Lattices in Lie groups 3: Algebraic aspects
@ Normal subgrps (center, commutator subgrp, and others)
o Free subgroups and torsion-free subgroups
o Finitely presented and residually finite
o Borel Density Theorem

We ignore finite groups. ]

Assumps.
o G = simple Lie group = SL(n, R), SO(m, n), etc.
o I'is infinite (i.e., G not compact).
o G is connected (will justify later).

Congruence Subgroups

We prove two basic properties of I.

Proposition
I is residually finite :

Vy eTIl”*, 3 homo ¢:T — F (finite), ¢(y) +e.

Proof.
y —I+0,s03(y — I);j # 0. Choose N } (y —I)ij.
Ring homo Z — Zy yields SL(n,Z) — SL(n, Zy).
Let pn: T — SL(n, Zy) be the restriction to I'.
Since Zy finite, obvious that SL(n, Zy) is finite.
By choice of N, pn(y)ij # pn(I)ij, so pn(y) = I. O

Proposition (Selberg’s Lemma)
I' is virtually torsion-free:
3 finite-index subgrp I’ < T, T’ is torsion-free.
(no nontrivial elements of finite order)

Proof.
Define p3:T — SL(n,Z3) and let IT" = ker(ps).
It suffices to show I” is torsion-free.
Lety €I/, write y = I + 3KT, T # 0 (mod 3).
y™ = (I+3k)m
=I+m3kT) + (72”>32sz ERE
=TI+ 3kmT (mod 3%y if 3¢ | m

# I (mod 3kt¢+1y  if 3¢+1 } . O

Finitely generated
Proposition

I is finitely generated: T = (S) with S finite.

Proof for I' cocompact.
G = CT with C open, and compact closure.
LetS={yel|CynC =+ @}. (I discrete, so S finite!)

Let y € I'. Since G is connected, 3 chain
C,Cy.,Cys,...,Cy, = Cy, eachintersects next.
So y1 €S, Ykyih €S, yyal €S.

Hence y = (yy,') (Ynyni1) -+ (voy1 Dy1 €(S). O]

In fact, T is finitely presented:

I‘E (J/l,YZ;---,Ym|w1,w2,---,w7)-

Borel Density Theorem
Obs. Classical simple Lie grp SL(n, R), SO(m,n), ...
is defined by polynomial equations: Zariski closed. )

Eg. SL(n,R) = { g € Matyxn(R) | det(g) =1}
and det g is a polynomial function of g; ;.

det [g;ﬁ g}f] =91,1922 — 91,292,

quadratic
polynomial
g’ Imng = Liny is system of quadratic equations.

Eg. Entry of g'Im ng is sumof +g; igy.¢-

Theorem of real algebraic geometry
Set of real solns of any system of poly eqns (#vars < «)

has only finitely many connected components.

By ignoring finite group, assume G is connected.

)

Proposition (Borel Density Theorem)
I is Zariski dense in G:
homo p: G — GL(n,C), p(I') fixes vector v
= p(G) fixesv.

Idea of proof for I' cocompact.

G/T compact, p(Iv = v = p(G)v bounded.
Let A be any R-split torus of G.

Eigenvalues of elements of A are real.

Since Av bounded, conclude that A fixes v.

Since p(G) is simple, it is generated by R-split tori.
So all of p(G) fixes v. O

D




Proposition (Borel Density Theorem)
Homo p: G — GL(n,C)
@ p(I) fixes vector v = p(G) fixesv.
@ p(I) fixes subspace W=p(G)fixes W.

Corollary
Z(I') is finite.

Proof.

Define p: G — GL(Matgxx(R)) by p(g)T = gTg~".
Ifze Z(T),then p(Iz = z. So p(G)z = z.
Therefore z € Z(G). This is a finite group. O

’

Cor. T is not virtually abelian (or solvable). J

Normal subgroups
I is residually finite.
So 3 many normal subgroups of finite index.

Theorem (Margulis Normal Subgroups Theorem)

If rankg G > 2, and N is a normal subgroup of T,
then either T/ N is finite or N is finite.

Cor. If rankg G = 2, then [T, T'] has finite index in ..
L.e., the abelianization of T is finite.

Proof.

Suppose not. Then [T, I'] is finite. So [T,I'] = Z(T).
Therefore, after passing to a finite-index subgroup,
we may assume [I',I'] = {I}. SoTI is abelian. —«~ D,

Cor. If rankg G = 2, then [T,T'] has finite index in T. |

Can replace rankg G = 2 with weaker assump that
G # SO(1,n), SU(1,n).

Conjecture. For G = SO(1,n), [I’,I"] has infinite
index, for some finite-index subgroup I".

Eg. Torsion-free lattice in SO(1, 2) is
free group or surface group.
Abelianization is infinite.

Theorem. If rankg G = 1, then T has many normal
subgroups of infinite index.
(True for every Gromov hyperbolic group.)

Free subgroups

Proposition
I contains a nonabelian free subgroup.

Proof is an application of the Ping-Pong Lemma. ]

Borel Density Theorem
Cor. I' & connected, proper subgroup H. ]

Proof (requires Lie theory).

Let h be the Lie algebra of H. This is a subspace of g.
Since I' € H, we know I' normalizes H.

So h is T-invariant for the adjoint representation.
Therefore, h must be G-invariant, so H < G.

Since G is simple, we conclude that H = G. O

Cor. I' is not contained in any Zariski-closed, proper
subgroup H of G: T is Zariski dense.

Proof. H has < o components = H°® D T. m

Exercise
Let a be a diagonal matrix in SL(n, R), and v € R".
If {akv | k € Z} is bounded, show av = v.

Exercise

Show that if N is a finite, normal subgroup of T,
then N ¢ Z(G).

Hint: Show that the centralizer of N is a finite-index
subgrp of T', and apply the Borel Density Theorem.




