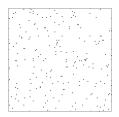
Flash presentation : Determinantal point processes and images

Claire Launay

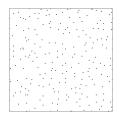
CIRM : Mathematics of Imaging

7 January 2019

Determinantal Point Processes (DPP) model negative correlations, **repulsion** between points : the probability of observing two points close to each other is lower than in the case of the Poisson process.



(a) Sample from a Poisson point process



(b) Sample from a Determinantal point process

We consider $\mathcal{Y} = \{1, \dots, N\}$ and K a hermitian matrix of size N imes N such that

 $0 \preceq K \preceq 1$,

then the random set $X \subset \mathcal{Y}$ defined by

$$\forall A \subset \mathcal{Y}, \quad \mathbb{P}(A \subset X) = \det(K_A)$$

is a determinantal point process with kernel K.

$$K = \bigwedge_{A \downarrow} \begin{pmatrix} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

Framework of images : the data set becomes a 2D grid, $\Omega = [0, M - 1] \times [0, N - 1]$ and the process becomes stationary and periodic, with kernel K, a matrix of size $MN \times MN$.

Stationarity \Rightarrow K becomes bloc-circulant :

We define $C: \Omega \to \mathbb{C}$, $K_{xy} = C(x - y)$.

 \Rightarrow K can be diagonalized by the Fourier matrix and its eigenvalues are the Fourier coefficients of C.

Definition

Let $C: \Omega \to \mathbb{C}$ be a function defined on Ω , such that

$$\forall \xi \in \Omega, \ \ 0 \leq \widehat{C}(\xi) \leq 1.$$

Then a random subsample $X\subset \Omega$ is called a determinantal pixel process (DPixP) with kernel C, if

$$\forall A \subset \Omega, \ \mathbb{P}(A \subset X) = \det(K_A),$$

where K_A is the $|A| \times |A|$ -matrix, $K_A = (C(x_i - x_j))_{x_i, x_i \in A}$.

Result 1 :

We can't impose a minimal distance between the points of a DPixP as total repulsion of a pair of points implies necessarily the repulsion for the whole line passing through the points.

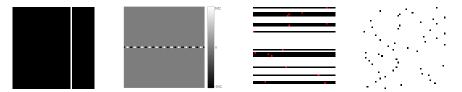


Figure: Example of a kernel inducing a hardcore repulsion in the horizontal direction. From left to right : the Fourier coefficients of C, the real part of the kernel C, a capture of the conditional density during the sampling, the final sample.

Shot noise and extreme cases of repulsion

Shot noise model based on a DPixP

We consider $X \sim \text{PPixD}(C)$ and g a positive function on Ω . Then the shot noise S based on X and the spot g is defined $\forall x \in \Omega$ by

$$S(x) = \sum_{x_i \in X} g(x - x_i).$$

(a) Spot g

(b) Sample of a point process

(c) Image of the related shot noise

Shot noise and extreme cases of repulsion

Result 2 :

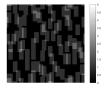
Given a fix spot function for the shot noise, we can characterize the maximal and minimal repulsion cases of these determinantal pixel processes.

(a) Spot g

(b) Obtained Fourier coefficients

(c) Kernel C

(d) A sample of this DPixP

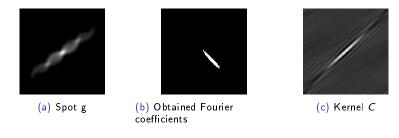


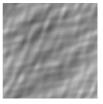
(a) Shot noise of maximal repulsion (DPixP(C))

(b) Shot noise of minimal repulsion (BPP)

Claire Launay

Shot noise and extreme cases of repulsion





(a) Shot noise of maximal repulsion (DPixP(C))

(b) Shot noise of minimal repulsion (BPP)