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Simple energy landscape

Potential energy minima A and C separated by a transition state B
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Rate of forward reaction k, units time-

Arrhenius: plotting In k vs 1/T yields straight line

k= _Cexp(-EnX)/ksT)
= k : rate constant
= Ep : barrier height (activation energy)
= A : prefactor

Can estimate . using harmonic transition state theory
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More complex situations

D=1

—
structural coordinate x

Potential energy V as a function of coordinates of N atoms

Defined over D = 3N dimensional space
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An early energy landscape conundrum:
Levinthal’s paradox

Christian Anfinsen: Denature an enzyme, then renature it again
Native catalytic activity is regained

— Native structure must be at a global energy minimum

Cyrus Levinthal: take 100 residue protein, assume 10 backbone
states/residue

e.g., ~ phi, psi torsion angles in staggered positions
Number of possible states ~ 10100

If 1 ps/state, exhaustive search >> 10 x age of the universe

Yet proteins do find the native state, on ps to s timescale
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Implicit assumption:
"'o0lf course" energy landscape

® [ evinthal’s search assumes all non-native states have equal probabilities

® Implies that the potential energy surface is flat except for the native state

Finding native conformation unlikely (like a “hole in one”)
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Resolution of paradox: folding funnel

| ocal interactions are quickly explored
Native-like local interactions are lower energy than the rest*

Fnergy decreases as the structure approaches the native form
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* evolution selected them that way e (Dill, Heier tolynes, ..
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A better golf course
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Funnelled ELs are characteristic of self-structuring systems

Crystals

> Single, ordered state from highly diverse solution

Many biological systems...
Folding of globular proteins / RNA

Specific protein interactions

o Self-assembly (fibers, virus capsids, ...)

...but not all

Misfolding/alternative structures (amyloids, ...)

Intrinsically Disordered Proteins/Regions = ID[PR]s (promiscuous
interactions, degradation pathways, ...)
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Exploring the EL

Where does knowledge of an

FL come from?

Optimisation
minimization, ...

. A
| ocal characterization
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. andmarks on an EL
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Critical points: gradient = 0
minima
index O: no negative eigenvalues in Hessian
saddle points
index 1, 2, ... 3N-1 (number of negative eigenvalues)
maxima
index 3N: negative eigenvalues only

Inflection points: curvature = 0
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Minimization

1st derivative (gradient) approaches

steepest descent (-gradient of V)
conjugate gradients (keep list of productive directions)

2nd derivative (curvature of energy surface)

approaches
Approximate curvature matrix (Hessian, also used for NM)
Would find minimum in one step if surface were quadratic
-~ For a real surface, very useful once we are near the
minimum
e.g., BFGS

At an energy minimum
gradient is 0

Quality of minimization judged by magnitude of F = - gradient

gradient
would be exactly zero at true minimum
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CH Robert

Transition paths

" Pang (2010) arXiv:1001.0925v1
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Nudged Elastic Band

> “mountain pass problem” (index 1

saddle points)

> Guess initial points between fixed
end-points a and b (e.g., by
interpolation)

~ Connect points by springs

~ Minimize cost function c(F |, F))) for

the chain

Finding saddle points (an example)
~ Use connectivity criteria between a
and b in level sets
> Critical value is highest level set for
which a and b are not connected
> General Morse index saddles
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Picture the EL through disconnectivity graphs
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Becker and Karplus (1997) ] Chem Phys
Transform connected minima and saddle points into tree structure

Minima separated by the lowest index-1 saddle between V(j) and V(j+1) are
connected at level |

Minima coalesce into connected components (super-basins) at higher and
higher energies
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Examples of
disconnectivity

graphs

Different basin interconnectivities
give different classes of landscapes

l

Different classes of dynamics
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Non-funneled landscapes: frustration

Energy landscape prevents system from attaining the global energy
minimum

~ High temperatures— rapid configurational exploration
-~ Low temperatures— trapping

- = Global energy minimum difficult to reach
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Frustrated systems:
glassy behavior

Simple example: cooling of a binary
Lennard-Jones system using MD

Plot average energy of quenched
snapshots ("inherent structures")

Slower cooling allows accessing lower
energy states, but
amorphous
no "native" structure
- global minimum not relevant
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Disconnectivity graph
for Alanine tetra-
peptide
Ac-(Ala);-NHMe

Blocked amino and éarboxy termini:
four peptide bonds

Can form one H-bonded turn of an
alpha helix

Extended (8) and helix (a)
approximately equal potential energy
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Limitations of disconnectivity graphs

I -

Inconsistency: Minima shown exactly but saddle points only shown within AE

Only lowest transition states are seen
Multiple transition states can be hidden in an energy step

expand AE: gain visibility, lose transitions
reduce AE:gain transitions,lose visibility
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Persistence analysis

> Rationale

— Sub-level sets: M, = f '(—oo,t),t € R ? . ., h :
— Birth and death of the o Y
connected components of M; i o Sa ‘
— ————— =+ hirth

}..‘-: '&1

F. Cazals, course slide

Analyze connected components of sub-level sets as function of
neight (energy)

Plot birth of each additional component on x, death on y

+ see the exact persistence of each component (height of saddle) directly

© natural mechanism to denoise landscape (persistence < threshold)

in the SBL
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ldea behind NM

Harmonic approximation to
potential energy

Restrict description to a single harmonic potential centered on a minimum-energy

configuration

Vibrational dynamics only

CH Robert

Dynamics depend on the shape of the energy minimum at that point
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Total vibrational energy

atom 1 atom 2 atom N
5 - 5 5 R [(.L s Yls 2 ),l'_.‘-_».;g..,~_>).....(.1_. sUN o 2
Kinetic plus harmonic potential energy — B
r = I ) €Tz ra I Uy CaAN

Eib = I(R) + Vharmonic(R)

Expand potential energy V about a position x, at an energy minimum

Hessian matrix of second-order partial derivatives describes the curvature
at the minimum

N i ; : 1 (3%) 7 g207
Z Miadfilg, + Vay + U5) + 5 ( Sgia )
! .. 3 J Lo

aloms.a .9

(@ — 370('.)(1']' - Cqu)

B | -

Evib B

Inconvenient form: T(R) sums over atoms, V(R) over Cartesian coordinates
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Root-mass weighting gives eigensystem

Introduce root-mass weighted coordinate displacements

g //—'-l = 4 )
\, _ V,7‘!("1I — "I"i())

1Q ., L[ oV
EVIb:5252+52<0§§]> fiéj
[ ! 0

l,]

Symmetric form

... 1
Evib = Efo + EéTsz (Note: Hessian becomes H, a force-constant matrix)

Can find matrix A that diagonalizes H

[w? 0 .. 0
. 0 w8 0 .. 0
L=A"HA L =
(0 0 0 .. wiy]

Eigenvalues w2

Eigenvectors gi: columns of AT
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Normal modes: molecular motions can be
decomposed into independent oscillators

E., = E{+E>+ ...
" 1., 1 5 5 1. 9 1 5 5
= ot eia |2f/2“ RS ]
E oscillator 1 E oscillator 2

Because L is diagonal, the total energy is that of 3N independent oscillators along
the g's

Each normal coordinate gi is an oscillating function of time along eigenvector g,
frequency is wi

ql(t) — \/(2 El)/wl Cos(wi t + CPI)

Note: angular frequencies (radians/sec) typically converted to wavenumber cm-! by v — w/2me
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NM provides info on flexibility
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From crystal B-factors
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Calculate average squared atom displacements from modes

IN—-6 2 : 2
C G35 T 93541 .k T Y34
(5??) = kgT E 34,k 32;1; bl (for atom 0...N-1)
k=1 k

Correlate well with temperature factors (B-values) in xtal structures
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Using NM for entropy estimation
Wi\

Typical vibrational frequencies: 2 <7 <2000 cm-!

L h
Energy level spacing is on the order of kgT (207 cm-1):  1/100 < ~ <10

B
Quantum harmonic oscillator

Partition function ¢ = Z exp~“"s" where €, = hu(n + 1/2)
n=0
Vibrational entropy is f(occupation of excited states)
3N-6
hv,/kgT
Syib =ks Y, {—In(1 — exp™isl) + 5

i exphl/l/kBT — 1

Lower frequency NM — smaller spacing = larger entropy contribution

Why use this? e.g., MM-PBSA endpoint calcs of AGassoc

CH Robert  Algorithms in Structural Bioinformatics 2019  CIRM, Marseille TL Hill (1960), Lee & Olson (2006), ... 27



Superposition approximation for basins
— Thermodynamics ;
... for basins and transition points 0
— Free Energy Landscape 2
~ FEL is f(T) —4
Extended B form is more stable at 298K 6

 lower vibrational mode 2
frequencies than alpha helix —
higher entropy

+ agrees with MD sampling studies
(Krivov&Karplus 2002 PRL) 14

—16

18
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Evans & Wales 2003 JCP
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NM for kinetics: transition state theories

depend on critical points and their shapes
U(x)

Rate of forward reaction
k = A exp( - EnX)/ksT)
E, saddle point energy
saddle point: productive vibrational frequency wy

minima: vibrational partition functions ga and gg to estimate prefactor .«

CH Robert  Algorithms in Structural Bioinformatics 2019  CIRM, Marseille 29



What do the NM
vectors represent? |

Eigenvectors: principal axes of the (hyper)

paraboloid describing the minimum
“Natural” coordinate axes

Deforming along an eigenvector g
- produces a 1D vibration involving all the atoms
- has no effect on vibration along q»

coordinate axes

- no rotational component : each Lq = Aq.
- Can thus speak of the energy of that mode.

Orthogonal (normal) modes of vibration \\\ \
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Normal modes summary

Advantages
Analytical

Less computationally demanding than MD Deviation from crystal struct for 83 proteins
Standard atomic forcefields*

Identify correlated motions

30 - - Lu & Ma (2008) PNAS

Disadvantages
Extensive minimization
= Can be costly
= Structural deviation
Diagonalize large matrices (3Nx3N)

Number of Proteins

> Memory/time
Dependence on initial structure

Solvent effects poorly incorporated 0 | 2 3 4

(|

RMSD (A)

= Single solvent configuration if any
- Heuristic distance-dependent dielectric
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Elastic Network Models (ENM)

2 :
A — E ¢ .
i.j

Simplified harmonic potential
- Based on Tirion (1996) PRL
- di are from initial structure
~ no energy minimization

= no structural deviation
= fast

CH Robert  Algorithms in Structural Bioinformatics 2019  CIRM, Marseille
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Normal modes information
can extend far beyond x,

In proteins, lowest-frequency NM directions
predict directions of conformational change

Ap = Lclosed — Laopen

Table III. Overlap of the mode the most involved in the conformational
change of proteins of various sizes and motion types, when the ‘open’ or
‘closed’ conformations are considered

Protein Overlap
Open Closed

Citrate synthase 0.83 0.57
Calmodulin 0.50 0.37
Che Y protein 0.32 0.34
Dihydrofolate reductase 0.72 0.64
Diphtheria toxin 0.58 0.37
Enolase 0.33 0.30
LAO binding protein 0.84 0.40
Triglyceride lipase 0.30 0.17
Maltodextrin binding protein 0.86 0.77
Thymidylate synthase 0.56 0.40

Tama and Sanejouand (2001) Prot Eng 14, 1
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Conformational 4

exploration with NM

2

Qi
Displace along eigenvectors made used for f'ﬂ
- Random linear combinations i
- Displace along a chosen mode(s)
- Restrain projection along chosen mode(s)

Typical applications

Studying mechanisms
Flexible docking

Crystal structure refinement
Cryo EM

see Perahia, Hinson, Sanejouand, Delarue, Zacharias, Chacon, Grudinin ...
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Global optimization

Explicit goal is to find low-energy structures

Structure prediction

Implicit goals:
Exploration
explore far reaches of conformational space
Exploitation

find low-energy structures

CH Robert  Algorithms in Structural Bioinformatics 2019  CIRM, Marseille
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Global minimization/exploration with Basin Hopping

aka “Monte Carlo minimization”, Li and Scheraga PNAS 1987
Monte Carlo move followed by minimization before Metropolis test

BH transforms EL to remove all barriers
- If unchecked even samples chirality changes
- = Ensemble sampling of transformed surface

Efficient for finding global minimum in somewhat large systems (100 - 1000 atoms)
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Frustrated folding of a model protein

N

¥ (%.-0.)" BLN coarse-grained model

1 = a1
Vain — =K Y, (Ryij1 —Ro)* + Ko
2 i=1 L

N—3
+& ¥ A{l + cos¢,) + B(l — 3cos ;)]
i=1

r oy 12 r N
N=-2 N
ag a
+ 4¢ ¥ Cs - — D; —)
=1 ,'_.'Z_| 2 |:(Rij) ](K‘i

- HydrophoBic, hydrophiLic, Neutral
= Honeycutt & Thirumalai PNAS (1990)
- Head-Gordon PNAS (2003)

Highly frustrated EL

- Numerous low-energy structures in deep
funnels

~ Extensive BH studies (~10® minima)

— w— N —— -
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e DTN, L e
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BLN69 global mini

a B-barrel

Oakley, Wales & Johnston ] Phys Chem (2011)
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BH + Voronoi bias:
_, hybrid explorer

2. Peuze TRET
o Cheer e

Combine two strategies
1) T-RRT: Voronoi bias (taboo-ish)

~Temperature controlled Rapidly-expanding
Random Tree

~Jaillet, et al. (2011) ] Comp Chem

2) Monte Carlo minimization (Basin Hopping)
'Li & Scheraga (1987) PNAS

e o — Basin hopping threads biased towards
unexplored regions

+ ..

» <
™~

Basin Hopping o ¥ e

Cazals et al. (2015) ) Comp Chem

Roth et al. (2016) ] Comp Chem
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Hybrid explorer efficiently finds low-energy

structures

MOdel System Number of new ‘

low-energy

BLN coarse grained protein model (69 minima found

amino acids) 4000
Global minimum known - |

Gold standard database of minimum-
energy structures (Oakley, et al. 2011)

Hybrid explorer
More low-energy minima
Wider exploration

Competitive run time

Synergy:
exploration
and

exploitation

E=

More T-RRT- /’ i

. More basin-

like

...in the SBL
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Global minimization algorithms:
pluses and minuses

Advantages:

target low-energy structures (structure prediction)

broad exploration

Disadvantages:

no thermodynamic ensemble: averages not related to observables

In Basin Hopping, MC move sets limiting for compact states

CH Robert  Algorithms in Structural Bioinformatics 2019  CIRM, Marseille
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Thermodynamic sampling of the EL

MC or MD allows sampling in a thermodynamic ensemble

Averaging samples allows calculating observable properties

n(E): density of states (energy states)

A property of the entire energy landscape

Grows rapidly with E
Boltzmann factor:
Diminishes rapidly with E Wg(E) = @xp—BE(X)
Probability distribution: P (B T) o n(E)exp P
Peaks at average energy at T

Berg and Neuhaus (1992) Phys Rev Lett
Mitsutake, Sugita & Okamoto (2001) Biopolymers
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Canonical sampling

Probability distribution of E(T) is approximately Gaussian around avg E

But crossing barriers may require sampling high E transition regions...

In P(E)

Potential energy E

CH Robert  Algorithms in Structural Bioinformatics 2019  CIRM, Marseille
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X

Here the true Pcan(T) is bimodal
Sampled Psim(T) is not: poor sampling

Trapping In
canonical
simulations

® Transition regions are
exponentially suppressed

® Simulation remains trapped in
local (super-) basin

Large swaths of the energy landscape may be ignored

— Other approaches (e.g., REMD) sample better [...]

CH Robert  Algorithms in Structural Bioinformatics 2019  CIRM, Marseille
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Summary

1. New and old methods* for g
i Y

e
‘*“‘ f‘k‘ o,

exploring the EL of macromolecular
systems both locally and globally

2. Ways to accommodate and
compare** diverse data in simplified
but still rich representations

* including robotics [Juan Cortés] P
** _..also in the SBL [Frédéric Cazals] \\ LN 5 @ > e
: v T -

- I\_r/._/ : -
e —nC
dy d ds d.

Comparing 2 EL using the earthmover’s distance

. PO
* -
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...you're done, stop talking
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