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What is a PET?

(Polygon Exchange Transformation)
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What is a PET?
> Let X be a polygon.

» Let A= {A;} ) and B = {By}, be two partitions of X
into polygons such that

By, = Ay + vy,

Vk=0,---,N.
For each k, the polygons Ay and By, are translation
equivalent.

Y 4/39



What is a PET?

> Let X be a polygon.

» Let A= {A;}} ) and B = {By}_, be two partitions of X
into polygons such that

By =Ap+vg, Vk=0,---,N.

For each k, the polygons Ay and By, are translation

equivalent.

» A polygon exchange transformation (PET) is a dynamical
system on X. The map T : X — X is defined by

X = X+ v, VxEInt(Ag).
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What is a PET?

o —1

Figure: 1-dim example (interval exchange transformation)
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What is a PET?

Figure: An example of PETs
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How to construct a PET?
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How to construct a PET?

» Products of IETs

» Covering maps of some piecewise isometries (Goetz, Akiyama,
Lowenstein, N. Bedaride, ---)
(studied by most of the participants!)

» Outer billiards on regular n-gons for n = 5,7,8,12
(Tabachnikov, Bedaride & Cassaigne); outer billiards on kites
(Schwartz)

x3,

x1

» Multigraph PETs (R. Schwartz and R. Yi)
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Rectilinear PETs (RETs)

We consider the case when all A;, € A and By, € B in the
partitions are rectilinear polygons.

]

Figure: An example of rectilinear PETs
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Renormalization: An approach to study PETs
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Renormalization

Renormalization is a tool to zoom the space and accelerate the
orbits of points along time.
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Renormalization is a tool to zoom the space and accelerate the
orbits of points along time.

» Let T : X — X bea PET and Y be a subset of X. The first
return map T|y 1Y — Y is given by

Tly(p) = T"(p), where n =min{T*(p) € Y| k> 0}.
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Renormalization

Renormalization is a tool to zoom the space and accelerate the
orbits of points along time.

» Let T : X — X bea PET and Y be a subset of X. The first
return map T|y 1Y — Y is given by

Tly(p) = T"(p), where n =min{T*(p) € Y| k> 0}.
Definition (Renormalization)

A PET T : X — X is renormalizable if there exists a subset
Y C X such that T|y is conjugate to I" by a affine map.
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Renormalization

An example of piecewise isometric maps and its renormalization
(A. Goetz).
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Renormalization

An example of piecewise isometric maps and its renormalization
(A. Goetz).
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Cut-and-Project Method
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Cut-and-Project Method

For n > 6, let M,, be the matrix

0 1 0
M,=10 0 1
1 —n n+1
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Cut-and-Project Method

For n > 6, let M,, be the matrix

0

1 0
M,=1{0 0 1

1 —n n+1
» Characteristic polynomial:

q(x) =2 —(n+1)a* +nx -1
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For n > 6, let M,, be the matrix

0

1 0
M,=1{0 0 1
1 —n n+1
» Characteristic polynomial:

q(x) =2 —(n+1)a* +nx -1
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= The dominant eigenvalue A3 is a Pisot number
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Cut-and-Project Method

For n > 6, let M,, be the matrix

0

1 0
M,=1{0 0 1
1 —n n+1
» Characteristic polynomial:

q(z) =2 -

(n+1)2® +nx—1
» Eigenvalues:

D<M <XA<l<Ag

= The dominant eigenvalue A3 is a Pisot number.

» Eigenvectors (corresponding to \;):

&= (1, M, \2).

[m]

=
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Cut-and-Project Method

For each matrix M,
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Cut-and-Project Method

For each matrix M,

» H. := the expanding line
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Cut-and-Project Method
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» H, := the expanding line

» H. := the contracting hyperplane

» 7, := the projection of R3 onto H,
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Te: X+ X-&3
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Cut-and-Project Method

For each matrix M,
» H, := the expanding line

» H. := the contracting hyperplane

» 7, := the projection of R3 onto H,
along H,

Te: X+ X-&3

» 7, := the projection of R? onto H,
along H

Te: X (x-&,x-&)
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Cut-and-Project Method

» Let X be the unit square in R?
centered at (1,1

2:3)-
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Cut-and-Project Method

» Let X be the unit square in R?
centered at (1,1

29 5)
» Define

Ax ={x€Z:7m.(x) € X)}
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Cut-and-Project Method

» Let X be the unit square in R?
centered at (3,1

29 5)
» Define

Ax ={x€Z: 7m.(x) € X)}.

» For p € Ax, define w, € Ax to be
the point such that

Te(wp) — Te(p) = Jnin {me(w) —me(p) > 0}
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Cut-and-Project Method

» Let X be the unit square in R?
centered at (3,3).

» Define
Ax ={x€Z: 7m.(x) € X)}.

» For p € Ax, define w, € Ax to be
the point such that

Te(wp) — Te(p) = Jnin {me(w) —me(p) > 0}

» Let & ={w, —p|peAx}.
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Cut-and-Project Method

» Let X be the unit square in R?
centered at (3,3).

» Define
Ax ={x€Z: 7m.(x) € X)}.

» For p € Ax, define w, € Ax to be
the point such that

Te(wp) — Te(p) = Jnin {me(w) —me(p) > 0}

» Let & ={w, —p|peAx}.
€| =N < 00
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Rectilinear PET
via

Cut-and-Project Methods
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Construction

» Recall that X is a unit square

centered at (1,1).

Translation vectors on X:

V =m7.(€)
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Construction

» Recall that X is a unit square
centered at (1,1).
Translation vectors on X:

V =m7.(€)

» We define an order on the elements
in £ by

ni <my if me(m) < me(nj)-
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Construction

The partition A = {Ak}fcv_*ol of X as follows:
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Construction

The partition A = {Ak}fcv:Ol of X as follows:

» Let f, be the map of translation by v, i.e. f, : 2 — 2+ v.
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Construction

The partition A = {A;} 2} of X as follows:

» Let f, be the map of translation by v, i.e. f, :z— x4+ v.

> Ag=frl(X)nX.

b Ar = (f1(X) N X))\ (U 4.
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Construction

The partition A = {A;} 2} of X as follows:

» Let f, be the map of translation by v, i.e. f, :z— x4+ v.

> Ag=frl(X)nX.

> Ar = (£ 1) N X))\ (U 4.
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Construction

from cut-and-project method via matrix
0 1 0
M —

L= 10 0
1

1
-n n+1

for n = 6.

«0O0» «F»r <«

» An example of the rectilinear PET T, : X — X constructed
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Construction

» An example of the rectilinear PET T}, : X — X constructed
from cut-and-project method via matrix

0 1 0
M, =10 o0 1 for n = 6.
1 —n n+1

» Each orbit of point x € X corresponds to a lattice walk.

u]
8]
1
n
it
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Renormalization

Theorem

Let Y C X be the rectangle with top right vertex (1,1) with
width A1 and height Ao where 0 < A\; < A9 < 1 are two
eigenvalues of M,,.
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Renormalization

Theorem

Let Y C X be the rectangle with top right vertex (1,1) with
width A1 and height Ao where 0 < A\; < A9 < 1 are two
eigenvalues of M,,. Let T,, : X — X be a rectilinear PET
arisen from cut-and-project method via M,,. Then

Tn|y :w_IOTnO@Z)
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Renormalization

Theorem

Let Y C X be the rectangle with top right vertex (1,1) with
width A1 and height Ao where 0 < A\; < A9 < 1 are two
eigenvalues of M,,. Let T,, : X — X be a rectilinear PET
arisen from cut-and-project method via M,,. Then

Tn|Y :¢_10Tn0¢

where ¢ : X — X is defined by

r4+M—1 y+A-—1

Y (z,y) = ( N N J
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Renormalization

Figure: An illustration of renormalization.
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Renormalization

Figure: An illustration of renormalization.
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Renormalization

Proof Sketch:

» Define Ay = {(a,b,c) € Z3| 7.(a,b,c) € Y}
Note the fact that Ay C Ax.
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Renormalization

Proof Sketch:
» Define Ay = {(a,b,c) € Z3| 7.(a,b,c) € Y}.
Note the fact that Ay C Ax.
» Define ¥ : Ax — Ax to be the acceleration map defined by
a 1 a 1

0 0
v bl— 1|1 0 -—n bl + |—1
0 1

c n+1 c 0
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Renormalization

Proof Sketch:

» Define Ay = {(a,b,c) € Z3| 7.(a,b,c) € Y}.
Note the fact that Ay C Ax.

» Define ¥ : Ax — Ax to be the acceleration map defined by
a 0 0 1 a 1
v bl— |1 0 -—n -1
C

0

bl +
01 n+1
We show that ¥ : Ay — Ay corresponds to T|y Y =Y.

c

—
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Renormalization

Proof Sketch:

» Return

| [b] | =(x,y) = @m0V | [b
c

= (A1z, Aa2y)
c
where 0 < A1 < Ao < 1 are eigenvalues of M,.
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Renormalization

Proof Sketch:
» Return
e b =(z,y) = w0V b = (A\1z, Aoy)
c c

where 0 < A1 < Ao < 1 are eigenvalues of M,.

» First return
The map W preserves the order of the lattice walk

{wi,wa, -}, ie.

Te(wi) < Me(wj) =  7eo VU(w;) < me 0 U(wj).
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Renormalization

Underlying substitution symbolic dynamics:
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Renormalization

Underlying substitution symbolic dynamics:

» Seta=uv9, b=1

and ¢ = wvs.
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Renormalization
Underlying substitution symbolic dynamics:

» Seta=wv9, b=v1 and c=uv;3

» substitution of Pisot type
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Renormalization

Underlying substitution symbolic dynamics:

» Seta=wv9, b=v1 and ¢ =wvs3.
» substitution of Pisot type
a+— abe, b+ abedb, and

¢ (abe)"3bc  forn > 6
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Renormalization

Underlying substitution symbolic dynamics:
» Seta=wv9, b=v1 and ¢ =wvs3.
» substitution of Pisot type

a+— abe, b+ abedb, and

¢ (abe)"3bc  forn > 6

» Incidence matrix:

1 1 n—-3
Wo=11 2 n-2
1 1 n-2
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Renormalization

Underlying substitution symbolic dynamics:
» Seta=wv9, b=v1 and ¢ =wvs3.
» substitution of Pisot type

a+— abe, b+ abedb, and

¢ (abe)"3bc  forn > 6

» Incidence matrix:

1 1 n—-3
Wo=11 2 n-2
1 1 n—-2
> W, ~ M,
[m] = = = =
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Multi-Stage Rectilinear PETs
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Multi-Stage Rectilinear PETs

Po=PF,, - P,

Let P, be the matrix of translation. Consider matrix products
k

and Pz = ]Dn1 . Pn
such that

for ¢ > 1.
For each stage ¢ > 0, we want to construct a RET S; by via P;
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Multi-Stage Rectilinear PETs
Let P, be the matrix of translation. Consider matrix products
Py=PF, ---P,, and P, =P, ---P, fori>1.

For each stage ¢ > 0, we want to construct a RET S; by via P;
such that

» each S; has the same combinatorics as T§.

02 04 08 08 10

02 04 08 08 10 02 04 08 08 10 02 04 08 08 10 02 04 06 08 10
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Multi-Stage Rectilinear PETs
Let P, be the matrix of translation. Consider matrix products
Py=PF, ---P,, and P, =P, ---P, fori>1.

For each stage ¢ > 0, we want to construct a RET S; by via P;
such that

» each S; has the same combinatorics as T§.

» each S; is renormalizable, i.e.

Sily, = ;' 0 Si1 09

02 04 08 08 10

02 04 08 08 10 02 04 08 08 10 02 04 08 08 10 02 04 06 08 10

=] 5 = = = Da® 27/39



Multi-Stage Rectilinear PETs

The matrix of translation

1 11 1 1 1 1

0 2 1 1 2 2 1

0 01 0 0 1 2
P,=10 11 1 2 2 2

000 O 0 0 0

1 01 1 0 1 2

0 00 n—4 n—3 n—4 n—4]

u]
8]
|
i
!
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Multi-Stage Rectilinear PETs

The matrix of translation

111 1 1
021 1 2
001 0 0

P,=1011 1 2
000 0 0
101 1 0
0 0 0

The matrix P, can be reduced to the incidence matrix W,,.

S N = N

1

S NN =

2

n—4 n—3 n—4 n-—4
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Multi-Stage RETs (Construction)

2

Figure: An illustration of renormalization.

«40>r «F» «=)» « =)
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Multi-Stage RETs (Construction)
Construction:

> Let P=DP,, -+ Py,
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Multi-Stage RETs (Construction)
Construction:
> Let P = P,

oo Py,

Non-zero eigenvalues: 0 < A1 < A < 1 < A3.
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Multi-Stage RETs (Construction)
Construction:

> Let P=1P,, - P,,.

Non-zero eigenvalues: 0 < A1 < g <1 < A3
Eigenvectors: (1 = (xo, z1,

,1‘6) for Tl — Ty = 1.

G = (Yo, y1,--»ys) fory1 —yo =1

A
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Multi-Stage RETs (Construction)
Construction:

> Let P=DP,, -+ Py,

Non-zero eigenvalues: 0 < A1 < A < 1 < A3.
Eigenvectors: (1 = (xo, z1,

,1‘6) for r1 —To = 1

G = (Yo, y1,-*,ys) fory1 —yo =1
» Let V = {vpg, -+ ,vg} be the set of vectors given by

vj = (j,9;)-

wQ

o
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Multi-Stage RETs (Construction)

Construction:
> Let P=PF, ---P,,.
Non-zero eigenvalues: 0 < A1 < A < 1 < A3.
Eigenvectors: (; = (29,21, ,x¢) for 1 — 29 = 1.
G = (Yo, Y1, ,y6) foryr —yo =1

» Let V = {vpg, -+ ,vg} be the set of vectors given by
vj = (2, 9;)-

Thereisa RET S : X — X with the set of translation vectors
V = {v;}5_¢ if v; € (=1,1) x (=1,1).
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Multi-Stage RETs (Construction)

» P=P, ---P, and P,=P, ---P,

i

DAt 31739



Multi-Stage RETs (Construction)

» P=PF, ---P,, and P, = P, --- P,,.
> P’LC]. = (J"%)a : 7x%) and PZCQ = (yév o ayé)
Rescale =

—zh 42t =1 and —yd+yi =1
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Multi-Stage RETs (Construction)

» P=P, ---P, and P,=P, ---P,

it

> P’LC]. = (,I%), e 7'7%) and PZCQ = (y(z]v e ayé)

Rescale =

» Translation vector for ith stage:

U(i) = (x67 yé)? T vé = (‘7“%7 yé)

[m] = =

—zh 42t =1 and —yd+yi =1

A
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Multi-Stage RETs (Construction)

» P=P, P, and P,=P, ---P,

> PlCl = (l‘%]a e 71%) and PZCQ = (yg]a e ayé)
Rescale = —xé +acil =1 and —yg +y§ =1.

» Translation vector for ith stage:
v(z) = (%’67 y6)7 R v% = (‘T%? yé)

There is a multi-stage RET S : X — X if at each stage ¢,
all translation vectors v;- €(—1,1) x (—1,1).
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Multi-Stage RETs (Construction)

» P=P, P, and P,=P, ---P,

> PlCl = (l‘%]a e 7x%) and RCQ = (yg]a e ay%)
Rescale = —xé +q:il =1 and —yg +y§ =1.

» Translation vector for ith stage:
U(Z) = (%’67 y6)7 R v% = (‘T(ZS7 y(zi)

There is a multi-stage RET S : X — X if at each stage 1,
all translation vectors v;- €(—1,1) x (—1,1).

A product P is called admissible if there is a multi-stage
RET.
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Multi-Stage RETs (Construction)

Figure: The multi-stage rectilinear PETs for P

= PPy PsPs.
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Multi-Stage RETs (Renormalization)

Theorem (Renormalization Scheme)

Let P = P,, --- P,, be an admissible matrix product. Let
S : X — X be a a multi-stage RET determined by P. Then
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Multi-Stage RETs (Renormalization)

Theorem (Renormalization Scheme)

Let P = P,, --- P,, be an admissible matrix product. Let
S : X — X be a a multi-stage RET determined by P. Then
1.

Slvo = %5 " 0 S1 0 1o
for the affine map v : Yy — X.

v Q

Q (v
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Multi-Stage RETs (Renormalization)

Theorem (Renormalization Scheme)

Let P = P,, --- P,, be an admissible matrix product. Let
S : X — X be a a multi-stage RET determined by P. Then
1.

Slvo = %5 " 0 S1 0 1o
for the affine map v : Yy — X.
2.

Silv, = ¥7

0 Sit10;
for the affine map ¢; : ¥; — X
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The Parameter Space of Multi-Stage RETs

-
PR Tl
- :‘;’,‘:/

e
. ,';J st
S
S
g st gt
i e i#
I H‘;' - f‘:_;; ’
Pt
bt #

Figure: The parameter space of admissible rectilinear PETs in R*
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The Parameter Space of Multi-Stage RETs

PP
e P
A ,
of J
P o ;;ﬁ"

Figure: The parameter space of admissible rectilinear PETs in R*

Theorem (in process)

The parameter space M of admissible rectilinear PETs
is a Cantor set in R*.
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The Parameter Space of Multi-Stage RETs

i e
% -.";- . _‘-;. .
Sl P et
LA r’u’ P
R _".l“‘ s -
e .
IR . "‘, .dw b
’
*0 F i
i .lfl “J
as A
A

Figure: P, M and
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The Parameter Space of Multi-Stage RETs

We expect the dynamics on the parameter space to be a 'discrete
horseshoe map’

10.75

DAt 36/39



Domain Exchange Transformation

We can construct domain exchange transformation on more
general domains by the cut-and-project method.

Figure: An example of circle exchange transformation by the
cut-and-project method
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Domain Exchange Transformation

We can construct domain exchange transformation on more
general domains by the cut-and-project method.

Figure: An example of circle exchange transformation by the
cut-and-project method

(Conjecture) The domain exchange transformations on convex
domains via cut-and-project methods are renormalizable.
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Future Directions

» PETs on general domains and their renormalizations

v

vV v v v

Piecewise isometries arisen from cut-and-project methods
associated to quartic polynomials

Generalizations of the Three Gap Theorem
Self-similar tilings from RETs?
Generalizations of Rauzy inductions in PETs

Complexity of the PETs
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