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Imaging inverse problems

We are interested in an unknown image x ∈ Rd .

We measure y , related to x by some mathematical model.

For example, in many imaging problems

y = Ax +w ,

for some linear operator A, and additive noise w .
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Regularisation

If A⊺A is ill-conditioned or rank deficient, then y does not allow
reliably recovering x without additional information.

In words, there is significant uncertainty about x given y .

To reduce uncertainty and deliver meaningful results we need to
regularise the estimation problem y → x to make it well-posed.
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Regularisation

For example, given some penalty function h ∶ Rd → [0,∞) promoting
expected properties of x , we could construct the estimator

x̂ = argmin
x∈Rd

∥y −Ax∥2
2 + θh(x) , (1)

that combines the data fidelity term ∥y −Ax∥2
2 and the penalty h,

where the “regularisation” parameter θ > 0 controls the balance.

When h is convex and l.s.c., x̂ can be computed efficiently by
(proximal) convex optimisation (Chambolle and Pock, 2016).

Other data fidelity terms could be considered too (e.g., ∥y −Ax∥1).
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Illustrative example: astronomical image reconstruction

Recover x ∈ Rd from low-dimensional observation y =MFx +w , where F
is the cont. Fourier transform, M ∈ Cm×d is a mask. We use the estimator

x̂ = argmin
x∈R

+

∥y −MFx∥2
2 + θ∥Ψx∥1 , (2)

where Ψ is a specialised wavelet dictionary and θ > 0 is some parameter.

∣y ∣ x̂

Figure : Radio-interferometric image reconstruction of the W28 supernova.
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Illustrative example: astronomical image reconstruction

Modern convex optimisation can compute x̂ very efficiently...

With parallelised and distributed algorithms...

With theoretical convergence guarantees..

And GPU implementations...

Also non-convex extensions...

Also, if we had abundant training data (we do not) we could learn a neural
network to recover x from y . Or alternatively learn y → x̂ for efficiency.

So the problem is quite solved, right?
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Not really...
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Elephant 1: what is the uncertainty about x̂?

∣y ∣ x̂MAP

How confident are we about all these structures in the image?

What is the error in their intensity, position, spectral properties?

Using x̂MAP to derive physical quantities? what error bars should we put...
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Illustrative example: magnetic resonance imaging

We use very similar techniques to produce magnetic resonance images...

x̂ x̂ (zoom)

Figure : Magnetic resonance imaging of brain lession.

How can we quantify our uncertainty about the brain lesion in the image?
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Illustrative example: magnetic resonance imaging

What about this other solution to the problem, with no lesion?

x̂ ′ x̂ ′ (zoom)

Figure : Magnetic resonance imaging of brain lession.

Do we have any arguments to reject this solution?
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Elephant 1: what is the uncertainty about x̂?

Another example related to sparse super-resolution in live-cell microscopy

y x̂MAP x̂MAP (zoom)

Figure : Live-cell microscopy data (Zhu et al., 2012).

The image is sharpened to enhance molecule position measurements, but
what is the precision of the procedure?
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Elephant 2: multiple and partially unknown models

We usually have several alternative models/cost functions to recover x

x̂1 = argmin
x∈Rd

∥y −A1x∥2
2 + θ1h1(x),

x̂2 = argmin
x∈Rd

∥y −A2x∥2
2 + θ1h2(x),

(3)

How can we compare them without ground truth available?

Can we use several models simultaneously?
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Elephant 2: multiple and partially unknown models

Some of the model parameters might also be unknown; e.g., θ ∈ R+ in

x̂1 = argmin
x∈Rd

∥y −A1x∥2
2 + θh1(x). (4)

Then θ parametrises a class of models for y → x .

How can we select θ without using ground truth?

Could we use all models simultaneously?
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Other elephants in the neighbourhood...

Why do we formulate solutions to imaging problems as penalised
data-fitting problems? Are there other relevant formulations?

Suppose we had a specific meaningful way of measuring estimation error,
reflecting specific aspects of our problem or the application considered.
What would be the optimal estimator then?
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Other elephants in the neighbourhood...

Should solutions to imaging problems always be images? even when their
purpose is to inform decision making, scientific conclusions?

What other mathematical objects could we construct to represent solutions
to imaging problems? e.g., could curves (videos) be interesting solutions?
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Introduction

Bayesian statistics is a mathematical framework for deriving inferences
about x , from some observed data y and prior knowledge available.

Adopting a subjective probability, we represent x as a random quantity,
and model our knowledge about x by using probability distributions.

To derive inferences about x from y we postulate a joint statistical model
p(x , y); typically specified via the decomposition p(x , y) = p(y ∣x)p(x).
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Introduction

The decomposition p(x , y) = p(y ∣x)p(x) has two key ingredients:

The likelihood function: the conditional distribution p(y ∣x) that models
the data observation process (forward model).

The prior function: the marginal distribution p(x) = ∫ p(x , y)dx that
models our knowledge about x “before observing y”.

For example, for y = Ax +w , with w ∼ N(0, σ2I), we have

y ∼ N(Ax , σ2I) ,

or equivalently
p(y ∣x) ∝ exp{−∥y −Ax∥2

2/2σ2} .
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Prior distribution

The prior distribution is often of the form:

p(x) ∝ e−θh(x)1Ω(x) ,

for some h ∶ Rd → Rm, θ ∈ Rm, and constraint set Ω.

This prior is essentially specifying the expectation

E(h) = ∫
Ω
h(x)p(x)dx = ∇θ logC(θ)

where
C(θ) = ∫

Ω
e−θh(x)dx .
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Prior distribution

For example, priors of the form

p(x) ∝ e−θ∥Ψx∥† ,

for some dictionary Ψ ∈ Rd×p and norm ∥ ⋅ ∥†, are encoding

E(∥Ψx∥†) =
d

θ
.

See Pereyra et al. (2015) for more details and other examples.
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Posterior distribution

Given an observation y , we naturally base our inferences on the posterior
distribution p(x ∣y).

We derive p(x ∣y) from the likelihood p(y ∣x) and the prior p(x) by using

p(x ∣y) = p(y ∣x)p(x)
p(y)

where p(y) = ∫ p(y ∣x)p(x)dx measures model-fit-to-data.

The conditional p(x ∣y) models our knowledge about x after observing y .

Observe that p(x) may significantly regularise the estimation problem and
address identifiability issues in p(y ∣x) (e.g., when A is rank deficient).

M. Pereyra (MI — HWU) Bayesian mathematical imaging 21 / 42



Maximum-a-posteriori (MAP) estimation

The predominant Bayesian approach in imaging to extract a solution from
p(x ∣y) is MAP estimation

x̂MAP = argmax
x∈Rd

p(x ∣y),

= argmin
x∈Rd

− log p(y ∣x) − log p(x)+ log p(y).
(5)

When p(x ∣y) is log-concave, then x̂MAP is a convex optimisation problem
and can be efficiently solved (Chambolle and Pock, 2016).
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Illustrative example: astronomical image reconstruction

Recover x ∈ Rd from low-dimensional degraded observation y =MFx +w ,
where F is the continuous Fourier transform, M ∈ Cm×d is a measurement
operator and w is Gaussian noise. We use the model

p(x ∣y) ∝ exp (−∥y −MFx∥2/2σ2 − θ∥Ψx∥1)1Rn
+
(x). (6)

y x̂MAP

Figure : Radio-interferometric image reconstruction of the W28 supernova.
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Bayesian decision theory

Given the following elements defining a decision problem:

1 Decision space ∆

2 Loss function L(δ, x) ∶ ∆ ×Rd → R quantifying the loss (or profit)
related to taking action δ ∈ ∆ when the truth is x ∈ Rd .

3 A model p(x) representing probabilities for x .

What is the optimal decision δ∗ ∈ ∆ when x is unknown?
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Bayesian decision theory

Given the following elements defining a decision problem:

1 Decision space ∆

2 Loss function L(δ, x) ∶ ∆ ×Rd → R quantifying the loss (or profit)
related to taking action δ ∈ ∆ when the truth is x ∈ Rd .

3 A probability model p(x) representing knowledge about x .

According to Bayesian decision theory (Robert, 2001), the optimal decision
under uncertainty is

δ∗ = argmin
δ∈∆

E{L(δ, x)∣y} = argmin
δ∈∆

∫ L(δ, x)p(x)dx .
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Bayesian point estimators

Bayesian point estimators arise from the decision ”what point x̂ ∈ Rd

summarises x ∣y best?”. The optimal decision under uncertainty is

x̂L = argmin
u∈Rd

E{L(u, x)∣y} = argmin
u∈Rd

∫ L(u, x)p(x ∣y)dx

where the loss L(u, x) measures the “dissimilarity” between u and x .

General desiderata:

1 L(u, x) ≥ 0, ∀u, x ∈ Rd ,

2 L(u, x) = 0 ⇐⇒ u = x ,

3 L strictly convex w.r.t. its first argument (for estimator uniqueness).
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Bayesian point estimators - MMSE estimation

Example: the squared Euclidean distance L(u, x) = ∥u − x∥2 defines the
so-called minimum mean squared error estimator.

x̂MMSE = argmin
u∈Rd

∫ ∥u − x∥2
2 p(x ∣y)dx .

By differentiating w.r.t. to u and equating to zero we obtain that

∫ (x̂MMSE − x)p(x ∣y)dx = 0 Ô⇒ x̂MMSE ∫ p(x ∣y)dx = ∫ xp(x ∣y)dx ,

hence x̂MMSE = E{x ∣y} (recall that ∫ p(x ∣y)dx = 1).
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Bayesian point estimators - MAP estimation

The predominant Bayesian approach in imaging is MAP estimation

x̂MAP = argmax
x∈Rd

p(x ∣y),

= argmin
x∈Rd

− log p(y ∣x) − log p(x).
(7)

In many problems x̂MAP can be computed efficiently by optimisation
(Chambolle and Pock, 2016).

What is the loss function L associated with this estimator?
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Posterior credible regions

Where does the posterior probability mass of x lie?

A set Cα is a posterior credible region of confidence level (1 − α)% if

P [x ∈ Cα∣y] = 1 − α.

For any α ∈ (0,1) there are infinitely many regions of the parameter space
that verify this property.

The highest posterior density (HPD) region is decision-theoretically
optimal in a compactness sense

C∗
α = {x ∶ φ(x) ≤ γα}

with γα ∈ R chosen such that ∫C∗
α
p(x ∣y)dx = 1 − α holds.
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Hypothesis testing

Hypothesis test split the solution space in two meaningful regions, e.g.,

H0 ∶ x ∈ S
H1 ∶ x /∈ S

where S ⊂ Rd contains all solutions with some characteristic of interest.

We can then assess the degree of support for H0 vs. H1 by computing

P(H0∣y) = ∫
S
p(x ∣y)dx , P(H1∣y) = 1 − P(H0∣y) .

We can also reject H0 in favour of H1 with significance α ∈ [0,1] if

P(H0∣y) ≤ α.
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Bayesian model selection

The Bayesian framework provides theory for comparing models objectively.

Given K alternative models {Mj}Kj=1 with posterior densities

Mj ∶ pj(x ∣y) = pj(y ∣x)pj(x))/pj(y) ,

we compute the (marginal) posterior probability of each model, i.e.,

p(Mj ∣y) ∝ p(y ∣Mj)p(Mj) (8)

where p(y ∣Mj) ≜ pj(y) = ∫ pj(y ∣x)pj(x)dx measures model-fit-to-data.

We then select for our inferences the “best” model, i.e.,

M∗ = argmax
j∈{1,...,K}

p(Mj ∣y).
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Bayesian model calibration

Alternatively, given a continuous class of models {Mθ, θ ∈ θ} with

Mθ ∶ p(x ∣y , θ) = p(y ∣x , θ)p(x ∣θ)
p(y ∣θ) ,

we compute the (marginal) posterior

p(θ∣y) = p(y ∣θ)p(θ)/p(y) (9)

where p(y ∣θ) = ∫ p(y ∣x , θ)p(x ∣θ)dx measures model-fit-to-data.

We then calibrate our model with the “best” value of θ, i.e.,

θ̂MAP = argmax
θ∈Θ

p(θ∣y).
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Bayesian model averaging

We can also use all models simultaneously!

Given K alternative models {Mj}Kj=1 with posterior densities

Mj ∶ pj(x ∣y) = pj(y ∣x)pj(x))/pj(y) ,

we marginalise w.r.t. the model selector j , i.e.,

p(x ∣y) =
K

∑
j=1

p(x ,Mj ∣y) =
K

∑
j=1

p(x ∣y ,Mj)p(Mj ∣y) (10)

where the posterior probabilities p(Mj ∣y) control the relative importance
of each model.
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Bayesian model calibration

Similarly, given a continuous class of models {Mθ, θ ∈ Θ} with

Mθ ∶ p(x ∣y , θ) = p(y ∣x , θ)p(x ∣θ)
p(y ∣θ) ,

and a prior p(θ), we marginalise θ

p(x ∣y) = ∫
Θ
p(x , θ∣y)dθ,

= ∫
Θ
p(x ∣y , θ)p(θ∣y)dθ

where again p(θ∣y) controls the relative contribution of each model.
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Summary

The Bayesian statistical paradigm provides a power mathematical
framework to solve imaging problems...

It allows deriving optimal estimators for x ..

As well as quantifying the uncertainty in the solutions delivered...

It supports hypothesis tests to inform decisions and conclusions...

And allows operating with partially unknown models...

And with several competing models...

So the problem is quite solved, right?
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Not really...

How do we compute all these probabilities?
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Conclusion

There are several mathematical frameworks to solve imaging problems.

Variational approaches offer excellent point estimation results and efficient
computer algorithms with theoretical guarantees.

However, they struggle to go beyond point estimation.

Bayesian statistics provide a powerful framework to formulate more
advanced inferences and deal with other complications.

However, computing probabilities is challenges and they struggle to scale
to large problems as a result.
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Conclusion

In the next lecture...
We will explore ways of accelerating Bayesian inference methods by
integrating modern stochastic and variational approaches at algorithmic,
methodological, and theoretical levels.

Thank you!
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