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o Margulis Superrigidity Theorem.

Observation
Group homomorphism ¢: 7% — R4
= ¢ extends to a continuous homo ¢: R — R4,

Proof.
Standard basis {ey,...,ex} of R¥.
Define ¢ (x1,...,xx) = x1p(e1) + -+ - + xp Pplek).

(“linear trans can do anything to a basis")
Linear transformation

o Mostow Rigidity Theorem. = homomorphism of additive groups O
o Margulis Arithmeticity Theorem.
Obs. Group homomorphism ¢: 7* — R4
= ¢ extends to a continuous homo ¢: R¥ — R4, Want. ¢: T — G = ¢ “extends” to (ﬁ: G’ -G J

Want. Group homomorphism ¢: T' — G’
= ¢ “extends” to a continuous homo ¢: G — G'.
¢(y) = p(y) for y €T (finite-index subgroup)
Let’s say that I' is strictly* superrigid.

Not always true:
= SL(2,R), T' = SL(2,Z), ¢p:T—>Z < G'.
ker (l) D ker ¢ is infinite, G is simple
= cl) is trivial = ¢ = <l>|r is trivial. =

Thm. n > 3 = SL(n, Z) strictly* superrig in SL(n, IR).J

Not always true:
= lattice in SL(4, R),
o : SL(4,R) — PSL(4,R)= SL(4,R)/{+I},
o (I =Tif I ¢TI (torsion-free),
o p:yT) =T
¢: PSL(4,R) — SL(4,R) ——

Sometimes need to replace G with a finite cover. ]

Dern. 1 18 stricly superrgia: ¢:1 — G’
=3¢:G-G, P(y)=¢(y) foryel.

Theorem (Margulis Superrigidity Theorem)
I is strictly superrigid if G = SO(1,n), SU(1,n)
and T not cocompact.

Counterexamples for cocompact lattices:

S = diag(1,1, — &, —&, —x), & =/2,

G = SO(S) = SO(2,3),

I' = Gz1«7 1s a cocompact lattice in G,
ola+bx):=a->bq,

o:T - SO(S7) = SO(5) compact.

6:G — SO(5) —— 4 homo G — compact group.
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I is superrigid if G + SO(1, ]L) SU(l n):
¢:T—-G =>3¢:G—-G,P(y) €y C. (C cpet) |

Mostow Rigidity Theorem (weak form)

The lattice determines the group:
L=zl = G126 if Z(Gy) = {1}

Margulis Arithmeticity Theorem

Every lattice in G can be obtained by taking Z-points
unless G = SO(1,n) or SU(1,n).

b

Warning: Some cocpct latts come from (G x cpct)z. J

Cor. List of all latts in G (except SO(1,n), SU(1,n)). ]




Superrigidity implies arithmeticity
Let I' be a superrigid lattice in SL(n, R).
We wish to show I' ¢ SL(n, Z),

i.e., want every matrix entry to be an integer.

First, let us show they are algebraic numbers.
Suppose some y; ; is transcendental.
Then 3 field auto ¢ of C with ¢ (y; ;) = ?772.

. ~la b P(a) ¢(b)
Define d)[c d] = [¢>(C) Cl)(d)]'

So <IN>: I' - GL(n,C) is a group homo.
Superrigidity: clN> extends to ¢: SL(n,R) — GL(n, C).
There are uncountably many different ¢’s,
but SL(n, R) has only finitely many »n-dim’l rep'ns.

D

I 1s a superrigid lattice in SL(7, R)
and every matrix entry is an algebraic number.

Second, show matrix entries are rational.

Recall. T is generated by finitely many matrices.
Entries of these matrices generate a field extension
of Q of finite degree. “algebraic number field"

SoTI cSL(n,F). For simplicity, assume I' ¢ SL(n, Q) J

Third, show matrix entries have no denominators.

Actually, show denominators are bounded.
(Then finite-index subgrp has no denoms.)

Since I is generated by finitely many matrices,
only finitely many primes appear in denoms.
So suffices to show each prime occurs to bdd power.

I' is a superrigid lattice in SL(7n, R)
and every matrix entry is a rational number.
Show each prime occurs to bdd power in denoms.

This is the conclusion of p-adic superrigidity:

Theorem (Margulis)

¢:T — SL(k,Qp) = ¢(I) has compact closure
(unless G = SO(1,n), SU(1,n))

Le., 3¢, no matrix in ¢p(T') has p‘) in denom.

Summary of proof:
@ R-superrigidity = matrix entries “rational”
@ Qp-superrigidity = matrix entries €z

Exercise
Show that if T is strictly superrigid in G, then the
abelianization of T is finite: I'/[T,I] is finite.

Exercise

Prove the Mostow Rigidity Theorem under the
additional assumption that I is strictly superrigid.
Hint: Use a corollary of the Borel Density Theorem
to prove that ¢ is onto.




