta=uv9, b=1

and ¢ = wvs.
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Renormalization
Underlying substitution symbolic dynamics:

» Seta=wv9, b=v1 and c=uv;3

» substitution of Pisot type
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Renormalization

Underlying substitution symbolic dynamics:

» Seta=wv9, b=v1 and ¢ =wvs3.
» substitution of Pisot type
a+— abe, b+ abedb, and

¢ (abe)"3bc  forn > 6
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Renormalization

Underlying substitution symbolic dynamics:
» Seta=wv9, b=v1 and ¢ =wvs3.
» substitution of Pisot type

a+— abe, b+ abedb, and

¢ (abe)"3bc  forn > 6

» Incidence matrix:

1 1 n—-3
Wo=11 2 n-2
1 1 n-2
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Renormalization

Underlying substitution symbolic dynamics:
» Seta=wv9, b=v1 and ¢ =wvs3.
» substitution of Pisot type

a+— abe, b+ abedb, and

¢ (abe)"3bc  forn > 6

» Incidence matrix:

1 1 n—-3
Wo=11 2 n-2
1 1 n—-2
> W, ~ M,
[m] = = = =
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Multi-Stage Rectilinear PETs
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Multi-Stage Rectilinear PETs

Po=PF,, - P,

Let P, be the matrix of translation. Consider matrix products
k

and Pz = ]Dn1 . Pn
such that

for ¢ > 1.
For each stage ¢ > 0, we want to construct a RET S; by via P;
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Multi-Stage Rectilinear PETs
Let P, be the matrix of translation. Consider matrix products
Py=PF, ---P,, and P, =P, ---P, fori>1.

For each stage ¢ > 0, we want to construct a RET S; by via P;
such that

» each S; has the same combinatorics as T§.

02 04 08 08 10
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Multi-Stage Rectilinear PETs
Let P, be the matrix of translation. Consider matrix products
Py=PF, ---P,, and P, =P, ---P, fori>1.

For each stage ¢ > 0, we want to construct a RET S; by via P;
such that

» each S; has the same combinatorics as T§.

» each S; is renormalizable, i.e.

Sily, = ;' 0 Si1 09

02 04 08 08 10

02 04 08 08 10 02 04 08 08 10 02 04 08 08 10 02 04 06 08 10

=] 5 = = = Da® 27/39



Multi-Stage Rectilinear PETs

The matrix of translation

1 11 1 1 1 1

0 2 1 1 2 2 1

0 01 0 0 1 2
P,=10 11 1 2 2 2

000 O 0 0 0

1 01 1 0 1 2

0 00 n—4 n—3 n—4 n—4]

u]
8]
|
i
!
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Multi-Stage Rectilinear PETs

The matrix of translation

111 1 1
021 1 2
001 0 0

P,=1011 1 2
000 0 0
101 1 0
0 0 0

The matrix P, can be reduced to the incidence matrix W,,.

S N = N

1

S NN =

2

n—4 n—3 n—4 n-—4
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Multi-Stage RETs (Construction)

2

Figure: An illustration of renormalization.

«40>r «F» «=)» « =)
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Multi-Stage RETs (Construction)
Construction:

> Let P=DP,, -+ Py,
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Multi-Stage RETs (Construction)
Construction:
> Let P = P,

oo Py,

Non-zero eigenvalues: 0 < A1 < A < 1 < A3.
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Multi-Stage RETs (Construction)
Construction:

> Let P=1P,, - P,,.

Non-zero eigenvalues: 0 < A1 < g <1 < A3
Eigenvectors: (1 = (xo, z1,

,1‘6) for Tl — Ty = 1.

G = (Yo, y1,--»ys) fory1 —yo =1

A
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Multi-Stage RETs (Construction)
Construction:

> Let P=DP,, -+ Py,

Non-zero eigenvalues: 0 < A1 < A < 1 < A3.
Eigenvectors: (1 = (xo, z1,

,1‘6) for r1 —To = 1

G = (Yo, y1,-*,ys) fory1 —yo =1
» Let V = {vpg, -+ ,vg} be the set of vectors given by

vj = (j,9;)-

wQ

o
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Multi-Stage RETs (Construction)

Construction:
> Let P=PF, ---P,,.
Non-zero eigenvalues: 0 < A1 < A < 1 < A3.
Eigenvectors: (; = (29,21, ,x¢) for 1 — 29 = 1.
G = (Yo, Y1, ,y6) foryr —yo =1

» Let V = {vpg, -+ ,vg} be the set of vectors given by
vj = (2, 9;)-

Thereisa RET S : X — X with the set of translation vectors
V = {v;}5_¢ if v; € (=1,1) x (=1,1).
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Multi-Stage RETs (Construction)

» P=P, ---P, and P,=P, ---P,

i

DAt 31739



Multi-Stage RETs (Construction)

» P=PF, ---P,, and P, = P, --- P,,.
> P’LC]. = (J"%)a : 7x%) and PZCQ = (yév o ayé)
Rescale =

—zh 42t =1 and —yd+yi =1
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Multi-Stage RETs (Construction)

» P=P, ---P, and P,=P, ---P,

it

> P’LC]. = (,I%), e 7'7%) and PZCQ = (y(z]v e ayé)

Rescale =

» Translation vector for ith stage:

U(i) = (x67 yé)? T vé = (‘7“%7 yé)

[m] = =

—zh 42t =1 and —yd+yi =1

A
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Multi-Stage RETs (Construction)

» P=P, P, and P,=P, ---P,

> PlCl = (l‘%]a e 71%) and PZCQ = (yg]a e ayé)
Rescale = —xé +acil =1 and —yg +y§ =1.

» Translation vector for ith stage:
v(z) = (%’67 y6)7 R v% = (‘T%? yé)

There is a multi-stage RET S : X — X if at each stage ¢,
all translation vectors v;- €(—1,1) x (—1,1).
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Multi-Stage RETs (Construction)

» P=P, P, and P,=P, ---P,

> PlCl = (l‘%]a e 7x%) and RCQ = (yg]a e ay%)
Rescale = —xé +q:il =1 and —yg +y§ =1.

» Translation vector for ith stage:
U(Z) = (%’67 y6)7 R v% = (‘T(ZS7 y(zi)

There is a multi-stage RET S : X — X if at each stage 1,
all translation vectors v;- €(—1,1) x (—1,1).

A product P is called admissible if there is a multi-stage
RET.
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Multi-Stage RETs (Construction)

Figure: The multi-stage rectilinear PETs for P

= PPy PsPs.
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Multi-Stage RETs (Renormalization)

Theorem (Renormalization Scheme)

Let P = P,, --- P,, be an admissible matrix product. Let
S : X — X be a a multi-stage RET determined by P. Then
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Multi-Stage RETs (Renormalization)

Theorem (Renormalization Scheme)

Let P = P,, --- P,, be an admissible matrix product. Let
S : X — X be a a multi-stage RET determined by P. Then
1.

Slvo = %5 " 0 S1 0 1o
for the affine map v : Yy — X.

v Q

Q (v
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Multi-Stage RETs (Renormalization)

Theorem (Renormalization Scheme)

Let P = P,, --- P,, be an admissible matrix product. Let
S : X — X be a a multi-stage RET determined by P. Then
1.

Slvo = %5 " 0 S1 0 1o
for the affine map v : Yy — X.
2.

Silv, = ¥7

0 Sit10;
for the affine map ¢; : ¥; — X
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The Parameter Space of Multi-Stage RETs

-
PR Tl
- :‘;’,‘:/

e
. ,';J st
S
S
g st gt
i e i#
I H‘;' - f‘:_;; ’
Pt
bt #

Figure: The parameter space of admissible rectilinear PETs in R*
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The Parameter Space of Multi-Stage RETs

PP
e P
A ,
of J
P o ;;ﬁ"

Figure: The parameter space of admissible rectilinear PETs in R*

Theorem (in process)

The parameter space M of admissible rectilinear PETs
is a Cantor set in R*.
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The Parameter Space of Multi-Stage RETs

i e
% -.";- . _‘-;. .
Sl P et
LA r’u’ P
R _".l“‘ s -
e .
IR . "‘, .dw b
’
*0 F i
i .lfl “J
as A
A

Figure: P, M and
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The Parameter Space of Multi-Stage RETs

We expect the dynamics on the parameter space to be a 'discrete
horseshoe map’

10.75

DAt 36/39



Domain Exchange Transformation

We can construct domain exchange transformation on more
general domains by the cut-and-project method.

Figure: An example of circle exchange transformation by the
cut-and-project method
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Domain Exchange Transformation

We can construct domain exchange transformation on more
general domains by the cut-and-project method.

Figure: An example of circle exchange transformation by the
cut-and-project method

(Conjecture) The domain exchange transformations on convex
domains via cut-and-project methods are renormalizable.
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Future Directions

» PETs on general domains and their renormalizations

v

vV v v v

Piecewise isometries arisen from cut-and-project methods
associated to quartic polynomials

Generalizations of the Three Gap Theorem
Self-similar tilings from RETs?
Generalizations of Rauzy inductions in PETs

Complexity of the PETs
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