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Goal: sample images x ∼ Π̃(x) which look like an input texture x0

but are not verbatim copies of x0.

Question: How to combine randomness and structure in an
image model?

Macrocanonical model

The probability distribution function Π̃ ∈P is a macrocanonical
model associated with the exemplar texture x0 ∈ Rd , statistics
f : Rd → Rp if

H(Π̃) = max {H(Π), Π ∈P, EΠ [f (X )] := Π(f ) = f (x0)} .

Maximize the entropy (H) under geometrical constraints (f ).
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Gibbs measure: Πθ(x) ∝ exp [−〈θ, f (x)− f (x0)〉]

Gibbs measures are macrocanonical models

Under mild assumptions there exists θ̃ ∈ Rd such that Πθ̃ is a
macrocanonical model associated with the exemplar texture
x0 ∈ Rd , statistics f .

Two questions remain:

1. how to find the optimal weights θ̃ ?

2. how to sample from the model, i.e. sample from a Gibbs
measure Πθ?
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We denote V (x , θ) = 〈θ, f (x)− f (x0)〉.

Finding optimal weights
θ̃ is the minimum of the
log-partition function which is a
convex problem.
Gradient descent dynamics

θn+1 = θn + δn+1Πθn(∇θV (·, θn))

Sampling from a Gibbs measure
The potential x 7→ V (x , θ) is
usually non-convex but has
curvature at infinity.
Langevin dynamics

Xn+1 = Xn−γn+1∇xV (Xn, θ)+
√

2γn+1Zn

⇒ Combining dynamics

X n
k+1 = X n

k − γn∇xV (X n
k , θn) +

√
2γnZn

k+1 , with X n
0 = X n−1

mn−1
,

θn+1 = θn − δn+1m
−1
n

mn∑
k=1

∇θV (X n
k , θn) ,
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(a) (b) (c)

Figure 1: Texture synthesis. (a) input texture, (b) is the initialization
of the algorithm and (c) the output.

5 / 5


