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@ Topological dynamical system (TDS)
(X, T)—X is a compact metric space with metric d and
T : X — X is continuous.

Definition (topological entropy)

n—1

o1 _i
hiop(X, T)ZszpngngonlogN(\{) T™'u).
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@ Exponential growth:
NV T~U) ~ e™
@ Independence:

IF U = {AS,AS, -, AS} and huop(T,U) > 0, then
AW ={t1,to, -, tm} C [1,n],d > 0 with m= |W| > dn
such that

ﬂ T UAs # 0 forany s; € {1,---, k}.
i=1

o If heop(X, T) is finite, then hiop(X, T) = hiop(T,U) when U
is a generating open cover.
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@ Measure-theoretic dynamical system (MDS) :
(X, B, 1, T)—(X,B, u) is a probability space and
T :(X,B,u) — (X, B, ) is measurable and preserves .

Definition (measure-theoretic entropy)

1 n—1 )
hu(X, T) =sup lim —H,(\/ T~'P).
i=0

P n—oo N
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@ Exponential growth:
Hu (V120 T~'P) ~ nh
1(Pa(x)) ~ e~ for i a.e.x € X.
@ Independence:
a Bernoulli factor with entropy h, for any h < h.

o If h,(X, T) is finite, then h,(X, T) = h,(T,P) when P is a
generating partition.
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Zero entropy system

@ a wide range of systems:
rotations, some of Toeplitz systems, distal systems, special
flows over rotations, horocycle flows...

o different levels of complexities with subexponential growth
rate: ~ p(n)2"

@ zero entropy systems are generic

@ “deterministic” systems are not really deterministic
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Invariants and entropy type invariants for zero entropy

systems

@ sequential entropy (Kusnirenko, Goodman)
@ scaling entropy (Vershik)

@ measure-theoretic complexity (Ferenczi), topological
complexity (Blanchard)

@ maximal pattern complexity (Kamae), maximal pattern
entropy (Huang, Shao and Ye)

@ slow entropy (Katok and Thouvenot)
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Invariants and entropy type invariants for zero entropy

systems

e Entropy dimension(Carvalho, 1997)

e Entropy dimension for measure preserving systems (Park and
Ferenczi)

e Entropy dimension via independence and sequence(Dou,
Huang and Park)

e Entropy dimension via dimensional topological entropy (Ma,
Kuang and Li)
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Topological entropy dimensions for zero entropy systems

Definition ((upper) topological entropy dimension)

D | n—1—i
D(T,O[’u) = lim sup ogN(\/l:O Z/{)

n— o0 n<

D(T,U)=inf{la>0:D(T,a,U) =0}
=sup{a >0: D(T,a,U) = co}.

D(X,T)=supD(T,U)
u

Similarly, we have the definitions of lower entropy dimensions,
D(T,U) and D(X, T).
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Topological entropy dimensions for zero entropy systems

e D(X, T) =supy, D(T,W), where W takes over open covers
of X with two non-dense open sets.

(] E(Xl X XQ, Tl X T2) = max{E(Xl, T]_),b(XQ, Tg)}

e If (X3, T2) is a factor of (Xi, T1), then

5(X2, T2) S E(Xl, Tl) and Q(XQ, T2) S Q(Xl, Tl).
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Topological entropy dimensions for zero entropy systems

Let S={s1<sx<---} CN, 7 >0, we define

D(S,7) = limsup ! —and D(S,7) = liminf

n—oo (Sn) n—=0o0 (SH)T'

@ upper dimension of S:

D(S) =inf{r >0:D(S,7) =0}
=sup{T >0:D(S,7) = o0}.

o for S = {n2}, D(S) = %

Similarly, we have definition of D(S).
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Topological entropy dimensions for zero entropy systems

@ entropy generating sequence (S):

lim inf = IogN \/ T=SiU) > 0.

n—oo n
i=1

@ positive entropy sequence (S):

hepe( T, U) = limsup = IogN \/ T=SiU) > 0.

n—oo N
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Topological entropy dimensions for zero entropy systems

Definition
De(T,U) = supD(S), D (T,U) = sup D(S),
S S
where S runs over all entropy generating sequences for .

Dp(T,U) = sng(S),Qp(T,U) = sgpQ(S)

where S runs over all positive entropy sequences for U.

De(X, T)=supDe(T,U), Dp(X,T)=supDp(T,U).
u u

Similarly, we can define D (X, T) and D,(X, T).
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Topological entropy dimensions for zero entropy systems

o Let A1, Ay, -+, Ax be k-pairwise disjoint non-empty closed
subsets of a TDS (X, T) (k >2) and U = {AS, AS,--- , AL},
then

De(T,U) = D,(T,U) = D(T,U).

De(X, T)=D,(X,T)=D(X,T).

e IfU is a generating open cover of (X, T), then

De(T,U)=D(X, T).
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u.p.e. like properties for topological entropy dimension

Let (X1,X2) € X x X\AX

@ entropy dimension of (xi, x2):

D(x1,x) = ,,“_5205(2’{”) € [0, 1],

where U, = {X \ B(x1, %), X \ B(x, 1)}.

@ a—pair:

D(x1,x2) = a.

e E%(X, T): collection of a—pairs.
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u.p.e. like properties for topological entropy dimension

For a TDS (X, T), we call the subset {a > 0: E*(X, T) # (0} of
[0, 1] the dimension set of (X, T) and denote it by D(X, T).

e If0 ¢ D(X, T), then (X, T) is topological weakly mixing.

o Letm: (X, T)— (Y,S) be a factor map between two TDS's.
Then D(X, T) 2 D(Y,S). In particularly, dimension set is an
invariant under topological conjugacy.

e Given a € [0, 1], there exists a TDS (X, T) with
D(X,T)={a}.
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u.p.e. like properties for topological entropy dimension

e If D(X, T) = {a}, then any nontrival factor of (X, T) has
dimension set {a}.

o Let (Y,S) be a minimal TDS. If D(X, T) > D(Y,S), then
(X, T) is disjoint from (Y,S).

J C X x Y is said to be a joining of (X, T) and (Y, S) if J is closed,
T x S-invariant with mx(J) = X, my(J) = Y. We say that (X, T) and (Y, S)
are disjoint if X x Y contains no proper joining of (X, T) and (Y, S).
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Measure-theoretic entropy dimensions

One may consider the quantity

C(P) =inf{3 ||msup /3 \/T 'P) = 0}.

Theorem (Ferenczi and Park 2005)

If there exists a partition P such that C(P) = « > 0, then for any
a <7 <1 ande>0, there exists a partition P such that

(1). |P - P| < e, and
(2). C(P)=T.
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Measure-theoretic entropy dimensions

We can define measure-theoretic entropy dimensions through
looking the “density” of sequences that generates the complexity.

@ entropy generating sequence (S):

liminf — H T*S’P) > 0.

n—oo N

@ positive entropy sequence (S):

(T, P) = lim sup H \/T SiP) > 0.

n—oo
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Measure-theoretic entropy dimensions

D, (T,P) = SLSIPE(S),QZ(T, P) = sgpQ(S),

where S runs over all entropy generating sequences for partition P.

D;(T,P)=supD(S),D(T,P) = sup D(S)
S S

where S runs over all positive entropy sequences for P.

e = AP AP
D,(X,T)= Sl’J)p D,(T,P), D,(X,T)= Sllip D,(T,P).

Similarly, we can define Df(X, T) and Df(X, T).
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Measure-theoretic entropy dimensions

o DI(T,P)=0o0r L.
o

~E€
D,(T,P)=Dj(T,P).

e If P is a generating partition (generator), then

DS WX, T) = (T P) = DI(T,P)=Di(X, T).

Definition

D,(T,P)=D,(T,P)=DA(T,P),
Du(X,T) =Dy (X, T)=D5(X,T).
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Measure-theoretic entropy dimensions

n

o Forany0<m<n, D,(T,P)= (Ta\/TlP)
o D,(T,PVQ)=max{D,(T,P),D,(T ,Q)}

5.U»()<7 T) = Supbﬂ(—,—? P)7
P

where P runs over measurable partitions with 2 elements.

DX x Y, T x S) = max{D,(X, T), D, (Y, S)}.
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K-like properties for measure-theoretic entropy dimension

Definition (dimension set)

Dims, (X, T) = {D,(T,{A, X\ A}): A€ B and 0 < u(A) < 1}.

o Let (X,B,u, T) be an invertible MDS and (Y,D,v,S) be an
ergodic MDS. If Dims, (X, T) > D,(Y,S), then (X, B, 1, T)
is disjoint from (Y, D, v, S).

o Letm:(X,B,u, T) = (Y,D,v,S) be a factor map between
two MDS'’s. Then Dims, (X, T) 2 Dims,(Y,S). In particular,
the dimension set is invariant under measurable isomorphism,
and so is the entropy dimension.
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K-like properties for measure-theoretic entropy dimension

e For 7 € [0,1), define the o-algebra
PI(T):={AeB:D,(T,{AX\A}) <7}

o P} (T) admits the maximal factor with entropy dimension no
more than 7.

° P;l(T) C Pf(T) CP(T)forany 0 <1 <1 <1

P.(T)={Ae€B: h,(T,{A, X\ A}) =0} is Pinsker o-algebra. It admits the
maximal factor with zero entropy and P,(T) = {X, 0} for K-system.
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We denote by |a| the largest integer not greater than a. For
7€ [0,1] and n > 2, let

Xnr = {x =(xi)iez € {0,1}" :
X; :0forj¢{itn1_TJ ci=0,1,---,[n"]}}

Let

X = Ujez Uzozl O”Xn77.

Then D(X,0) = D(X,0) =7 and D,(X,0) = 0 for any invariant
measure /1.
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Cassaigne 2003:
Define inductively the substitution ¢ : N* — {0,1}* and the family
(xk)ken of prefixes of the dyadic valuation word v as follows:

a) ¥(0) = 0,9(1) = 1;

b) x is the longest prefix of v such that
[90x)| < max(p~H(k +1) — ¢ (k) — 1,0);
¢) for all j > 1, let
(2)) = ¥(X1ogj1)0¥ () and ¥(2j + 1) = (X |10 ) 10 ()-

Let u = 9(v).
A" the collection of finite or infinite words over A. ¢(t) =t7, (0 < 7 < 1), for

example.
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u is uniformly recurrent. Let X = {c'u: i € Z}, then (X, 0)

°
is minimal.

e C(n), complexity function of u, is of p(n)27.

e D(X,0)=r.

e (X, o) is uniquely ergodic and D, (X, o) = 0. (Ahn-Dou-Park,
2010)

o If we replace c) of Cassaigne by the following c'): ¢’) for all
j>1, let

(2)) = (X1 ) () and ¥(2) + 1) = P(X|i0g )19 (),
then D(X,0) = {r}. (Dou-Huang-Park, 2011).

such systems are called 7-u.d. systems.
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@ There exists a MDS with given entropy dimension 7 € [0, 1].
(Ferenczi-Park, 2007)

@ There exists a MDS with D, (X, T) = {7}.
(Dou-Huang-Park, arxiv 2013)

@ Using cutting and stacking method, controlling the sizes of
repetitive and independent steps.
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e Give an irrational rotation:
To: T'=> T =R/Z
T.0 =0+« modl

e Coding to a sturmian system (Z, o) for a topological purpose:
Define a bi-infinite 0 — 1 sequence
Z:Z(Q):( 72712021...) by

1 if0+namodle[0,3)
Zn = .
-1 if0+namodl € [3,1)

We then let Z = {z(0),0 € T'}.
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e Give an invertible Bernoulli system (Y, S) with finite entropy.

e Define the skew-product system (X =Z x Y, T):
T(z,y) = (0z,5%y)

that is, for any point (z,y) € Z x Y, we will walk along the
trajectory of y: if z, is 1, we walk forward at time n, otherwise we
walk backward.

We call this model a DETERMINISTIC WALKS in RANDOM
SCENES.
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e For any 7 € (0,1), there exists « such that

DX, T)=Du(X,T)=".
D(X, T) =Du(X, T) ={0,7}.

The choice of a:

o =[ag; a1, a2, -], where a; =5,--- ,ap1 =2|q) " | +1,---.
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