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Imaging inverse problems

We are interested in an unknown image x ∈ Rd .

We measure y , related to x by a statistical model p(y ∣x).

The recovery of x from y is ill-posed or ill-conditioned, resulting in
significant uncertainty about x .

For example, in many imaging problems

y = Ax +w ,

for some operator A that is rank-deficient, and additive noise w .
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The Bayesian framework

We use priors to reduce uncertainty and deliver accurate results.

Given the prior p(x), the posterior distribution of x given y

p(x ∣y) = p(y ∣x)p(x)/p(y)

models our knowledge about x after observing y .

In this talk we consider that p(x ∣y) is log-concave; i.e.,

p(x ∣y) = exp{−φ(x)}/Z ,

where φ(x) is a convex function and Z = ∫ exp{−φ(x)}dx .
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Maximum-a-posteriori (MAP) estimation

The predominant Bayesian approach in imaging is MAP estimation

x̂MAP = argmax
x∈Rd

p(x ∣y),

= argmin
x∈Rd

φ(x),
(1)

computed efficiently, even in very high dimensions, by (proximal) convex
optimisation (Green et al., 2015; Chambolle and Pock, 2016).

However, MAP estimation has some limitations, e.g.,

1 it provides little information about p(x ∣y),

2 it is not theoretically well understood (yet),

3 it struggles with unknown/partially unknown models.
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Illustrative example: astronomical image reconstruction

Recover x ∈ Rd from low-dimensional degraded observation

y =MFx +w ,

where F is the continuous Fourier transform, M ∈ Cm×d is a measurement
mask operator, and w is Gaussian noise. We use the model

p(x ∣y) ∝ exp (−∥y −MFx∥2
/2σ2

− θ∥Ψx∥1)1Rn
+(x). (2)

∣y ∣
x̂MAP

Figure : Radio-interferometric image reconstruction of the W28 supernova.
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Posterior credible regions

Where does the posterior probability mass of x lie?

Recall that Cα is a (1 − α)% posterior credible region if

P [x ∈ Cα∣y] = 1 − α,

and the decision-theoretically optimum is the HPD region (Robert, 2001)

C∗
α = {x ∶ φ(x) ≤ γα} ,

with γα ∈ R chosen such that ∫C∗
α
p(x ∣y)dx = 1 − α holds.

We could estimate C∗
α by MCMC sampling, but in high-dimensional

log-concave models this is not necessary because something beautiful
happens...
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A concentration phenomenon!

Figure : Convergence to “typical” set {x ∶ log p(x ∣y) ≈ E[log p(x ∣y)]}.
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Proposed approximation of C ∗
α

Theorem 2.1 (Pereyra (2016))

Suppose that the posterior p(x ∣y) = exp{−φ(x)}/Z is log-concave on Rd .
Then, for any α ∈ (4 exp (−n/3),1), the HPD region C∗

α is contained by

C̃α = {x ∶ φ(x) ≤ φ(x̂MAP) +
√
dτα + d)},

with universal positive constant τα =
√

16 log(3/α) independent of p(x ∣y).

Remark 1: C̃α is a conservative approximation of C∗
α , i.e.,

x ∉ C̃α Ô⇒ x ∉ C∗
α .

Remark 2: C̃α is available as a by-product in any convex inference
problem that is solved by MAP estimation!
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Approximation error bounds

Is C̃α a reliable approximation of C∗
α?

Theorem 2.2 (Finite-dimensional error bound (Pereyra, 2016))

Let γ̃α = φ(x̂MAP) +
√
dτα + d . If p(x ∣y) is log-concave on Rd , then

0 ≤
γ̃α − γα

d
≤ 1 + ηαd

−1/2,

with universal positive constant ηα =
√

16 log(3/α) +
√

1/α.

Remark 3: C̃α is stable (as d becomes large, the error (γ̃α − γα)/d ⪅ 1).
Remark 4: The lower and upper bounds are asymptotically tight w.r.t. d .
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Example: Uncertainty visualisation in astro-imaging

Radio-interferometry with redundant wavelet frame (Cai et al., 2017).

dirty image x̂penML(y) x̂MAP

approx. credible intervals (scale 10 × 10 pixels) “exact” intervals (MCMC, minutes)

M31 radio galaxy (size 256 × 256 pixels, comp. time 1.8 secs.)
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Example: Uncertainty visualisation in astro-imaging

Radio-interferometry with redundant wavelet frame (Cai et al., 2017).

dirty image x̂penML(y) x̂MAP

approx. credible intervals (scale 10 × 10 pixels) “exact” intervals (MCMC, minutes)

3C2888 radio galaxy (size 256 × 256 pixels, comp. time 1.8 secs.)

M. Pereyra (MI — HWU) Bayesian mathematical imaging 14 / 53



Example: uncertainty visualisation in microscopy

Live cell microscopy sparse super-resolution (Zhu et al., 2012):

y = Ax +w
(A is a blur operator)

x̂MAP = argminx∈Rd ∥y−Hx∥2/2σ2+λ∥x∥1

(log-scale)

Consider the molecular structure in the highlighted region:

Are we confident about this structure (its presence, position, etc.)?

Idea: use C̃α to explore/quantify the uncertainty about this structure.
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Example: uncertainty visualisation in microscopy

Position uncertainty quantification
Find maximum molecule displacement within C̃0.05:

x̂MAP = argminx∈Rd ∥y−Ax∥2/2σ2+λ∥x∥1
Molecule position uncertainty

(±93nm × ±140nm)

Note: Uncertainty analysis (±93nm × ±140nm) in agreement with MCMC
estimates (±78nm × ±125nm - approx. error of order of 1 pixel), and with
experimental results (average precision ±80nm) of Zhu et al. (2012).
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Hypothesis testing

Bayesian hypothesis test for specific image structures (e.g., lesions)

H0 ∶ The structure of interest is ABSENT in the true image

H1 ∶ The structure of interest is PRESENT in the true image

The null hypothesis H0 is rejected with significance α if

P(H0∣y) ≤ α.

Theorem (Repetti et al., 2018)
Let S denote the region of Rd associated with H0, containing all images
without the structure of interest. Then

S ∩ C̃α = ∅ Ô⇒ P(H0∣y) ≤ α .

If in addition S is convex, then checking S ∩ C̃α = ∅ is a convex problem

min
x̄ , x∈Rd

∥x̄ − x∥2
2 s.t. x̄ ∈ C̃α , x ∈ S .
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Uncertainty quantification in MRI imaging

x̂MAP x̄ ∈ C̃0.01 x ∈ S

x̂MAP (zoom) x̄ ∈ C̃0.01 (zoom) x ∈ S (zoom)

MRI experiment: test images x̄ = x, hence we fail to reject H0 and conclude that

there is little evidence to support the observed structure.
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Uncertainty quantification in MRI imaging

x̂MAP x̄ ∈ C0.01 x ∈ S0

x̂MAP (zoom) x̄ ∈ C0.01 (zoom) x ∈ S0 (zoom)

MRI experiment: test images x̄ ≠ x, hence we reject H0 and conclude that there is

significant evidence in favour of the observed structure.
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Uncertainty quantification in radio-interferometric imaging

Quantification of minimum energy of different energy structures, at level
(1 − α) = 0.99, as the number of measurements T = dim(y)/2 increases.

∣y ∣ x̂MAP(T = 200)
ρα, energy ratio preserved at α = 0.01

Figure : Analysis of 3 structures in the W28 supernova RI image.

Note: energy ratio calculated as

ρα =
∥x̄ − x∥2

∥xMAP − x̃MAP∥2

where x̄ , x are computed with α = 0.01, and x̃MAP is a modified version of xMAP

where the structure of interest has been carefully removed from the image.
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Bayesian point estimators

Bayesian point estimators arise from the decision ”what point x̂ ∈ Rd

summarises x ∣y best?”. The optimal decision under uncertainty is

x̂L = argmin
u∈Rd

E{L(u, x)∣y} = argmin
u∈Rd

∫ L(u, x)p(x ∣y)dx

where the loss L(u, x) measures the “dissimilarity” between u and x .

Example: Euclidean setting L(u, x) = ∥u − x∥2 and x̂L = x̂MMSE = E{x ∣y}.

General desiderata:

1 L(u, x) ≥ 0, ∀u, x ∈ Rd ,

2 L(u, x) = 0 ⇐⇒ u = x ,

3 L strictly convex w.r.t. its first argument (for estimator uniqueness).
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Bayesian point estimators

Does the convex geometry of p(x ∣y) define an interesting loss L(u, x)?

We use differential geometry to relate the convexity of p(x ∣y), the
geometry of the parameter space, and the loss L to perform estimation.
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Differential geometry

A Riemannian manifold M= (Rd ,g), with metric g ∶ Rd → Sd++ and global
coordinate system x , is a vector space that is locally Euclidean.

For any point x ∈ Rd we have an Euclidean tangent space TxRd with inner
product ⟨u, x⟩ = u⊺g(x)x and norm ∥x∥ =

√
x⊺g(x)x .

This geometry is local and may vary smoothly from TxRd to Tx ′Rd

following the affine connection Γ ∈ Rd×d×d , given by Γij , k(x) = ∂kgi ,j(x).
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Divergence functions

Similarly to Euclidean spaces, the manifold (Rd ,g) supports divergences:

Definition 1 (Divergence functions)

A function D ∶ Rd ×Rd → R is a divergence function on Rd if the following
conditions hold for any u, x ∈ Rd :

D(u, x) ≥ 0, ∀u, x ∈ Rd ,

D(u, x) = 0 ⇐⇒ x = u,

D(u, x) is strongly convex w.r.t. u, and C2 w.r.t u and x .
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Canonical divergence

We focus on the canonical divergence on (Rd ,g), a generalisation of the
Euclidean squared distance to this kind of manifold:

Definition 2 (Canonical divergence (Ay and Amari, 2015))

For any (u, x) ∈ Rd ×Rd , the canonical divergence on (Rd ,g) is given by

D(u, x) = ∫
1

0
tγ̇t

⊺g(γt)γ̇tdt (3)

where γt is the Γ-geodesic from u to x and γ̇t = d/dt γt .

1 D fully species (Rd ,g) and vice-versa.

2 D(x + dx , x) = ∥dx∥2/2 + o(∥dx∥2) where ∥ ⋅ ∥ is the norm on TxRd .

3 For Euclidean space with ⟨u, x⟩ = u⊺gx , D(u, x) = 1
2(u − x)⊺g(u − x).
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Differential-geometric derivation of x̂MAP and x̂MMSE

Theorem 3 (Canonical Bayesian estimators - Part 1 (Pereyra, 2016))

Suppose that φ(x) = − log p(x ∣y) is strongly convex, continuous, and C3

on Rd . Let (Rd ,g) be the manifold induced by φ, i.e., gi ,j(x) = ∂i∂jφ(x).
Then, the canonical divergence on (Rd ,g) is the φ-Bregman divergence

Dφ(u, x) = φ(u) − φ(x) − ∇φ(x)(u − x).

Remark: Because φ is strongly convex, then φ(u) > φ(x) − ∇φ(x)(u − x)
for any u ≠ x . The divergence Dφ(u, x) quantifies this gap, related to the
length of the affine geodesic from u to x on the space induced by p(x ∣y).
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Differential-geometric derivation of x̂MAP and x̂MMSE

Theorem 4 (Canonical Bayesian estimators - Part 2 (Pereyra, 2016))

The Bayesian estimator associated with Dφ(u, x) is unique and is given by

x̂Dφ ≜ argmin
u∈Rd

Ex ∣y [Dφ(u, x)] ,

= argmin
x∈Rd

φ(x) ,

= x̂MAP .

Remark2: x̂MAP stems from Bayesian decision theory, and hence it stands
on the same theoretical footing as the core Bayesian methodologies.

Remark3: The definition of the MAP estimator as the maximiser
x̂MAP = argmaxx∈Rd p(x ∣y) is mainly algorithmic for these models.
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Differential-geometric derivation of x̂MAP and x̂MMSE

Theorem 5 (Canonical Bayesian estimators - Part 3 (Pereyra, 2016))

Moreover, the Bayesian estimator associated with the dual canonical
divergence D∗

φ(u, x) = Dφ(x ,u) is also unique and is given by

x̂D∗
φ
≜ argmin

u∈Rd

Ex ∣y [D∗
φ(u, x)] ,

= ∫
Rd

xp(x ∣y)dx ,

= x̂MMSE .

Remark 4: x̂MAP and x̂MMSE exhibit a surprising duality, arising from the
asymmetry of the canonical divergence that p(x ∣y) induces on Rd .

Remark 5: These results carry partially to models that are not strongly
convex, not smooth, or that involve constraints on the parameter space.
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Expected estimation error bound

Are x̂MAP and x̂MMSE “good” estimators of x ∣y ?

Proposition 3.1 (Expected canonical error bound)

Suppose that φ(x) = − logπ(x ∣y) is convex on Rd and C1. Then,

Ex ∣y [D∗
φ(x̂MMSE , x)/d] ≤ Ex ∣y [D∗

φ(x̂MAP , x)/d] ≤ 1.

Proposition 3.2 (Expected error w.r.t. regularisation function)

Also assume that the regularisation h(x) = − log p(x) is convex. Then,

Ex ∣y [D∗
h (x̂MMSE , x)/d] ≤ Ex ∣y [D∗

h (x̂MAP , x)/d] ≤ 1.

Remark 6: These are high-dimensional stability results for x̂MAP and
x̂MMSE ; the estimation error cannot grow faster than the number of pixels.

M. Pereyra (MI — HWU) Bayesian mathematical imaging 31 / 53



Example 1: denoising with wavelet shrinkage prior

Consider a linear problem of the form y = Ax +w and a shrinkage prior on
the wavelet coefficients z =Wx . We consider the smoothed Laplace prior

p(z) ∝ exp{−
d

∑
i=1

λ
√

z2
i + γ

2}

where λ ∈ R+ and γ ∈ R+ are scale and shape parameters.

The likelihood is p(y ∣z) ∝ exp{− 1
2σ2 ∥y −AW ⊺z∥2

2 and hence

p(z ∣y) ∝ exp{− 1
2σ2 ∥y −AW ⊺z∥2

2 −
d

∑
i=1

λ
√

z2
i + γ

2}

This model is C∞ and strongly log-concave, and hence the theory applies.
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Example 1: denoising with wavelet shrinkage prior

To analyse the geometry induced by φ(z) = − log p(z ∣y) we suppose that
A = I and W ⊺W = I, and obtain Dφ(u, z) = ∑

d
i=1 Dψ(ui , zi) with

Dψ(ui , zi) =
1

2σ2
(ui − zi)

2
+ λ

√
z2
i + γ

2
√

u2
i + γ

2 − ziui − γ
2

√
z2
i + γ

2
.

The non-quadratic term introduces additional shrinkage and leads to the
differences between xMMSE and xMAP .

To develop an intuition for this behaviour we analyse zi ≪ γ and zi ≫ γ.

M. Pereyra (MI — HWU) Bayesian mathematical imaging 33 / 53



Example 1: denoising with wavelet shrinkage prior

When zi ≫ γ the non-quadratic term vanishes, hence

Dψ(ui , zi) ≈
1

2σ2 (ui − zi)
2 .

Hence, when p(zi ∣y) has most of its mass in large values of zi , the MAP
estimate for zi will agree with the MMSE estimate E(zi ∣y).

In this case there is no additional shrinkage from the estimator.
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Example 1: denoising with wavelet shrinkage prior

Conversely, when zi ≪ γ we have

Dψ(ui , zi) ≈
1

2σ2 (ui − zi)
2
+ λ∣ui ∣ ,

≈ 1
2σ2 u

2
i + λ∣ui ∣ ,

for ui ≫ γ, and for ui ≪ γ we obtain

Dψ(ui , zi) ≈
1

2σ2 (ui − zi)
2
+ λ [

u2
i

2γ
+

z2
i

2α
−
−ziui
γ

] = (
1

2σ2
+
λ

2γ
) (ui − zi)

2
2

In these two cases Dψ boosts the effect of the shrinkage prior by promoting
ui values that are close to zero (explicitly via the penalty λ∣ui ∣, or by
amplifying the constant of the quadratic loss from 1/2σ2 to 1/2σ2 +λ/2γ).
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Example 1: denoising with wavelet shrinkage prior

Illustration with the Flinstones image (σ = 0.08, λ = 12 and γ = 0.01).

noisy image y (SNR 17.6dB) x̂MAP (SNR 19.8dB)

x̂MMSE (SNR 17.7dB) denoising functions for ẑMAP and ẑMMSE

Illustrative example of a model where the action of the shrinkage prior acts

predominantly via Dψ (Note: setting γ = 0 leads to x̂MAP with SNR 18.8dB).
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Illustrative example: astronomical image reconstruction

Generalisation warning: shrinkage priors can also act predominantly via the
model (not Dψ), producing similar x̂MAP and x̂MMSE results; e.g.,

dirty image x̂penML(y) x̂MAP x̂MMSE

Radio-interferometric imaging of the Cygnus A galaxy ?.
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Problem statement

We consider the class of priors of the form

p(x ∣θ) = exp{−θh(x)}/C(λ)

where h ∶ Rn → [0,∞] promotes expected properties of x , and θ ∈ R+ is a
“regularisation” parameter controlling the strength of the prior.

When θ is fixed and the posterior p(x ∣y , θ) is log-concave,

x̂
(θ)
MAP = argmin

x∈Rd

gy(x) + θh(x)− logC(θ) − log p(y),

is a convex optimisation problem that can be often solved efficiently.

Here we consider the infamous problem of not specifying the value of θ.

M. Pereyra (MI — HWU) Bayesian mathematical imaging 39 / 53



Hierarchical Bayesian treatment of unknown θ

Hierarchical Bayesian inference allows estimating x without specifying θ.

We incorporate θ to the model by assigning it an hyper-prior p(θ).

The extended model is

p(x , θ∣y) = p(y ∣x)p(x ∣θ)p(θ)/p(y),

∝
exp{−gy(x) − θh(x) − log p(θ)}

C(θ)
,

(4)

but C(θ) = ∫Rd exp{−θh(x)}dx is typically intractable!

If we had access to C(θ) we could either estimate x and θ jointly, or
alternatively marginalise θ followed by inference on x .
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Idea: Use Prox-MCMC to estimate E [h(x)∣θ] over a θ-grid, and then
approximate logC(θ) by using the identity d

dθ logC(θ) = E [h(x)∣θ].

Figure : Monte Carlo approximations of E [h(x)∣θ] for 4 widely used prior
distributions and for θ ∈ [10−3,102]. Surprise: they all coincide!
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Main theoretical result

Definition 4.1 (k-homogeneity)

The regulariser h is a k-homogeneous function if ∃k ∈ R+ such that

h(ηx) = ηkh(x), ∀x ∈ Rd ,∀η > 0. (5)

Theorem 4.1 (Pereyra et al. (2015))

Suppose that h, the sufficient statistic of p(x ∣θ), is k-homogenous. Then
the normalisation factor has the form

C(θ) = Dθ−d/k ,

with (generally intractable) constant D = C(1) independent of θ.

Note: This result holds for all norms (e.g., `1, `2, total-variation, nuclear,
etc.), composite norms (e.g., `1 − `2), and compositions of norms with
linear operators (e.g., analysis terms of the form ∥Ψx∥1)!
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Marginal maximum-a-posteriori estimation of x

Knowledge of C(λ) enables (for example) marginal MAP estimation of x

x̂†
MAP = argmax

x∈Rd
∫

∞

0
p(x , λ∣y)dλ,

= argmin
x∈Rd

gy(x) + (d/k + α) log{h(x) + β},
(6)

where we have used the hyper-prior λ ∼ Gamma(α,β).

We can compute x̂† efficiently by majorisation-minimisation optimisation

x(t) = argmin
x∈Rd

gy(x) + θ
(t−1)h(x),

θ(t) =
d/k + α

h(x(t)) + β
.

(7)

which is also an expectation-maximisation algorithm.
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Compressive sensing with `1-wavelet analysis prior

Recover an original image x ∈ Rd of size n = 512 × 512 from a
compressed and noisy measurement

y = Φx +w ,

of size p = d/2, where Φ ∈ Rp×d is a compressive sensing random matrix
and w ∼ N(0, σ2Ip) is Gaussian noise with σ2 = 10.

We use the analysis prior

p(x ∣θ) = exp{−θ∥Ψx∥1}/C(θ)

where Ψ is a Daubechies 4 wavelet frame.

Note: ∥Ψ(x)∥1 is k-homogenous with k = 1.
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Experiment with the Boat and Mandrill test images

(θ∗ = 56.4, PSNR=33.4) (θ∗ = 2.04, PSNR=25.3)

Figure : Compressive sensing experiment with the Boat and Mandrill test
images, with automatic selection of θ by marginalisation - see (7).
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Comparison with SUGAR (Deledalle et al., 2014a) and with the MSE oracle.

θ PSNR SSIM time [sec]

Marginal MAP 56.4 33.4 0.96 299

SUGAR 1.10 18.4 0.55 1137

MSE Oracle 38.2 33.5 0.96 n/a

Least-squares n/a 17.7 0.52 0.04

Table : Boat.

θ PSNR SSIM time [sec]

Marginal MAP 2.04 25.3 0.87 229

SUGAR 0.95 22.9 0.80 984

MSE Oracle 4.65 26.0 0.90 n/a

Least-squares n/a 18.6 0.22 0.04

Table : Mandrill.
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PSNR vs θ Iterates θ(t)

Figure : [Left] Estimation PSNR as a function of θ. [Right] Evolution of the
iterates θ(t) for the Bayesian method (left axis) and for SUGAR (right axis).
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Illustrative example - Image deblurring with TV prior

In a manner akin to Fernandez-Vidal and Pereyra (2018), we also apply
the method to the Bayesian image deblurring model

p(x ∣y , θ) ∝ exp (−∥y −Ax∥2
/2σ2

− θ∥∇dx∥1−2) ,

and compute θ̂ = argmaxθ∈R+ p(y ∣θ).

We obtain the following results:

Method SNR=20 dB SNR=30 dB SNR=40 dB
Avg. MSE Avg. Time Avg. MSE Avg. Time Avg. MSE Avg. Time

θ∗(Oracle) 22.95 ± 3.10 – 21.05 ± 3.19 – 18.76 ± 3.19 –
Marginalization 24.67 ± 3.08 17.27 22.39 ± 3.07 6.31 19.44 ± 3.26 6.77
Empirical Bayes 23.24 ± 3.23 43.01 21.16 ± 3.24 41.50 18.90 ± 3.39 42.85

SUGAR 24.14 ±3.19 15.74 23.96 ± 3.26 20.87 23.94± 3.27 20.59

Comparison with the empirical Bayesian method (Fernandez-Vidal and Pereyra, 2018), the SUGAR method (Deledalle et al.,
2014b), and an oracle that knows the optimal value of θ. Average values over 10 test images of size 512 × 512 pixels.

An exhaustive evaluation comparing different methods on a range of imaging
problems will be reported soon.
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Conclusion

The challenges facing modern imaging sciences require a
methodological paradigm shift to go beyond point estimation.

In Part I we discussed how the Bayesian framework can support this
paradigm shift, provided we significantly accelerate computations.

In Part II we considered efficiency improvements by integrating
modern stochastic and variational computation approaches.

In Part III we explored methods based on convex optimisation and
probability, and developed theory for MAP estimation.
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Conclusion

In the next lecture...
We will explore Bayesian models and stochastic computation algorithms
for problems that are significantly more difficult, and where deterministic
approaches fail.

Thank you!
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Green, P. J.,  Latuszyński, K., Pereyra, M., and Robert, C. P. (2015). Bayesian
computation: a summary of the current state, and samples backwards and forwards.
Statistics and Computing, 25(4):835–862.

Pereyra, M. (2016). Maximum-a-posteriori estimation with bayesian confidence regions.
SIAM J. Imaging Sci., 6(3):1665–1688.

M. Pereyra (MI — HWU) Bayesian mathematical imaging 52 / 53



Pereyra, M. (2016). Revisiting maximum-a-posteriori estimation in log-concave models:
from differential geometry to decision theory. ArXiv e-prints.

Pereyra, M., Bioucas-Dias, J., and Figueiredo, M. (2015). Maximum-a-posteriori
estimation with unknown regularisation parameters. In Proc. Europ. Signal Process.
Conf. (EUSIPCO) 2015.

Repetti, A., Pereyra, M., and Wiaux, Y. (2018). Scalable Bayesian uncertainty
quantification in imaging inverse problems via convex optimisation. ArXiv e-prints.

Robert, C. P. (2001). The Bayesian Choice (second edition). Springer Verlag, New-York.

Zhu, L., Zhang, W., Elnatan, D., and Huang, B. (2012). Faster STORM using
compressed sensing. Nat. Meth., 9(7):721–723.

M. Pereyra (MI — HWU) Bayesian mathematical imaging 53 / 53


	Bayesian inference in imaging inverse problems
	MAP estimation with Bayesian confidence regions
	Posterior credible regions
	Uncertainty visualisation
	Hypothesis testing

	A decision-theoretic derivation of MAP estimation
	Hierarchical MAP estimation with unknown regularisation parameters
	Conclusion

