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Imaging inverse problems

We are interested in an unknown image x ∈ Rd .

We measure y , related to x by a statistical model p(y ∣x).

The recovery of x from y is ill-posed or ill-conditioned, resulting in
significant uncertainty about x .

For example, in many imaging problems

y = Ax +w ,

for some operator A that is rank-deficient, and additive noise w .
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The Bayesian framework

We use priors to reduce uncertainty and deliver accurate results.

Given the prior p(x), the posterior distribution of x given y

p(x ∣y) = p(y ∣x)p(x)/p(y)

models our knowledge about x after observing y .

In this talk we consider that p(x ∣y) is log-concave; i.e.,

p(x ∣y) = exp{−φ(x)}/Z ,

where φ(x) is a convex function and Z = ∫ exp{−φ(x)}dx .
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Maximum-a-posteriori (MAP) estimation

The predominant Bayesian approach in imaging is MAP estimation

x̂MAP = argmax
x∈Rd

p(x ∣y),

= argmin
x∈Rd

φ(x),
(1)

computed efficiently, even in very high dimensions, by (proximal) convex
optimisation (Chambolle and Pock, 2016).
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Illustrative example: astronomical image reconstruction

Recover x ∈ Rd from low-dimensional degraded observation

y = MFx +w ,

where F is the continuous Fourier transform, M ∈ Cm×d is a measurement
operator and w is Gaussian noise. We use the model

p(x ∣y) ∝ exp (−∥y −MFx∥2
/2σ2

− θ∥Ψx∥1)1Rn
+
(x). (2)

y
x̂MAP

Figure : Radio-interferometric image reconstruction of the W28 supernova.
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MAP estimation by proximal optimisation

To compute x̂MAP we use a proximal splitting algorithm. Let

f (x) = ∥y −MFx∥2
/2σ2 , and g(x) = θ∥Ψx∥1 + − log 1Rn

+
(x) ,

where f and g are l.s.c. convex on Rd , and f is Lf -Lipschitz differentiable.

For example, we could use a proximal gradient iteration

xm+1
= prox

L−1
f

g {xm
+ L−1

f ∇f (xm
)},

converges to x̂MAP at rate O(1/m), with poss. acceleration to O(1/m2).

Definition For λ > 0, the λ-proximal operator of a convex l.s.c. function g
is defined as (Moreau, 1962)

proxλg(x) ≜ argmin
u∈RN

g(u) +
1

2λ
∣∣u − x ∣∣2.
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MAP estimation by proximal optimisation

The alternating direction method of multipliers (ADMM) algorithm

xm+1
= proxλf {zm

− um
},

zm+1
= proxλg{xm+1

+ um
},

um+1
= um

+ xm+1
− zm+1,

also converges to x̂MAP very quickly, and does not require f to be smooth.

However, MAP estimation has some limitations, e.g.,

1 it provides little information about p(x ∣y),

2 it struggles with unknown/partially unknown models,

3 it is not theoretically well understood (yet).
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Inference by Markov chain Monte Carlo integration

Monte Carlo integration
Given a set of samples X1, . . . ,XM distributed according to p(x ∣y), we
approximate posterior expectations and probabilities

1

M

M

∑
m=1

h(Xm) → E{h(x)∣y}, as M →∞

Markov chain Monte Carlo:
Construct a Markov kernel Xm+1∣Xm ∼ K(⋅∣Xm) such that the Markov
chain X1, . . . ,XM has p(x ∣y) as stationary distribution.

MCMC simulation in high-dimensional spaces is very challenging.
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Unadjusted Langevin algorithm

Suppose for now that p(x ∣y) ∈ C1. Then, we can generate samples by
mimicking a Langevin diffusion process that converges to p(x ∣y) as t →∞,

X ∶ dXt =
1

2
∇ log p (Xt ∣y)dt + dWt , 0 ≤ t ≤ T , X(0) = x0.

where W is the n-dimensional Brownian motion.

Because solving Xt exactly is generally not possible, we use an Euler
Maruyama approximation and obtain the “unadjusted Langevin algorithm”

ULA ∶ Xm+1 = Xm + δ∇ log p(Xm∣y) +
√

2δZm+1, Zm+1 ∼ N(0, In)

ULA is remarkably efficient when p(x ∣y) is sufficiently regular.
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Metropolis-adjusted Langevin algorithm

ULA does not exactly target p(x ∣y) because of the time-discrete
approximation. In many problems this estimation bias is acceptable.

This error can be removed by using a so-called Metropolis-Hastings
correction. Given Xm at iteration m, we perform

1 A ULA step:

X ∗
= Xm + δ∇ log p(Xm∣y) +

√
2δZm+1, Zm+1 ∼ N(0, In) ,

2 With probability ρ(X ∗,Xm) we set Xm+1 = X ∗, else set Xm+1 = Xm,

ρ(X ∗,Xm) = min [1,
p(X ∗∣y)
p(Xm∣y)

p(Xm∣X ∗)
p(X ∗∣Xm)

] .
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Metropolis-adjusted Langevin algorithm

Some observations:

This correction removes the bias at the expense of additional variance.

The efficiency of the method depends strongly on δ.

The optimal efficiency is achieved for E(ρ) ≈ 0.6 as dimension d →∞.
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Metropolis-adjusted Langevin algorithm

Some observations:

This correction removes the bias at the expense of additional variance.

The efficiency of the method depends strongly on δ.

The optimal efficiency is achieved for E(ρ) ≈ 0.6 as dimension d →∞.

1 A ULA step:

X ∗
= Xm + δm+1∇ log p(Xm∣y) +

√
2δm+1Zm+1, Zm+1 ∼ N(0, In) ,

2 With probability ρ(X ∗,Xm) we set Xm+1 = X ∗, else set Xm+1 = Xm,

ρ(X ∗,Xm) = min [1,
p(X ∗∣y)
p(Xm∣y)

p(Xm∣X ∗)
p(X ∗∣Xm)

] .

3 Update δm+2 = δm+1 + αm+1(ρ(X ∗,Xm) − 0.6), for some {αm}∞m=1.
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Non-smooth models

Suppose that
p(x ∣y) ∝ exp{−f (x) − g(x)} (3)

where f (x) and g(x) are l.s.c. convex functions from Rd → (−∞,+∞], f
is Lf -Lipschitz differentiable, and g ∉ C1.

For example,

f (x) = 1
2σ2 ∥y −Ax∥2

2, g(x) = α∥Bx∥† + 1S(x) ,

for some linear operators A, B, norm ∥ ⋅ ∥†, and convex set S.

Unfortunately, such non-models are beyond the scope of ULA.

Idea: Regularise p(x ∣y) to enable efficiently Langevin sampling.
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Approximation of p(x ∣y)

Moreau-Yoshida approximation of p(x ∣y) (Pereyra, 2015):

Let λ > 0. We propose to approximate p(x ∣y) with the density

pλ(x ∣y) =
exp[−f (x) − gλ(x)]

∫Rd exp[−f (x) − gλ(x)]dx
,

where gλ is the Moreau-Yoshida envelope of g given by

gλ(x) = inf
u∈Rd

{g(u) + (2λ)−1
∥u − x∥2

2},

and where λ controls the approximation error involved.
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Moreau-Yoshida approximations

Key properties (Pereyra, 2015; Durmus et al., 2018):

1 ∀λ > 0, pλ defines a proper density of a probability measure on Rd .

2 Convexity and differentiability:
pλ is log-concave on Rd .

pλ ∈ C
1 even if p not differentiable, with

∇ log pλ(x ∣y) = −∇f (x) + {proxλg (x) − x}/λ,

and proxλg (x) = argminu∈RN g(u) + 1
2λ

∣∣u − x ∣∣2.

∇ log pλ is Lipchitz continuous with constant L ≤ Lf + λ
−1.

3 Approximation error between pλ(x ∣y) and p(x ∣y):

limλ→0 ∥pλ − p∥TV = 0.

If g is Lg -Lipchitz, then ∥pλ − p∥TV ≤ λL2
g .
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Illustration

Examples of Moreau-Yoshida approximations:

p(x) ∝ exp (−∣x ∣) p(x) ∝ exp (−x4) p(x) ∝ 1[−0.5,0.5](x)

Figure : True densities (solid blue) and approximations (dashed red).
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Proximal ULA

We approximate X with the “regularised” auxiliary Langevin diffusion

Xλ
∶ dXλ

t =
1

2
∇ log pλ (Xλ

t ∣y)dt + dWt , 0 ≤ t ≤ T , Xλ
(0) = x0,

which targets pλ(x ∣y). Remark: we can make Xλ arbitrarily close to X.

Finally, an Euler Maruyama discretisation of Xλ leads to the
(Moreau-Yoshida regularised) proximal ULA

MYULA ∶ Xm+1 = (1 − δ
λ)Xm − δ∇f {Xm} + δ

λ proxλg{Xm} +
√

2δZm+1,

where we used that ∇gλ(x) = {x − proxλg(x)}/λ.
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Convergence results

Non-asymptotic estimation error bound

Theorem 2.1 (Durmus et al. (2018))

Let δmax
λ = (L1 + 1/λ)−1. Assume that g is Lipchitz continuous. Then,

there exist δε ∈ (0, δmax
λ ] and Mε ∈ N such that ∀δ < δε and ∀M ≥ Mε

∥δx0QM
δ − p∥TV < ε + λL2

g ,

where QM
δ is the kernel assoc. with M iterations of MYULA with step δ.

Note: δε and Mε are explicit and tractable. If f + g is strongly convex
outside some ball, then Mε scales with order O(d log(d)). See Durmus
et al. (2018) for other convergence results.
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Illustration

Illustrative examples:

p(x) ∝ exp (−∣x ∣) p(x) ∝ exp (−x4) p(x) ∝ 1[−0.5,0.5](x)

Figure : True densities (blue) and MC approximations (red histogram).
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Modern Bayesian computation

Recent surveys on Bayesian computation...

25th anniversary special issue on Bayesian computation
P. Green, K. Latuszynski, M. Pereyra, C. P. Robert, ”Bayesian computation: a perspective on
the current state, and sampling backwards and forwards”, Statistics and Computing, vol. 25,
no. 4, pp 835-862, Jul. 2015.

Special issue on “Stochastic simulation and optimisation
in signal processing”
M. Pereyra, P. Schniter, E. Chouzenoux, J.-C. Pesquet, J.-Y. Tourneret, A. Hero, and S.
McLaughlin, “A Survey of Stochastic Simulation and Optimization Methods in Signal Pro-
cessing” IEEE Sel. Topics in Signal Processing, vol. 10, no. 2, pp 224 - 241, Mar. 2016.
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Uncertainty quantification in radio-interferometric imaging

Where does the posterior probability mass of x lie?

A set Cα is a posterior credible region of confidence level (1 − α)% if

P [x ∈ Cα∣y] = 1 − α.

The highest posterior density (HPD) region is decision-theoretically
optimal (Robert, 2001)

C∗
α = {x ∶ φ(x) ≤ γα}

with γα ∈ R chosen such that ∫C∗
α

p(x ∣y)dx = 1 − α holds.
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Visualising uncertainty in radio-interferometric imaging

Astro-imaging experiment with redundant wavelet frame (Cai et al., 2017).

x̂penMLE (y) x̂MAP (by optimisation) credible intervals (scale 10 × 10)

x̂penMLE (y) x̂MAP (by optimisation) credible intervals (scale 10 × 10)

3C2888 and M31 radio galaxies (size 256 × 256 pixels). Estimation error w.r.t.

MH implementation 3%.
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Visualising uncertainty in radio-interferometric imaging

Astro-imaging experiment with redundant wavelet frame (Cai et al., 2017).

x̂penMLE (y) x̂MMSE = E(x ∣y) x̂MMSE = E(x ∣y) (Px-MALA)

x̂penMLE (y) x̂MMSE = E(x ∣y) x̂MMSE = E(x ∣y) (Px-MALA)

3C2888 and M31 radio galaxies (size 256 × 256 pixels).
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Visualising uncertainty in radio-interferometric imaging

Astro-imaging experiment with redundant wavelet frame (Cai et al., 2017).

x̂penMLE (y) x̂MMSE = E(x ∣y) x̂MAP (by optimisation)

x̂penMLE (y) x̂MMSE = E(x ∣y) x̂MAP (by optimisation)

3C2888 and M31 radio galaxies. Visual comparison with MAP estimation.
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Bayesian Model Selection

The Bayesian framework provides theory for comparing models objectively.

Given K alternative models {Mj}
K
j=1 with posterior densities

Mj ∶ pj(x ∣y) = pj(y ∣x)pj(x))/pj(y) ,

we compute the (marginal) posterior probability of each model, i.e.,

p(Mj ∣y) ∝ p(y ∣Mj)p(Mj) (4)

where p(y ∣Mj) ≜ pj(y) = ∫ pj(y ∣x)pj(x)dx measures model-fit-to-data.

We then select for our inferences the “best” model, i.e.,

M
∗
= argmax

j∈{1,...,K}
p(Mj ∣y).
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Experiment setup

We degrade the Boat image of size 256 × 256 pixels with a 5 × 5 uniform
blur operator A∗ and Gaussian noise w ∼ N(0, σ2IN) with σ = 0.5.

y = A∗x +w

We consider four alternative models to estimate x , given by

Mj ∶ pj(x ∣y) ∝ exp [−(∥y −Ajx∥
2
/2σ2

) − βjφj(x)] (5)

with fixed hyper-parameters σ and β, and where:

M1: A1 is the correct blur operator and φj(x) = TV (x).

M2: A2 is a mildly misspecified blur operator and φj(x) = TV (x).

M3: A3 is the correct blur operator and φj(x) = ∥Ψx∥1.

M4: A4 is a mildly misspecified blur operator and φj(x) = ∥Ψx∥1.

where Ψ is a wavelet frame and TV (x) = ∥∇dx∥1−2 is the total-variation
pseudo-norm. The βj are adjusted automatically (see model calibration).
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Monte Carlo strategy

To perform model selection we use MYULA to approximate the posterior
probabilities p(Mj ∣y) for j = 1,2,3,4 by Monte Carlo integration.

For each model we generate n = 105 samples {X j
k}

n
k=1 ∼ p(x ∣y ,Mj) and

use the truncated harmonic mean estimator

p(y ∣Mj) ≈ (
n

∑
k=1

1S⋆(XM
k )

p(XM
k , y ∣Mj)

)

−1

vol(S⋆) , j = {1,2,3,4} (6)

where S⋆ is a union of highest posterior density sets of p(x ∣y ,Mj), also

estimated from {X j
k}

n
k=1.

Computing time approx. 30 minutes per model.
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Numerical results

We obtain that p(M1∣y) ≈ 0.68 and p(M3∣y) ≈ 0.27 with the correct blur
are the best models, p(M2∣y) < 0.05 and p(M4∣y) < 0.01 perform poorly.

y

M1

x̂MAP (PSNR 34.1dB)
p(M1∣y) ≈ 0.68

M3

x̂MAP (PSNR 32.9dB)
p(M3∣y) ≈ 0.27

Figure : MAP estimation results for the Boat image deblurring experiment.
(Note: error w.r.t. “exact” probabilities from Px-MALA approx. 0.5%.)
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Numerical results

MYULA and Px-MALA efficiency comparison:

(a) (b)

Figure : (a) Convergence of the chains to the typical set of x ∣y under model M1,
(b) chain autocorrelation function (ACF).)
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Empirical Bayesian model calibration

For illustration, consider the class of Bayesian models

p(x ∣y , θ) =
p(y ∣x)p(x ∣θ)

p(y ∣θ)
,

parametrised by a regularisation parameter θ ∈ Θ. For example,

p(x ∣θ) =
1

C(θ)
exp{−θϕ(x)}, p(y ∣x) ∝ exp{−fy(x)} ,

with fy and ϕ convex l.s.c. functions, and fy L-Lipschitz differentiable.

We assume that p(x ∣θ) is proper, i.e.,

C(θ) = ∫
Rd

exp{−θϕ(x)}dx < ∞ ,

with C(θ) unknown and generally intractable.
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Maximum-a-posteriori estimation

If θ is fixed, the posterior p(x ∣y , θ) is log-concave and

x̂MAP = argmin
x∈Rd

fy(x) + θϕ(x)

is a convex optimisation problem that can be often solved efficiently.

For example, the proximal gradient algorithm

xm+1
= proxL

−1

ϕ {xm
+ L−1

∇fy(xm
)},

converges to x̂MAP as m →∞.

However, when θ is unknown this significantly complicates the problem.
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Regularisation parameter MLE

We adopt an empirical Bayes approach and calibrate the model
maximising the evidence or marginal likelihood, i.e.,

θ̂ = argmax
θ∈Θ

p(y ∣θ) ,

= argmax
θ∈Θ

∫
Rd

p(y , x ∣θ)dx ,

which we solve efficiently by using a stochastic gradient algorithm driven
by two proximal MCMC kernels (see Fernandez-Vidal and Pereyra (2018)).

Given θ̂, we then straightforwardly compute

x̂MAP = argmin
x∈Rd

fy(x) + θ̂ϕ(x) . (7)
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Projected gradient algorithm

Assume that Θ is convex, and that θ̂ is the only root of ∇θ log p(y ∣θ) in Θ.

Then θ̂ is also the unique solution of the fixed-point equation

θ = PΘ [θ + δ∇θ log p(y ∣θ)] .

where PΘ is the projection operator on Θ and δ > 0.

If ∇ log p(y ∣θ) was tractable, we could compute θ̂ iteratively by using

θ(t+1)
= PΘ [θ(t) + δt∇θ log p(y ∣θ(t))] ,

with sequence δt = αt−β, α > 0, β ∈ [1/2,1].

However, ∇ log p(y ∣θ) is “doubly” intractable...
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Stochastic projected gradient algorithm

To circumvent the intractability of ∇θ log p(y ∣θ) we use Fisher’s identity

∇θ log p(y ∣θ) = Ex ∣y ,θ{∇θ log p(x , y ∣θ)} ,

= −Ex ∣y ,θ{ϕ +∇θ log C(θ)} ,

together with the identity

∇θ log C(θ) = −Ex ∣θ{ϕ(x)} ,

to obtain ∇θ log p(y ∣θ) = Ex ∣θ{ϕ(x)} −Ex ∣y ,θ{ϕ(x)}.

This leads to the equivalent fixed-point equation

θ = PΘ (θ + δEx ∣θ{ϕ(x)} − δEx ∣y ,θ{ϕ(x)}) , (8)

which we solve by using a stochastic approximation algorithm.
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Stochastic Approximation algorithm to compute θ̂

We use the following MCMC-driven stochastic gradient algorithm:
Initialisation x(0),u(0) ∈ Rd , θ(0) ∈ Θ, δt = δ0t−0.8.

for t = 0 to n

1. MCMC update x(t+1) ∼ Mx ∣y ,θ(t)(⋅∣x
(t)) targeting p(x ∣y , θ(t))

2. MCMC update u(t+1) ∼ Kx ∣θ(t)(⋅∣u
(t)) targeting p(x ∣θ(t))

3. Stoch. grad. update

θ(t+1)
= PΘ [θ(t) + δtϕ(u(t+1)

) − δtϕ(x(t+1)
)] .

end for

Output The iterates θ(t) → θ̂ as n →∞.
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SAPG algorithm driven MCMC kernels

Initialisation x(0),u(0) ∈ Rd , θ(0) ∈ Θ, δt = δ0t−0.8, λ = 1/L, γ = 1/4L.

for t = 0 to n

1. Coupled Proximal MCMC updates: generate z(t+1) ∼ N(0, Id)

x(t+1)
= (1 −

γ

λ
)x(t) − γ∇fy (x(t)) +

γ

λ
proxθλϕ (x(t)) +

√
2γz(t+1) ,

u(t+1)
= (1 −

γ

λ
)u(t) +

γ

λ
proxθλϕ (u(t)) +

√
2γz(t+1) ,

2. Stochastic gradient update

θ(t+1)
= PΘ [θ(t) + δtϕ(u(t+1)

) − δtϕ(x(t+1)
)] .

end for

Output Averaged estimator θ̄ = n−1
∑

n
t=1 θ

(t+1) converges approx. to θ̂.
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Illustrative example - Image deblurring with `1 prior

We consider again the live-cell microscopy setup

p(x ∣y , θ) ∝ exp (−∥y −Ax∥2
/2σ2

− θ∥x∥1) ,

and compute θ̂ = argmaxθ∈R+ p(y ∣θ).

y x̂MAP Reg. param θ

Figure : Molecules image deconvolution experiment, computing time 0.75 secs.
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Illustrative example - Image deblurring with TV-`2 prior

Similarly, for the Bayesian image deblurring model

p(x ∣y , θ) ∝ exp (−∥y −Ax∥2
/2σ2

− α∥x∥2 − θ∥∇dx∥1−2) ,

we compute θ̂ = argmaxθ∈R+ p(y ∣θ).

y
Reg. param θ Estimation error for x̂MAP

Figure : Boat image deconvolution experiment.
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Image deblurring with TV-`2 prior

Comparison with the (non-Bayesian) SUGAR method (Deledalle et al., 2014), and an oracle that knows the optimal value of θ.
Average values over 6 test images of size 512 × 512 pixels.

(a) Original (b) Degraded (c) Emp. Bayes (d) SUGAR

Method SNR=20 dB SNR=30 dB SNR=40 dB
Avg. MSE Avg. Time Avg. MSE Avg. Time Avg. MSE Avg. Time

θ∗(Oracle) 22.95 ± 3.10 – 21.05 ± 3.19 – 18.76 ± 3.19 –
Empirical Bayes 23.24 ± 3.23 43.01 21.16 ± 3.24 41.50 18.90 ± 3.39 42.85

SUGAR 24.14 ±3.19 15.74 23.96 ± 3.26 20.87 23.94± 3.27 20.59
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Conclusion

The challenges facing modern imaging sciences require a
methodological paradigm shift to go beyond point estimation.

The Bayesian framework can support this paradigm shift, but this
requires significantly accelerating computation methods.

We explored improving efficiency by integrating modern stochastic
and variational approaches.
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Conclusion

In the next lecture...
We will explore ways of accelerating Bayesian inference even further by
combining variational approaches with high-dimensional probability theory,
bypassing Markov chain Monte Carlo methods.

Thank you!
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