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Configuration spaces

M: n-manifold

Confr(M) := {(x1, . . . , xr) ∈ Mr | ∀i 6= j, xi 6= xj}
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(name dropping)

• Braid groups
• Loop spaces
• Moduli spaces of curves
• Particles in movement [physics]
• Motion planning [robotics] 1/22



Open question

Question
Does the homotopy type of M determine the homotopy type of
Confr(M)? How to compute homotopy invariants of Confr(M)?

Non-compact manifolds
False: Conf2(R) 6∼ Conf2({0}) even though R ∼ {0}.

Closed manifolds
Longoni–Salvatore (2005): counter-example (lens spaces)… but not
simply connected.

Simply connected closed manifolds
Homotopy invariance is still open.

We can also localize: M 'Q N =⇒ Confr(M) 'Q Confr(N)?
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Configurations in a Euclidean spaces

Presentation of H∗(Confr(Rn)) [Arnold, Cohen]
• Generators: ωij of degree n− 1 (for 1 ≤ i 6= j ≤ r)
• Relations:

ω2
ij = ωji − (−1)nωij = ωijωjk + ωjkωki + ωkiωij = 0

Theorem (Arnold 1969)
Formality: H∗(Confr(C)) ∼C Ω∗

dR(Confr(C)), ωij 7→ d log(zi − zj).

Theorem (Kontsevich 1999, Lambrechts–Volić 2014)
H∗(Confr(Rn)) ∼R Ω∗

dR(Confr(Rn)) for all r ≥ 0 and n ≥ 2.

Corollary
The cohomology of Confr(Rn) determines its rational homotopy type.
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Kontsevich’s graph complexes

Arnold relations: R123 =
1

2 3

ω12ω23

+
1

2 3

ω23ω31

+
1

2 3

ω31ω12

=⇒ H∗(Confr(Rn)) = R〈graphs with r vertices〉/(Rijk)

 add “internal” vertices and a differential which
contracts edges incident to these new vertices:

1

2 3

d7−→ R123

Theorem (Kontsevich 1999, Lambrechts–Volić 2014 – Part 1)
We get a quasi-free CDGA Graphsn(r) and a quasi-isomorphism
Graphsn(r)

∼−→ H∗(Confr(Rn)).
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Kontsevich’s integrals

The relations Rijk are only satisfied up to homotopy in Ω∗(Confr(Rn)).
How to find representatives to get Graphsn(r)

∼−→ Ω∗(Confr(Rn))?

Let ϕ ∈ Ωn−1(Conf2(Rn)) be the volume form.
For Γ ∈ Graphsn(r) with i internal vertices:

ω(Γ) :=

∫
Confr+i(Rn)→Confr(Rn)

∧
(ij)∈EΓ

ϕij.

Theorem (Kontsevich 1999, Lambrechts–Volić 2014 – Part 2)
We get a quasi-isomorphism ω : Graphsn(r)

∼−→ Ω(Confr(Rn)).

⚠ I’m cheating! We have to compactify Confr(Rn) to make sure
∫

converges and to apply the Stokes formula correctly.
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Compactification

Problem: Confr(Rn) is not compact.

Fulton–MacPherson compactification Confr(M)
∼
↪−→ FMM(r)

1
7

2

3
4

5 6

M closed manifold =⇒ semi-algebraic stratified manifold dim = nr
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Animation #1
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Animation #1
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Animation #2
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Animation #2
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Animation #3
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Animation #3

9/22



Compactification of Confr(Rn)

We have to “normalize” Confr(Rn) to mitigate the non-compacity of Rn:

Confr(Rn)
∼−→ Confr(Rn)/(Rn oR>0)

∼
↪−→ FMn(r)

1

2

3
45

67
8

=⇒ semi-algebraic stratified manifold dim = nr − n− 1
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Operad

We see a new structure on FMn: an operad! We can “insert” an
infinitesimal configuration in another one:

1 2
◦2

1 2
= 1

2 3

FMn(k)× FMn(l)
◦i−→ FMn(k+ l− 1), 1 ≤ i ≤ k

Remark
Weakly equivalent to the “little disks operad”.
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Complete theorem

Functoriality =⇒ H∗(FMn) = H∗(Conf•(Rn)) and Ω∗(FMn) are Hopf
cooperads; Graphsn is one too, and:

Theorem (Kontsevich 1999, Lambrechts–Volić 2014)
The operad FMn is formal over R:

Ω∗(FMn)
∼←−
ω
Graphsn

∼−→ H∗(FMn).

Formality has important applications, e.g. Deligne conjecture,
deformation quantization of Poisson manifolds, etc.

(Note: H∗(FMn) governs Poisson n-algebras for n ≥ 2.)
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The Lambrechts–Stanley model

M: oriented closed manifold
A ∼ Ω(M): Poincaré duality model of M

GA(r) : (conjectural) model of Confr(M) = M×r \
⋃
i6=j∆ij

:= {xi = xj}• “Generators”: A⊗r and the ωij from Confr(Rn)
• Arnold relations + symmetry
• dωij kills the dual of [∆ij].

Examples:

• GA(0) = R is a model of Conf0(M) = {∅} X
• GA(1) = A is a model of Conf1(M) = M X

• GA(2) ∼ A⊗2/(∆A) should be a model of Conf2(M) = M2 \∆?
• r ≥ 3: more complicated.
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Brief history of GA

1969 [Arnold, Cohen] H∗(Confr(Rn)) = GH∗(Rn)(r)
1978 [Cohen–Taylor] spectral sequence E2 = GH∗(M)(k)⇒ H∗(Confk(M))
1994 For smooth projective complex manifolds (=⇒ Kähler):

• [Kříž] GH∗(M)(r) is a model of Confr(M);
• [Totaro] the Cohen–Taylor SS collapses.

2004 [Lambrechts–Stanley] model for r = 2 if π≤2(M) = 0

2004 [Félix–Thomas, Berceanu–Markl–Papadima] relation with
Bendersky–Gitler spectral sequence

2008 [Lambrechts–Stanley] Hi(GA(r)) ∼=Σr-Vect Hi(Confr(M))
2015 [Cordova Bulens] model for r = 2 if dimM = 2m
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First part of the theorem

By generalizing the proof of Kontsevich & Lambrechts–Volić:

Theorem (I.)
Let M be a closed simply connected smooth manifold and A be any
Poincaré duality model of M. Then GA(r) is a real model of Confr(M).

Corollary (cf. Campos–Willwacher)
M ∼R N =⇒ Confr(M) ∼R Confr(N) for all r.

We can “compute everything” over R for Confr(M).

Remark
dimM ≤ 3: only spheres (Poincaré conjecture) and we know that GA is
a model anyway, but adapting the proof is problematic!
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Modules over operads

M parallelized =⇒ FMM = {FMM(r)}r≥0 is a right FMn-module :

1

2

3

◦3 1
2

3 = 1

2

3

4
5

We can rewrite:

GA(r) = (A⊗r ⊗ H∗(FMn(r))/relations,d)

A bit of abstract nonsense:
Proposition
χ(M) = 0 =⇒ GA = {GA(r)}r≥0 is a Hopf right H∗(FMn)-comodule.
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Complete version of the theorem

Theorem (I. 2018)
M: closed simply connected smooth manifold, dimM ≥ 4

GA GraphsR Ω∗
PA(FMM)

	† 	† 	‡

H∗(FMn) Graphsn Ω∗
PA(FMn)

∼ ∼

∼ ∼

† if χ(M) = 0
‡ if M is parallelized. A ∼←− R ∼−→ Ω∗

PA(M)

Conclusion
Not only do we have a model of each Confr(M), but also of their richer
structure if we look at them all at once.
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Application 1: Embedding spaces

Space of embeddings: Emb(M,N) = {f : M ↪→ N}.

Goodwillie–Weiss manifold calculus [Arone, Boavida, Turchin, Weiss…]:
for parallelized manifolds of codimension ≥ 3,

Emb(M,N) ' MorhConf•(Rn)(Conf•(M),Conf•(N)).

LS model is small and explicit =⇒ hope: computations are tractable

Remark
Requires to compare MorhConf•(Rn)(Conf•(M),Conf•(N))R with
MorhConf•(Rn)R(Conf•(M)R,Conf•(N)R)
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Application 2: Factorization homology

Factorization homology = homology where ⊗ replaces ⊕ + homotopy
commutative coefficients.

For an En-algebra A ,∫
M

A = hocolim(Dn)tr ↪→M A ⊗r.

Alternate description:
∫
M A ∼ Conf•(M)⊗hConf•(Rn) A [Francis].

Theorem (I. 2018, cf. Markarian ’17, Döppenschmidt–Willwacher ’18)
M closed simply connected smooth manifold (dim ≥ 4),
A := Opoly(T∗Rd[1− n]) =⇒

∫
M A ∼R R.
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Generalization 1: Manifolds with boundary

Theorem (Campos–I.–Lambrechts–Willwacher 2018)
For manifolds with boundary: homotopy invariance of Confr(−),
generalization of the Lambrechts–Stanley model (and more); under
good conditions, including dimM ≥ . . .

Remark
Poincaré duality models Poincaré–Lefschetz duality models.

Allows to compute Confr by “induction”:
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Generalization 2: Oriented manifolds

M: oriented manifold framed configuration space

Conffrr (M) := {(x ∈ Confr(M),B1, . . . ,Br) | Bi: orth. basis of TxiM}.

Natural action of the framed little disks operad on {Conffr• (M)}.

Theorem (Campos–Ducoulombier–I.–Willwacher 2018)
Real model of this module based on graph complexes.

First step towards embedding spaces of non-parallelized manifolds. (Not
enough: need partially framed configurations for the larger manifold N.)
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WIP: Complements of submanifolds

Goal: Conf(N \M) where dimN− dimM ≥ 2.

Motivation: work of Ayala, Francis, Rozenblyum, Tanaka
Knot complement colored Jones polynomial.

There exists an operad VSCmn which models the local situation Rn \ Rm:

∈ VSC13(2, 2) ⊂ D3(2 + 2)

Theorem (I. 2018)
The operad VSCmn is formal over R for n−m ≥ 2.
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Thank you for your attention!

These slides: https://idrissi.eu

22/22

https://idrissi.eu

	anm3: 
	3.16: 
	3.15: 
	3.14: 
	3.13: 
	3.12: 
	3.11: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	anm2: 
	2.16: 
	2.15: 
	2.14: 
	2.13: 
	2.12: 
	2.11: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


