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CONFIGURATION SPACES

M: n-manifold

Confy (M) == {(x1,...,X;) € M"| Vi #J, X; # X;}

- Braid groups
- Loop spaces
(name dropping) - Moduli spaces of curves
- Particles in movement [physics]

- Motion planning [robotics] 1/22



OPEN QUESTION

Question
Does the homotopy type of M determine the homotopy type of
Conf,(M)? How to compute homotopy invariants of Conf,(M)?

Non-compact manifolds
False: Confz(R) 7 Confz({0}) even though R ~ {0}.

Closed manifolds

Longoni-Salvatore (2005): counter-example (lens spaces)... but not
simply connected.

Simply connected closed manifolds
Homotopy invariance is still open.

We can also localize: M ~g N = Conf;(M) ~g Conf,(N)?
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CONFIGURATIONS IN A EUCLIDEAN SPACES

Presentation of H*(Conf,(R")) [Arnold, Cohen]
- Generators: wj; of degree n — 1 (for1<i#j<r) L/\

wj

- Relations: ¢
w% = wjj — (—1)”&1,’]’ = Wjjwjk + WjkWkj + Wkiwjj = 0 K/
Theorem (Arnold 1969)
: H*(Conf;(C)) ~¢ Qg (Conf;(C)), wj —+ dlog(z; — z).

Theorem (Kontsevich 1999, Lambrechts-Voli¢ 2014)
H*(Conf, (R")) ~g Qg (Conf,(R)) forallr > 0and n > 2.

Corollary
The cohomology of Conf,(R") determines its rational homotopy type.
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KONTSEVICH'S GRAPH COMPLEXES
Arnold relations: Rjes = E + i + ;:;

w12w23 wW23Ws1 Ww31Wwi2

= H*(Conf;(R")) = R(graphs with r vertices) /(Rj;)

~s add “internal” vertices and a differential which N
contracts edges incident to these new vertices: 18
Theorem (Kontsevich 1999, Lambrechts-Voli¢ 2014 - Part 1)

We get a quasi-free CDGA Graphs,(r) and a quasi-isomorphism
Graphs,(r) = H*(Conf (R")).
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KONTSEVICH'S INTEGRALS

The relations R, are only satisfied up to homotopy in ©*(Conf,(R")).
How to find representatives to get Graphs,(r) = Q*(Conf,(R"))?

Let p € Q"1 (Confy(R")) be the volume form.
For I € Graphs,(r) with i internal vertices:

w(l) = / 42
Conf,;(R")—Conf, (R") /\ v

(i) eEr

Theorem (Kontsevich 1999, Lambrechts-Voli¢ 2014 - Part 2)
We get a quasi-isomorphism w : Graphs,(r) = Q(Conf,(R")).

A I'm cheating! We have to compactify Conf,(R") to make sure [
converges and to apply the Stokes formula correctly.
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COMPACTIFICATION

Problem: Conf,(R") is not compact.

Fulton-MacPherson compactification Conf, (M) < FMy(r)

M closed manifold = semi-algebraic stratified manifold dim = nr
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COMPACTIFICATION OF Conf (R")

We have to “normalize” Conf,(R") to mitigate the non-compacity of R™:

Conf,(R") = Conf,(R")/(R" x Rsq) <

—> semi-algebraic stratified manifold dim =nr—n—1
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OPERAD

We see a new structure on FM,: an operad! We can “insert” an
infinitesimal configuration in another one:

O

FM,(R) x FM, () =5 FMp(R+1—1), 1<i<k

Remark
Weakly equivalent to the “little disks operad”.
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COMPLETE THEOREM

Functoriality = H*(FM,) = H*(Conf,(R")) and Q*(FM,) are Hopf
cooperads; Graphs,, is one too, and:

Theorem (Kontsevich 1999, Lambrechts-Voli¢ 2014)
The operad FM,, is formal over R:

Q*(FMp) <= Graphs, = H*(FM,).

Formality has important applications, e.g. Deligne conjecture,
deformation quantization of Poisson manifolds, etc.

(Note: H,(FM,) governs Poisson n-algebras for n > 2.)
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THE LAMBRECHTS-STANLEY MODEL

M: oriented closed manifold
A ~ Q(M): Poincaré duality model of M

Ga(r) : (conjectural) model of Conf, (M) = M*"\ |, A
\\) = {X,‘ = Xj}

“Generators”: A®" and the wj; from Conf(R")
- Arnold relations + symmetry
* dwj; kills the dual of [A].

Examples:

()

4(0) = R is a model of Confy(M) = {&} Vv

- Ga(1) = Ais a model of Conf;(M) =M v

* Ga(2) ~ A®?/(A4) should be a model of Confy(M) = M? \ A?
- r > 3: more complicated.
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BRIEF HISTORY OF Gy

1969 [Arnold, Cohen] H*(Conf,(R")) = Gy gny(r)
1978 [Cohen-Taylor] spectral sequence E? = Gy« (k) = H*(Conf,(M))
1994 For smooth projective complex manifolds (= Kahler):
+ [KFiz] Gy« (my(r) is @ model of Conf,(M);
- [Totaro] the Cohen-Taylor SS collapses.
2004 [Lambrechts-Stanley] model for r = 2 if m<5(M) =0

2004 [Félix-Thomas, Berceanu-Markl-Papadima] relation with
Bendersky-Gitler spectral sequence

2008 [Lambrechts-Stanley] H'(Ga(r)) s, -vect H'(Conf(M))
2015 [Cordova Bulens] model for r = 2 if dimM = 2m
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FIRST PART OF THE THEOREM

By generalizing the proof of Kontsevich & Lambrechts-Volic:

Theorem (I.)

Let M be a closed simply connected smooth manifold and A be any
Poincarée duality model of M. Then Ga(r) is a real model of Conf,(M).

Corollary (cf. Campos-Willwacher)
M ~g N = Conf;(M) ~g Conf,(N) for all r.
We can “compute everything” over R for Conf,(M).

Remark

dim M < 3: only spheres (Poincaré conjecture) and we know that G4 is
a model anyway, but adapting the proof is problematic!
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MODULES OVER OPERADS

M parallelized = FMy = {FMu(r)}r>o0 is a right FM,-module

e

We can rewrite:

Ga(r) = (A®" ® H*(FMp(r))/relations, d)

A bit of abstract nonsense:
Proposition

X(M) =0 = Ga = {Ga(r)}r>o is a Hopf right H*(FM,)-comodule.
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COMPLETE VERSION OF THE THEOREM

Theorem (I. 2018)
M: closed simply connected smooth manifold, dimM > 4

Gy «——— Graphsg --== Qf, (FMw)

of of ok
H*(FM,) «—— Graphs, —— Q}, (FMy)
Fif x(M) =0
Lif M is parallelized. AR QuA(M)
Conclusion

Not only do we have a model of each Conf;(M), but also of their richer
structure if we look at them all at once.
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APPLICATION 1: EMBEDDING SPACES

Space of embeddings: Emb(M,N) = {f : M < N}.

Goodwillie-Weiss manifold calculus [Arone, Boavida, Turchin, Weiss...]:
for parallelized manifolds of codimension > 3,

Emb(M, N) ~ Morl, ¢, ) (Confs(M), Confu(N)).

LS model is small and explicit = hope: computations are tractable

Remark
Requires to compare Morgonf.(Rn)(Conf.(M)7 Conf, (N))* with
Morgonf.(]R”) (COHf,(M) ,COIlf.(N) )
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APPLICATION 2: FACTORIZATION HOMOLOGY

Factorization homology = homology where ® replaces & + homotopy
commutative coefficients.

For an E,-algebra «,

/ JZ{ = hOCOhm(Dn)ur%M JZ{®r.
M

Alternate description: [, & ~ Confe(M) ©y, @n) </ [Francis]

Theorem (l. 2018, cf. Markarian "17, Doppenschmidt-Willwacher "18)
M closed simply connected smooth manifold (dim > 4),
A = Opory(T'RI1 — 1)) = [, & ~r R.
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GENERALIZATION 1: MANIFOLDS WITH BOUNDARY

Theorem (Campos-l.-Lambrechts-Willwacher 2018)

For manifolds with boundary: homotopy invariance of Conf,(—),
generalization of the Lambrechts-Stanley model (and more); under
good conditions, including dimM > ...

Remark

Poincaré duality models ~ Poincaré-Lefschetz duality models.

Allows to compute Conf, by “induction”
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GENERALIZATION 2: ORIENTED MANIFOLDS

M: oriented manifold ~» framed configuration space
Conf"(M) := {(x € Conf;(M), By, ...,B) | B orth. basis of T M}.

Natural action of the framed little disks operad on {Conf(M)}.

Theorem (Campos-Ducoulombier-1.-Willwacher 2018)
Real model of this module based on graph complexes.

First step towards embedding spaces of non-parallelized manifolds. (Not
enough: need partially framed configurations for the larger manifold N.)
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WIP: COMPLEMENTS OF SUBMANIFOLDS

Goal: Conf(N \ M) where dim N — dimM > 2.

Motivation: work of Ayala, Francis, Rozenblyum, Tanaka
Knot complement ~ colored Jones polynomial.

There exists an operad VSCp,, which models the local situation R" \ R™:

&
g/

Theorem (I. 2018)
The operad VSCy,, is formal over R forn —m > 2.

S VSC13(2, 2) C D3(2 + 2)
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THANK YOU FOR YOUR ATTENTION!

THESE SLIDES: https://idrissi.eu
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