Lattices in Lie groups 4: Rigidity

Dave Witte Morris University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

- Margulis Superrigidity Theorem.
- Mostow Rigidity Theorem.
- Margulis Arithmeticity Theorem.

Observation

Group homomorphism ϕ : $\mathbb{Z}^k \to \mathbb{R}^d$ $\Rightarrow \phi$ extends to a continuous homo $\hat{\phi} \colon \mathbb{R}^k \to \mathbb{R}^d$.

Proof.

Standard basis $\{e_1, \ldots, e_k\}$ of \mathbb{R}^k . Define $\hat{\phi}(x_1,...,x_k) = x_1 \phi(e_1) + \cdots + x_k \phi(e_k)$. ("linear trans can do anything to a basis") Linear transformation \Rightarrow homomorphism of additive groups

Obs. Group homomorphism $\phi : \mathbb{Z}^k \to \mathbb{R}^d$ $\Rightarrow \phi$ extends to a continuous homo $\hat{\phi} : \mathbb{R}^k \to \mathbb{R}^d$.	Want. ϕ : $\Gamma \rightarrow G' \Rightarrow \phi$ "extends" to $\hat{\phi}$: $\tilde{G} \rightarrow G'$.
Want. Group homomorphism $\phi: \Gamma \to G'$ $\Rightarrow \phi$ "extends" to a continuous homo $\hat{\phi}: G \to G'$. $\hat{\phi}(\gamma) = \phi(\gamma)$ for $\gamma \in \dot{\Gamma}$ (finite-index subgroup) Let's say that Γ is strictly * superrigid .	Not always true: • Γ = lattice in SL(4, \mathbb{R}), • ψ : SL(4, \mathbb{R}) \rightarrow PSL(4, \mathbb{R}) = SL(4, \mathbb{R})/{±I}, • $\psi(\Gamma) \cong \Gamma$ if I $\notin \Gamma$ (torsion-free),
Not always true: $G = SL(2, \mathbb{R}), \ \Gamma \doteq SL(2, \mathbb{Z}), \ \phi \colon \Gamma \twoheadrightarrow \mathbb{Z} \subseteq G'.$ $\ker \hat{\phi} \supset \ker \phi \text{ is infinite, } G \text{ is simple}$ $\Rightarrow \hat{\phi} \text{ is trivial} \Rightarrow \phi \doteq \hat{\phi} _{\Gamma} \text{ is trivial.} \longrightarrow$	• $\phi: \psi(\Gamma) \cong \Gamma$. $\hat{\phi}: PSL(4, \mathbb{R}) \to SL(4, \mathbb{R}) \to \cdots$ Sometimes need to replace <i>G</i> with a finite cover.
Thm. $n > 3 \Rightarrow SL(n, \mathbb{Z})$ <i>strictly</i> * <i>superrig in</i> $SL(n, \mathbb{R})$.	

Detn. It is strictly superrigid: $\phi: \Gamma \to G'$ $\Rightarrow \exists \hat{\phi}: \tilde{G} \to G', \hat{\phi}(\dot{y}) = \phi(\dot{y}) \text{ for } \dot{y} \in \dot{\Gamma}.$	Marguns Superrigid if $G \neq SO(1)$
Theorem (Margulis Superrigidity Theorem) Γ <i>is strictly superrigid if</i> $G \neq SO(1, n)$, $SU(1, n)$ <i>and</i> Γ <i><u>not</u> <i>cocompact.</i></i>	$\phi: \Gamma \to G' \Rightarrow \exists \phi: G \to G',$ Mostow Rigidity Theorem <i>The lattice determines the</i>
Counterexamples for cocompact lattices: • $S = \text{diag}(1, 1, -\alpha, -\alpha, -\alpha), \ \alpha = \sqrt{2},$ • $G = \text{SO}(S) \cong \text{SO}(2, 3),$	$\Gamma_1 \cong \Gamma_2 \implies G_1 \cong G_2$ Margulis Arithmeticity Tl <i>Every lattice in G can be o</i>
• $\Gamma = G_{\mathbb{Z}[\alpha]}$ is a cocompact lattice in <i>G</i> , • $\sigma(a + b\alpha) := a - b\alpha$, • $\sigma: \Gamma \to SO(S^{\sigma}) \cong SO(5)$ compact.	<i>unless</i> $G \doteq SO(1, n)$ <i>or</i> <i>Warning:</i> Some <u>cocpct</u> latt
$\hat{\sigma}: G \to \mathrm{SO}(5) \twoheadrightarrow \nexists$ homo $G \to \mathrm{compact group.}$	Cor. List of all latts in <i>G</i> (e

ieorem , *n*), SU(1, *n*): $\hat{\phi}(\dot{y}) \in \phi(\dot{y}) C.$ (*C* cpct)

n (weak form) group: *if* $Z(G_i) = \{I\}.$

heorem btained by taking \mathbb{Z} -points r SU(1, n).

s come from $(G \times \text{cpct})_{\mathbb{Z}}$.

except SO(1, n), SU(1, n)).

Superrigidity implies arithmeticity Let Γ be a superrigid lattice in SL (n, \mathbb{R}) . We wish to show $\Gamma \subset SL(n, \mathbb{Z})$, i.e., want every matrix entry to be an integer.	$Γ$ is a superrigid lattice in SL(n , \mathbb{R}) and every matrix entry is an algebraic number. Second, show matrix entries are rational. Recall. Γ is generated by finitely many matrices.
<i>First</i> , let us show they are algebraic numbers. Suppose some $y_{i,j}$ is transcendental. Then \exists field auto ϕ of \mathbb{C} with $\phi(y_{i,j}) = ???$. Define $\widetilde{\phi} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \phi(a) & \phi(b) \\ \phi(c) & \phi(d) \end{bmatrix}$.	Entries of these matrices generate a field extension of \mathbb{Q} of finite degree. "algebraic number field" So $\Gamma \subset SL(n, F)$. For simplicity, assume $\Gamma \subset SL(n, \mathbb{Q})$ <i>Third,</i> show matrix entries have no denominators. Actually, show denominators are bounded.
So $\phi: \Gamma \to \operatorname{GL}(n, \mathbb{C})$ is a group homo. Superrigidity: $\tilde{\phi}$ extends to $\hat{\phi}: \operatorname{SL}(n, \mathbb{R}) \to \operatorname{GL}(n, \mathbb{C})$. There are uncountably many different ϕ 's, but $\operatorname{SL}(n, \mathbb{R})$ has only finitely many <i>n</i> -dim'l rep'ns.	 (Then finite-index subgrp has no denoms.) Since Γ is generated by finitely many matrices, only finitely many primes appear in denoms. So suffices to show each prime occurs to bdd power.

Γ is a superrigid lattice in SL(<i>n</i> , ℝ) and every matrix entry is a rational number. Show each prime occurs to bdd power in denoms. This is the conclusion of <i>p</i> -adic superrigidity: Theorem (Margulis) $φ: Γ → SL(k, Q_p) \Rightarrow φ(Γ)$ has compact closure (unless $G = SO(1, n), SU(1, n)$) <i>I.e.</i> , $\exists \ell$, no matrix in $φ(Γ)$ has p^{ℓ} in denom.	Exercise Show that if Γ is strictly superrigid in <i>G</i> , then the abelianization of Γ is finite: $\Gamma/[\Gamma, \Gamma]$ is finite. Exercise Prove the Mostow Rigidity Theorem under the additional assumption that Γ_1 is strictly superrigid. <i>Hint:</i> Use a corollary of the Borel Density Theorem to prove that $\hat{\phi}$ is onto.
 Summary of proof: 1 ℝ-superrigidity ⇒ matrix entries "rational" 2 Q_p-superrigidity ⇒ matrix entries ∈ Z 	