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Motivation

Help to search artwork databases.
We would like to localize the object of interest

Use only image level annotation → Weakly supervised setup
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Weakly supervised detection with transfer learning

Use a state-of-the-art deep network [Ren et al., 2015] pre-trained on
photography as a feature extractor and region proposal
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Source: [Ren et al., 2015]



Multiple Instance Learning Approach

To solve this weakly supervised problem, we use the Multiple Instance
Learning paradigm. → Regions of an image = bag of elements

Illustration of positive and negative sets of detections (bounding boxes) for the angel category.
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Model : MI-max

For each image i , we have :
{Xi ,k}

{1..K}
features vectors

yi = ±1 a label

We look for w ∈ RM , b ∈ R minimizing :

L(w ,b) =
N

∑
i=1

−yi
nyi

Tanh{ max
k∈{1..K}

(wTXi ,k + b)}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
classification loss

+C ∗ ∣∣w ∣∣2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

regularisation term

(1)

Experimental trick : use the objectness score produced by the detector

Non-convex → several initialisation

Simplified version of MI-SVM [Andrews et al., 2003] or Latent SVM
[Felzenszwalb et al., 2010].
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Model II : MI-max

positive bag negative bag

positive instance

negative instance

Instance used during
training step
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Experiments on IconArt, successful examples

Successful examples using our MI-max-C detection scheme. We only show
boxes whose scores are over 0.75.
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Experiments on IconArt : failure examples

Failure examples using our MI-max-C
detection scheme.

The model is far from
good.

Common Weakly Su-
pervised problems :

Small
discriminative
part of the class

Large portion of
the image
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Presentation based on

Gonthier N., Gousseau Y., Ladjal S., Bonfait O.
Weakly supervised object detection in artworks,
Workshop on Computer Vision for Art Analysis, ECCV 2018
https://arxiv.org/abs/1810.02569
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