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Starting point:



Hamiltonian and Equations of Motion

H(q,p) =    (p2 + q2 ) - F(q) Σ δ( t - 2πρn )

ρ = rotation number = 1/# kicks per natural period 
                (Resonant case:  ρ  rational)
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q = = p

p =  - = - q + f(q) Σ δ( t - 2πρn )
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Free oscillation for fraction ρ of a natural period, followed by momentum
shift   p --> p + Δp,  Δp = f(q) = F'(q) = "kick amplitude"  

F(q) = F(q + τ )

Initial choice:  F(q) = λ cos(q),   Δp = λ sin(q),   τ=2π  

Example: λ = 0.8,  quasi-periodic orbit
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Quasi-periodic Phase-Space Orbit and Poincaré Section
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Stroboscopic view in phase space: plot (q,p) just before each kick.

             q              cos 2πρ  sin 2πρ           q
                                p             -sin 2πρ   cos 2πρ    p + λ sin q( (() = )) = p + λ sin q

-q( )
Poincaré map

ρ = 1/4
λ= 0.8



Chaotic Orbit and Poincaré Section
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17 kick periods 425 kick periods
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Stochastic Web with 4-fold Crystalline Symmetry



Phase Portrait of Local Stochastic Web Map, λ=0.8



Normal and Anomalous Diffusion

For typical values of  λ , the chaotic orbits of W4 in the stochastic web 
proceed to infinity with mean-square distance from the initial point
satisfying 

< q2 + p2 > ~ D t    for  t 8

D = diffusion constant  

More general power law behavior:

< q2 + p2 > ~ D' tμ    for  t 8

diffusion:  μ = 1
super-diffusion:  μ > 1
sub-diffusion: μ < 1
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Fig. 2. Diffusion coefficient 9 normalized to the quasilinear theory coefficient Qsl= K2/2 for different values of K, 

obtained after averaging over 2500 trajectories for each value of K with 0.5 x lo5 iterations for each trajectory. 

it is found that the diffusion is anomalous with the exponent 

p= 1.26, (3.5) 

whereas for K,, = 6.25 we get the normal diffusion with p = 1. The accuracy in both cases is a few 
percents. Let us look at Fig. 3 where a set of trajectories is plotted on the torus for (u, u), mod 2x, 
for the anomalous case (3.4). The distribution of points for the map (2.5) is highly uniform except 
for the four small domains which belong to the accelerator modes (2.11). It seems, at first glance, 
that the contribution of the islands should be small and comparable with their size, but it is not the 
case and the explanation of the influence of islands is given in the next section. 

4. Self-similar stickiness 

How the islands affect the transport process can be qualitatively described in the following way: 
Let us first consider the case of uniform distribution in the phase space, similar to the Sinai billiard 
system, as an example. Let us fix a domain of a finite size and fairly good boundaries. We assume 
the existence of a characteristic time that a particle needs to escape the domain. Typically, for the 
Sinai’s billiard this time is proportional to the domain’s volume and it does not depend on where 
the domain is taken. Such kind of a “uniformity” does not exist for systems with islands. Consider a 
system with an island in the phase space, and surround the island by a ring of such a width so as to 
include a set of islands smaller than the central one. The ring forms a boundary layer, from which 
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Global Kicked-Oscillator Map
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Local Map  K

K
x
y( ( = ( y

(-x + α y - ξ) mod 1 ( = ( 0    1
-1   α ( x

y( ( + 0
3-ι(x,y)( (

piecewise affine transformation



(0,0)

(m,n)

(n,-m)

Action of map  W   on the plane 

W( u + m )  =  K(u)  + R(-π/2) m  + d(u)

W  decomposes into K  plus a  Z2 lattice isometry

d(u) = {
(0,-2)     u ε D1
(0,-1)     u ε D2
(0,0)     u ε D3



ξ0 1 y

f(y)  = α ( y mod 1 - ξ )

My choice of parameters:

slope  α  :  2

intercept  ξ = β
2

(α − β s ),   0 < s < α 

Notation:
β = α−1
ω = α+1

More complicated f(y): 

ξ0 1 yζη
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K expressed as a true piecewise isometry

For  |α| < 2,  ( )0 1
-1 α

has eigenvalues   ei θ - i θ,   e ,  hence is

conjugate to
R(−θ) = ( )cos θ sin θ

cos θsin θ−

Hence  K  is conjugate to a rotation followed by a piecewise translation, applied to
a rhombus with vertex angle  θ .

Example for α =  2 ,  θ = π/4
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H reflects about the
symmetry axis of each atom;
G then reflects about the 
short diagonal of R . 

Rhombus map as a 
composition of involutions

ρ  =   G     Ho

R
R
G2 =  H2 = 1

ρ  =   H     Go
R

-1



Induced map on atom Ω1 tiled domain B(s) = base triangle

s = α/6 s = α/3 s = α/2 s = 2α/3 s = 5α/6

s = 0 s = α

Notation:
α =  2
β = α−1
ω= α+1

l

l

Type

B(l,h,π)
π= reflection parity

π= +1



R

B

Return paths

1: 1, (3,22)4, 3
2: 1, 3, 22, 3
3: 1, 3, 23, 3
4: 1, 3, 24, 3
5: 1, 3, 25, 3

Incidence matrix
1  8  5
1  2  2
1  3  2
1  4  2
1  5  2

(1)
(1)
(1)
(1)
(1)

Note time reversal symmetry
(palindromes!)

   



Our goal

Given  s  in [0, α],   to find within the base triangle B(s) a higher-level 
base triangle B*(s)  conjugate to B(r(s)) via a similarity transformation,
for some suitable renormalization function r(s).  

Numerical experiment gave strong evidence that this is true, with the following
specification of r(s)  (notation: α =  2

:

, β = α−1 , ω= α+1)

0 αβ α−β α−β2 α−β3βββ 234

I III I II 0 1 2 3-1-2-3

β

III I II
i+1 β

i
I-i,0-i,-1-i,-2-i,-3 -i,1 -i,2 -i,3

I-i,-j = ( β i+1 + β
i+j+2 , β    +  β

i+1 i+j+1
] i > 0,  j > 0

I-i,j = [ β i − β
i+j+1 , β    −  β

i i+j+2
) i > 0,  j > 0

I 0,0
= ( β + β2

, β2 )
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On I i , f(s) = + ω
|i|+1

 ( s - Δ

i )

r(s) = f
2
(s)

On I ij , r(s) = + ω
|i|+|j|+2

ij )



Main Results

Theorem 1    Let f(s) and r(s)= f 2 (s) be defined as above.  Let B(s) be
the base triangle with its 5-atom domain map.  Then for all s ε [0,α),
there exists a tiled domain B*(s)     B(s) such that B*(s) is conjugate, 
via a similarity transformation,  to B(r(s)).  Furthermore, with the 
exception of the accumulation points of r(s), the base triangle is tiled by the 
return orbits of the atoms of B*(s), up to a finite number of periodic

Theorem 2 A point s ε I = [0,     ) is eventually periodic under f if and 
only if s ε Q(      ) .  Hence the set of parameter values for which the
dynamical map L is dynamically self-similar is Q(   2 )    I .  

2
2

domains.

Coding:      s i0 i1 i2 ..... if  fk(s) ε Ik
k=0,1,2,...



Renormalization fixed point  s = 0 = r(0)

induces induces induces

Return paths

1:   1, 3, 2, 2, 3
2:   1, (3, 2, 2)4, 3

Incidence
  matrix

B B*R

BB*
BB*

5
14

2  5
5  8

2  5
5  8
2  5
5  8RB*  return times

80
137=
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B

B*

B**

B  induces  B*  induces B**



One more level gives a 
fine covering of the
exceptional set.

Code j1
t1( ( j2

t2( ( j3
t3( ( j4

t4( (
ji  ε {1,2},    ti ε {0,1,. . ., νi-1}

locates a small convex set covering
points of the exceptional set.

An infinitely long code sequence corresponds
to a single point in the exceptional set.



Renormalization Tour for i j 

base B

pencil  P

minimal pencil   Pmin

PWI = product of involutions
        = global reflection      
           local reflection about 
           symmetry axes of atoms

shortening lemma

base B*

< -1,   =0



Renormalization scenario    R      B      P     Pmin      B* on the
parameter intervals

rm(s)  ε  I
−2 k,0  = (α β2k+1, 2 β2k+1),       k = 1, 2, 3, . . .,  m = 0, 1, 2, . . .

This is an r - invariant Cantor set whose Hausdorff dimension is 
determined by the equation

Σ  β(2k+4) d =
k = 0

8

β4 d

β2 d1  −
= 1

d =
log γ

2 log β 
, γ = ( 5 −1)/2

On I
−2 k,0  , r(s) =  ω2k+2 (2 β2k+1 − s)

ω = β−1 = α + 1  

d =  0.2729897 . . .

αβ2k+1 2 β

α

0
2k+1

r(s)

s



induces

Renormalization scenario for  s  ε  I-2k, 0 ,  step 1 : R induces B

R B
1

2
3

4

51

1

1
2

22
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3

3
4

5

Return paths:

1:   1, (3, 22)4, 3
2:   1, 3, 22, 3
3:   1, 3, 23, 3
4:   1, 3, 24, 3
5:   1, 3, 25, 3

Incidence matrix

1   8   5
1   2   2
1   3   2
1   4   2
1   5   2



Renormalization scenario for  s  ε  I-2k, 0 ,  step 2 : B induces P

induces

B

3

5

1

1
22

34

4
5

1
2 3,4,5 6 7 8 9,10,11,

12,13P
2L+1 atoms (this picture is for L=6)

Return paths:

1:   3
2:   3, 1
3:   3, 1, 4, 1
4:   3, 1, 5, 1
5:   3, 2
6:   3, 26

7:   3, 23

8:   3, 22, φ(15), 2
9:   3, 22, φ(12), 2

2 m:        3, 22, φ( 12, σ(1)2 , σ2(1)2

2 m + 1:   3, 22, φ( 12, σ(1)2 , σ2(1)2

. . . , σL−5(1)2, σL−4(1)5), 2
. . . , σL−5(1)2, σL−4(1)2), 2

Substitutions: 1 ) = (1, 2)φ(
2 ) = (2, 2, 2)φ(

1 ) = (2,1,1)σ(
2 ) = (1,1,1)σ(

L = 2 k + 2

m = 5, 6, . . . , L



B P (continued)

Incidence matrix

0    0   1   0   0
1    0   1   0   0
2    0   1   1   0
2    0   1   0   1
0    1   1   0   0
a3   c3  1   0   0
b3   d3  1   0   0
a4   c4  1   0   0
b4   d4  1   0   0

aL   cL  1   0   0
bL   dL  1   0   0

     

ak= -1/2 +(-1)k+1/2 3k-2

bk= 1 - 2 (-1)k+ 3k-2

ck= -1/2 + 1/4(-1)k+1/4 3k-2

dk= 1 - 1/2 (-1)k+1/2 3k-2.

.

.
1

2

35 4



4
5

1
2 3,4,5 6 7 8 9,10,11,

12,13P
2L+1 atoms (this picture is for L=6) L = 2 k + 2

Step 3:  P Pmininduces

inducesPmin 9 atoms

Return paths

1:   1
2:   2 L - 4
3:   2L-4, 2L-5,  .  .  .  6, 5, 3, 5, 6, .  .  .  , 2L-4
4:   2L-4, 2L-5, 2L-5, 2L-4
5:   2L-3
6:   2L-2
7:   2L-1
8:   2L
9:   2L+1

Incidence matrix

1  0  0  0  0  0        0  0  0
0  0  0  0  0  0        0  0  1
0  0  1  0  2  2        2  2  2
0  0  0  0  0  0        0  2  2

1  0  0  0  0
0  1  0  0  0
0  0  1  0  0
0  0  0  1  0
0  0  0  0  1

0

0

12
3, 4

5
6

7 8,9



induces

Pmin 9 atoms

12
3, 4

5
6

7 8,9

1
2

3

5,4

B*

Return paths
Incidence matrix

1:  8,72,9,7,6,(5,3,5,6)6,7,9,7,7
2:  8,72,9,7,6,(5,3,5,6)3,7,9,7,7
3:  8,72

4:  8,7,6,5,3,5,6,7,93,7,6,5,3,5,6,7
5:  8,7,6,5,3,5,6,7,96,7,6,5,3,5,6,7

0   0   6   0   12  7   6   1   2
0   0   3   0    6   4   6   1   2
0   0   0   0    0   0   2   1   0
0   0   2   0    4   4   4   1   3
0   0   2   0    4   4   4   1   6

step 4:   Pmin   induces B*And finally,



Cumulative incidence matrix for B     P     Pmin     B*

ABB*       APminB*  APPmin  ABP=

= A  +  B L  + C 3L

A =
63/2     -81      -62    6    0
51/4   -69/2     -26   3    0
-1          2          3     0    0
225/36  -37/2   -14   2   0
11/2      -17       -11   2   0 

-12     24      24    0    0
-6       12      12   0    0
0          0        0    0    0
-4         8        8    0    0
-4         8        8    0    0 

B =

C =
25/54    25/27    0   0   0
35/108   35/54   0   0   0
  2/27       4/27   0   0   0
 11/36    11/18   0   0   0
  7/18        7/9    0   0   0    

Cumulative return times

ABB*
14
5
6
7
8

=
-294
-129
126/9
-75
-60

96
48
0
32
24

L

100
 70
 16
 66
 84

3L − 2+ +

..



B P (continued)

Incidence matrix

0    0   1   0   0
1    0   1   0   0
2    0   1   1   0
2    0   1   0   1
0    1   1   0   0
a3   c3  1   0   0
b3   d3  1   0   0
a4   c4  1   0   0
b4   d4  1   0   0

aL   cL  1   0   0
bL   dL  1   0   0

     

ak= -1/2 +(-1)k+1/2 3k-2

bk= 1 - 2 (-1)k+ 3k-2

ck= -1/2 + 1/4(-1)k+1/4 3k-2

dk= 1 - 1/2 (-1)k+1/2 3k-2.

.

.
1

2

35 4



Arrowhead Map



Single-step transfer paths for three
            parameter ranges



N(E 2k− 1) =
− 1

2 − (− 1)k + 3
23

k

− 1
2 + ( − 1)k + 1

23
k ,

N(E 2k ) =
− 1

2 −
1
4 (− 1)k + 3

43
k

− 1
2 +

1
4 (− 1)k + 1

43
k

with k = 1 , . . .  , J(h, l ) .

Arrowhead Transfer Map

Partial incidence matrices (visits to tiles 1 and 3
along transfer orbits):



Simplest self-similar models:  s  a renormalization fixed point

s  =  r(s)  =  ωL(2 βL-1 - s)

s  =
2ω

1 + ωL

B(l , s )  induces B(βL l , s

η(L)  =  | largest eigenvalue of ABB* |
=  | largest root of  x3 +a x2 +b x +c |

= (  -a+(a2-3b) d-1/3 +d1/3  ) /3

2 d=-2 a3+ 9ab - 27c+ 3 3(-a2b2+4 b3 +4 a3 c -18 abc +27 c2)

Asymptotic temporal scaling factor:

) , and soSpatial scaling factor κ(L) :

κ(L) =  βL

a = −1−10 x 3L-2

b= −56 +253 x 3L-2 −72 x 3L-2 L,
c= 29 x 3L-2

Hausdorff dimension of the exceptional set: 

dH(L) = −
Log η(L)
Log κ(L)
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dH
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Hausdorff Dimension of the Exceptional Set for s ε  I-L-2,0L = 4,6,8,. . . 

Comparison with  dH(0) = 1.24648...




