

Johns Hopkins University

The complicial sets model of higher ∞ -categories

Structures supérieures Centre International de Rencontres Mathématiques

The idea of a higher ∞ -category

An ∞ -category, a nickname for an $(\infty, 1)$ -category, has:

- objects
- I-arrows between these objects
- with composites of these I-arrows witnessed by invertible 2-arrows
- with composition associative up to invertible 3-arrows (and unital)
- with these witnesses coherent up to invertible arrows all the way up
- A higher ∞ -category, meaning an (∞, n) -category for $0 \le n \le \infty$, has:
 - objects
 - I-arrows between these objects
 - 2-arrows between these 1-arrows
 - :
 - n-arrows between these n-1-arrows
 - plus higher invertible arrows witnessing composition, units, associativity, and coherence all the way up

Fully extended topological quantum field theories

The $(\infty,n)\text{-}\mathrm{category}\ \mathrm{Bord}_n$ has

- objects = compact 0-manifolds
- $k\text{-}\mathrm{arrows}$ = $k\text{-}\mathrm{manifolds}$ with corners, for $1\leq k\leq n$
- n + 1-arrows = diffeomorphisms of n-manifolds rel boundary

• n + m + 1-arrows = m-fold isotopies of diffeomorphisms, $m \ge 1$ often with extra structure (eg framing, orientation, G-structure).

A fully extended topological quantum field theory is a homomorphism with domain $Bord_n$, preserving the monoidal structure and all compositions. The cobordism hypothesis classifies fully extended TQFTs of framed bordisms by the value taken by the positively oriented point.

Dan Freed

• The cobordism hypothesis, Bulletin of the AMS, vol 50, no 1, 2013, 57–92; arXiv:1210.5100

On the unicity of the theory of higher ∞ -categories

The schematic idea of an (∞, n) -category is made rigorous by various models: θ_n -spaces, iterated complete Segal spaces, Segal *n*-categories, *n*-quasi-categories, *n*-relative categories, ...

Theorem (Barwick–Schommer-Pries, et al). All of the above models of (∞, n) -categories are equivalent.

Clark Barwick and Christopher Schommer-Pries

• On the Unicity of the Homotopy Theory of Higher Categories arXiv:1112.0040

Thus, it's tempting to work ''model independently'' when envoking higher $\infty\text{-}categories.$

But the theory of higher ∞ -categories has not yet been comprehensively developed in any model, so there is "analytic" work still to be done.

Goal: introduce a user-friendly model of higher ∞ -categories

- I. A simplicial model of $(\infty, 1)$ -categories
- 2. Towards a simplicial model of $(\infty, 2)$ -categories
- 3. The complicial sets model of higher ∞ -categories
- 4. Complicial sets in the wild (joint with Dominic Verity)

A simplicial model of $(\infty, 1)$ -categories

The idea of a 1-category

A I-category has:

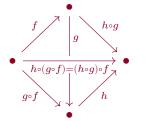
- objects: •
- I-arrows: \longrightarrow •
- composition: $\frac{f}{2}$
- identity I-arrows: _____
- identity axioms: $\frac{f}{f}$



 $g \circ f$

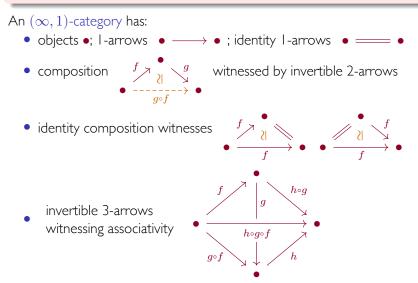
 \overline{f} • • f

• associativity axioms:



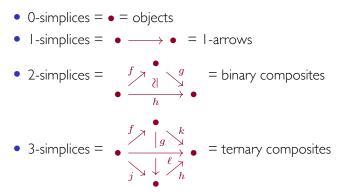
From 1-categories to $(\infty, 1)$ -categories

The composition operation and associativity and unit axioms in a l-category become higher data in an $(\infty, 1)$ -category.



A model for $(\infty, 1)$ -categories

In a quasi-category, one popular model for an $(\infty, 1)$ -category, this data is structured as a simplicial set with:



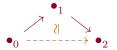
- n-simplices = n-ary composites
- with degenerate simplices used to encode identity arrows and identity composition witnesses

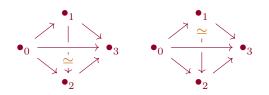
A model for $(\infty, 1)$ -categories

A quasi-category is a "simplicial set with composition": a simplicial set in which every inner horn can be filled to a simplex.

An inner horn is the subcomplex of an *n*-simplex missing the top cell and the face opposite the vertex \bullet_k for 0 < k < n.

Low dimensional horn filling:





Exercise: In a quasi-category, all *n*-arrows with n > 1 are equivalences.

Summary: quasi-categories model ∞ -categories

A quasi-category is a model of an infinite-dimensional category structured as a simplicial set.

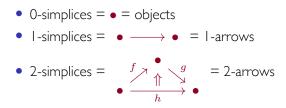
- Basic data is given by low dimensional simplices:
 - 0-simplices = objects
 - I-simplices = I-arrows
- Axioms are witnessed by higher simplices:
 - 2-simplices witness binary composites
 - 3-simplices witness associativity of ternary composition
- Higher simplices also regarded as arrows: n-simplices = n-arrows
- Axioms imply that n-arrows are equivalences for n > 1.

Thus a quasi-category is an $(\infty, 1)$ -category, with all n-arrows with n > 1 weakly invertible.

Towards a simplicial model of $(\infty,2)$ -categories

Towards a simplicial model of an $(\infty, 2)$ -category

How might a simplicial set model an $(\infty, 2)$ -category?

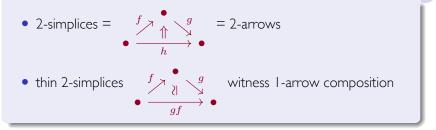


Problem: the 2-simplices must play a dual role, in which they are

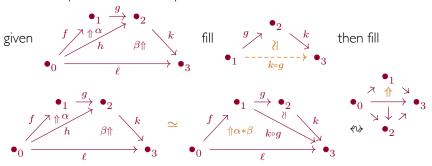
- interpreted as inhabited by possibly non-invertible 2-cells
- while also serving as witnesses for composition of I-simplices in which case it does not make sense to think of their inhabitants as non-invertible.

Idea: mark the 2-simplex witnesses for composition as "thin" and demand that thin 2-simplices behave like 2-dimensional equivalences.

Towards a simplicial model of an $(\infty, 2)$ -category



Now 3-simplices witness composition of 2-arrows:



The complicial sets model of higher ∞ -categories

Marked simplicial sets

For a simplicial set to model a higher ∞ -category with non-invertible arrows in each dimension:

- It should have a distinguished set of "thin" n-simplices witnessing composition of n-1-simplices.
- Identity arrows, encoded by the degenerate simplices, should be thin.
- Thin simplices should behave like equivalences.
- In particular, I-simplices that witness an equivalence between objects should also be thin.

This motivates the following definition:

A marked simplicial set is a simplicial set with a designated subset of thin simplices that includes all degenerate simplices.

The symbol " \simeq " is used to decorate thin simplices.

Complicial sets

Recall:

A quasi-category is a "simplicial set with composition": a simplicial set in which every inner horn can be filled to a simplex.

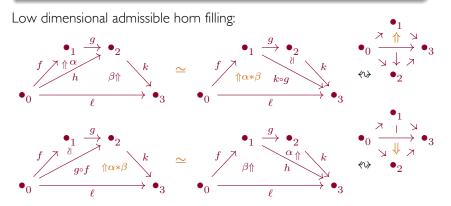
A complicial set is a "marked simplicial set with composition": a simplicial set in which every admissible horn can be filled to a simplex and in which thin simplices satisfy the 2-of-3 property.

Low dimensional admissible horn filling:

and if two of f, g, and $g \circ f$ are thin so is the third.

Complicial sets

A complicial set is a "marked simplicial set with composition": a simplicial set in which every admissible horn can be filled to a simplex and in which thin simplices satisfy the 2-of-3 property.



and if two of α , β , and $\alpha * \beta$ are thin so is the third.

Admissible horns

An *n*-simplex in a marked simplicial set is *k*-admissible — "its *k*th face is the composite of its k-1 and k+1-faces" — if every face that contains all of the vertices $\bullet_{k-1}, \bullet_k, \bullet_{k+1}$ is thin.

Thin faces include:

- the *n*-simplex
- all codimension-I faces except the (k-1)th, kth, and (k+1)th
- the 2-simplex spanned by $\{ \bullet_{k-1}, \bullet_k, \bullet_{k+1} \}$ when 0 < k < n
- the edge spanned by $\{\bullet_0, \bullet_1\}$ when k=0 or $\{\bullet_{n-1}, \bullet_n\}$ when k=n.

An k-admissible n-horn is the subcomplex of the k-admissible n-simplex that is missing the n-simplex and its k-th face.

Strict ω -categories as strict complicial sets

A strict complicial set is a complicial set in which every admissible horn can be filled uniquely, a "marked simplicial set with unique composition."

Any strict ω -category $\mathcal C$ defines a strict complicial set $N\mathcal C$, called the Street nerve, whose *n*-simplices are strict ω -functors

$${\mathbb O}_n \to {\mathbb C},$$

where

- \mathcal{O}_n is the free strict n-category generated by the n-simplex and
- an *n*-simplex in $N\mathcal{C}$ is thin just when the ω -functor $\mathcal{O}_n \to \mathcal{C}$ carries the top-dimensional *n*-arrow in \mathcal{O}_n to an identity in \mathcal{C} .

Street-Roberts Conjecture (Verity). The Street nerve defines a fully faithful embedding of strict ω -categories into marked simplicial sets, and the essential image is the category of strict complicial sets.

Strict ω -categories as weak complicial sets

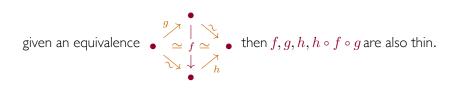
Strict ω -categories can also be a source of *weak* rather than *strict* complicial sets, simply by choosing a more expansive marking convention.

Any strict ω -category $\mathcal C$ defines a complicial set $N\mathcal C$ whose

- n-simplices are strict ω -functors $\mathcal{O}_n \to \mathcal{C}$ and where
- an *n*-simplex in *N*C is thin just when the ω -functor $\mathcal{O}_n \to \mathcal{C}$ carries the top-dimensional *n*-arrow in \mathcal{O}_n to an equivalence in \mathcal{C} .

Moreover the complicial sets that arise in this way are saturated, meaning that every n-arrow equivalence is thin.

Saturation is a 2-of-6 property for thin simplices:



The n-complicial sets model of (∞, n) -categories

An n-complicial set is a saturated complicial set in which every simplex above dimension n is thin.

For example:

- the nerve of an ordinary 1-groupoid defines a 0-complicial set with everything marked as thin
- the nerve of an ordinary 1-category defines a 1-complicial set with the isomorphisms marked as thin
- the nerve of a strict 2-category defines a 2-complicial set with the 2-arrow isomorphisms and 1-arrow equivalences marked as thin

In fact:

- A 0-complicial set is the same thing as a Kan complex, with everything marked as thin.
- A 1-complicial set is exactly a quasi-category, with the equivalences marked as thin.

Summary: complicial sets model higher ∞ -categories

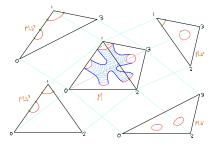
A complicial set is a model of an infinite-dimensional category structured as a marked simplicial set.

- Basic data is given by simplices:
 - 0-simplices = objects
 - n-simplices = n-arrows
- Axioms are witnessed by thin simplices:
 - thin *n*-simplices exhibit binary composites of (n-1)-simplices
- Thin simplices define invertible arrows:
 - thin n-simplices = n-equivalences
- In a saturated complicial set, all equivalences are thin.

An *n*-complicial set, a saturated complicial set in which every simplex above dimension n is thin, is a model of an (∞, n) -category.

Complicial sets in the wild (joint with Dominic Verity)

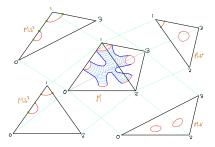
A simplicial set of simplicial bordisms (Verity)



A *n*-simplicial bordism is a functor from the category of faces of the n-simplex to the category of PL-manifolds and regular embeddings satisfying a boundary condition.

- Simplicial bordisms assemble into a semi simplicial set that admits fillers for all horns, constructed by gluing in cylinders.
- By a theorem of Rourke–Sanderson, degenerate simplices exist and make simplicial bordisms into a genuine Kan complex.

A complicial set of simplicial bordisms (Verity)



The Kan complex of simplicial bordisms can be marked in various ways:

- mark all bordisms as equivalences
- mark only trivial bordisms, which collapse onto their odd faces
- mark the simplicial bordisms that define *h*-cobordisms from their odd to their even faces

Theorem (Verity). All three marking conventions turn simplicial bordisms into a complicial set, and the third contains the saturation of the second.

Complicial sets defined as homotopy coherent nerves

The homotopy coherent nerve converts a simplicially enriched category into a simplicial set.

Theorem (Cordier–Porter). The homotopy coherent nerve of a Kan complex enriched category is a quasi-category.

Theorem (Cordier–Porter). The homotopy coherent nerve of a 0-complicial set enriched category is a 1-complicial set.

Similarly:

Theorem*(Verity). The homotopy coherent nerve of a n-complicial set enriched category is a n + 1-complicial set.

In particular, there are a plethora of 2-complicial sets of ∞ -categories ...

The analytic vs synthetic theory of ∞ -categories

The notion of an ∞ -category is made rigorous by various models.

Q: How might you develop the category theory of ∞ -categories?

Strategies:

• work analytically to give categorical definitions and prove theorems using the combinatorics of one model

(eg., Joyal, Lurie, Gepner-Haugseng, Cisinski in qCat; Kazhdan-Varshavsky, Rasekh in Rezk; Simpson in Segal)

- work synthetically to give categorical definitions and prove theorems in various models qCat, Rezk, Segal, 1-Comp at once (R-Verity: an ∞-cosmos axiomatizes the common features of the categories qCat, Rezk, Segal, 1-Comp of ∞-categories)
- work synthetically in a simplicial type theory augmenting homotopy type theory to prove theorems in Rezk

(R-Shulman: an ∞ -category is a type with unique binary composites in which isomorphism is equivalent to identity)

∞ -cosmoi of ∞ -categories

Idea: an ∞ -cosmos is a category in which ∞ -categories live as objects that has enough structure to develop "formal category theory."

An ∞ -cosmos is*:

- a quasi-categorically enriched category
- admitting "strict homotopy limits": flexible weighted simplicially enriched limits.

Examples of ∞ -cosmoi:

- models of $(\infty, 1)$ -categories: qCat, Rezk, Segal, 1-Comp
- models of (∞, n) -categories: n-qCat, θ_n -Sp, CSS_n, n-Comp
- Cat, Kan, Comp
- If \mathcal{K} is an ∞ -cosmos, so are $Cart(\mathcal{K})$, $coCart(\mathcal{K})$ as well as the slices $\mathcal{K}_{/B}$, $Cart(\mathcal{K})_{/B}$, $coCart(\mathcal{K})_{/B}$ over an ∞ -category B.

Why all the fuss about co/cartesian fibrations?

Challenge: define the Yoneda embedding as a functor between ∞ -categories.

- Why is this so onerous? It's difficult to fully specify the data of a homotopy coherent diagram.
- Instead, an ∞-category-valued diagram can be repackaged as a co/cartesian fibration, with the homotopy coherence encoded by a universal property.

Idea: a co/cartesian fibration $E \xrightarrow{p} B$ is a family of ∞ -categories E_b parametrized covariantly/contravariently by elements b of B.

The synthetic definition of a cocartesian fibration: a functor $E \xrightarrow{p} B$ so that $E^2 \xrightarrow{p} p \downarrow B$ admits a left adjoint right inverse. The global universal property of co/cartesian fibrations

The codomain projection functor $\operatorname{cod}: \operatorname{coCart}(\mathcal{K}) \to \mathcal{K}$ defines a "cartesian fibration of quasi-categorically enriched categories":

- For $F \xrightarrow{q} A$ and $E \xrightarrow{p} B$ in $\operatorname{coCart}(\mathcal{K})$, the map $\operatorname{Fun}^{\operatorname{cart}}(q,p) \twoheadrightarrow \operatorname{Fun}(A,B)$ defines a cocartesian fibration in qCat.
- Pre- or post-composing by the arrows of $\operatorname{coCart}(\mathcal{K})$ defines a cartesian functor between these cocartesian fibrations.
- A pullback $\begin{array}{c} F \xrightarrow{g} E \\ q_{\downarrow} & \downarrow^{p} \end{array}$ forms a "cartesian lift of f with codomain p." $A \xrightarrow{f} B$

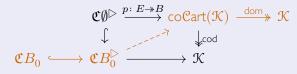
Consequently, for $U \hookrightarrow V$, cocartesian cocones with nadir p

$$\begin{array}{ccc} \mathfrak{C}U^{\triangleright} \longrightarrow \operatorname{coCart}(\mathcal{K}) \\ \downarrow & & \downarrow^{\operatorname{cod}} \\ \mathfrak{C}V^{\triangleright} \longrightarrow \mathcal{K} \end{array}$$

admit extensions that are unique up to a contractible space of choices.

The comprehension construction

A canonical lifting problem defines the comprehension construction:



which "straightens" p into a homotopy coherent diagram $c_p \colon \mathfrak{C}B_0 \to \mathcal{K}$ indexed by the underlying quasi-category of B.

Applying comprehension in $\mathcal{K}_{/A}$ to a universal fibration $\tilde{U} \xrightarrow{\pi} U$ in \mathcal{K} , yields $c_{\pi} : \mathfrak{C}\operatorname{Fun}(A, U) \to \operatorname{coCart}(\mathcal{K})_{/A}$, which "unstraightens" an ∞ -category-valued diagram into a cocartesian fibration over A.

Applying comprehension in $\operatorname{Cart}(\mathcal{K})_{/A}$ to the cocartesian fibration $A^2 \xrightarrow{\operatorname{cod}} A$ constructs the Yoneda embedding $\mathfrak{C}A_0 \to \operatorname{Cart}(\mathcal{K})_{/A}$.

References

For more on the complicial sets model of higher ∞ -categories see:

Dominic Verity

- Complicial sets, characterising the simplicial nerves of strict ω-categories, Mem. Amer. Math. Soc., 2008; arXiv:math/0410412
- Weak complicial sets I, basic homotopy theory, Adv. Math., 2008; arXiv:math/0604414
- Weak complicial sets II, nerves of complicial Gray-categories, Contemporary Mathematics, 2007, arXiv:math/0604416

Emily Riehl

- Complicial sets, an overture, 2016 MATRIX Annals, arXiv:1610.06801
- Emily Riehl and Dominic Verity
 - Elements of ∞-Category Theory, draft book in progress www.math.jhu.edu/~eriehl/elements.pdf (particularly Appendix D: the combinatorics of (marked) simplicial sets)