Lattices in Lie groups 3: Algebraic aspects

- Normal subgrps (center, commutator subgrp, and others)
- Free subgroups and torsion-free subgroups
- Finitely presented and residually finite
- Borel Density Theorem

We ignore finite groups.

Assumps.

- G = simple Lie group \doteq SL (n, \mathbb{R}) , SO(m, n), etc.
- Γ is infinite (i.e., *G* not compact).
- *G* is connected (will justify later).

Congruence Subgroups

We prove two basic properties of Γ .

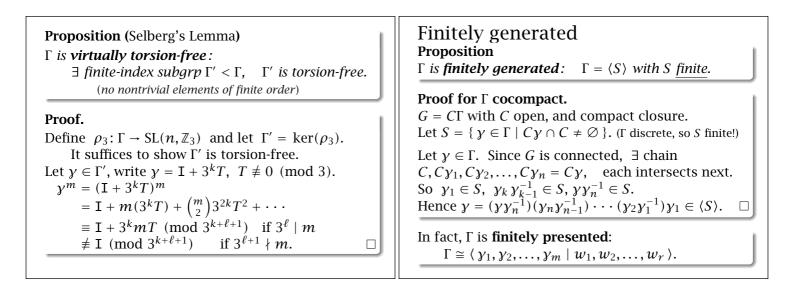
Proposition

Γ is **residually finite**:

 $\forall \gamma \in \Gamma^{\times}, \exists homo \phi \colon \Gamma \to F (finite), \phi(\gamma) \neq e.$

Proof.

 $y - \mathbf{I} \neq 0$, so $\exists (y - \mathbf{I})_{ij} \neq 0$. Choose $N \nmid (y - \mathbf{I})_{ij}$. Ring homo $\mathbb{Z} \to \mathbb{Z}_N$ yields $SL(n, \mathbb{Z}) \to SL(n, \mathbb{Z}_N)$. Let $\rho_N \colon \Gamma \to SL(n, \mathbb{Z}_N)$ be the restriction to Γ . Since \mathbb{Z}_N finite, obvious that $SL(n, \mathbb{Z}_N)$ is finite. By choice of N, $\rho_N(y)_{ij} \neq \rho_N(\mathbf{I})_{ij}$, so $\rho_N(y) \neq \mathbf{I}$. \Box



Borel Density Theorem	By ignoring finite group, assume <i>G</i> is connected .
Obs. Classical simple Lie grp $SL(n, \mathbb{R})$, $SO(m, n)$, is defined by polynomial equations: Zariski closed .	Proposition (Borel Density Theorem)
Eg. SL $(n, \mathbb{R}) = \{ g \in \text{Mat}_{n \times n}(\mathbb{R}) \mid \det(g) = 1 \}$ and det g is a polynomial function of $g_{i,j}$.	Γ is Zariski dense in G: homo ρ : G → GL(n, C), ρ (Γ) fixes vector v ⇒ ρ (G) fixes v.
$\det\left[\begin{array}{c}g_{1,1} \ g_{1,2}\\g_{2,1} \ g_{1,1}\end{array}\right] = g_{1,1} \ g_{2,2} - g_{1,2} \ g_{2,1}.$	Idea of proof for Γ cocompact.
Eg. Entry of $g^{T}I_{m,n}g$ is sum of $\pm g_{i,j}g_{k,\ell}$. quadratic polynomial	G/Γ compact, $\rho(\Gamma)v = v \Rightarrow \rho(G)v$ bounded. Let <i>A</i> be any \mathbb{R} -split torus of <i>G</i> .
$g^{T} \mathtt{I}_{m,n} g = \mathtt{I}_{m,n}$ is system of quadratic equations.	Eigenvalues of elements of <i>A</i> are real.
Theorem of real algebraic geometry	Since Av bounded, conclude that A fixes v .
Set of real solns of any system of poly eqns $(\# vars < \infty)$	Since $\rho(G)$ is simple, it is generated by \mathbb{R} -split tori.
has only finitely many connected components.	So all of $\rho(G)$ fixes v .

Proposition (Borel Density Theorem)	Normal subgroups
Homo $\rho: G \to \operatorname{GL}(n, \mathbb{C})$	Γ is residually finite.
(1) $\rho(\Gamma)$ fixes vector $v \Rightarrow \rho(G)$ fixes v .	So ∃ many normal subgroups of finite index.
⁽²⁾ $\rho(\Gamma)$ fixes subspace $W \Rightarrow \rho(G)$ fixes W .	Theorem (Margulis Normal Subgroups Theorem)
Corollary	If rank _R $G \ge 2$, and N is a normal subgroup of Γ ,
$Z(\Gamma)$ is finite.	then either Γ/N is finite or N is finite.
Proof.	Cor. If $\operatorname{rank}_{\mathbb{R}} G \ge 2$, then $[\Gamma, \Gamma]$ has finite index in Γ .
Define $\rho: G \to \operatorname{GL}(\operatorname{Mat}_{k \times k}(\mathbb{R}))$ by $\rho(g)T = gTg^{-1}$.	I.e., the abelianization of Γ is finite.
Define $\rho: G \to GL(Mat_{k\times k}(\mathbb{K}))$ by $\rho(g)T = gTg^{-1}$. If $z \in Z(\Gamma)$, then $\rho(\Gamma)z = z$. So $\rho(G)z = z$. Therefore $z \in Z(G)$. This is a finite group.	Proof. Suppose not. Then $[\Gamma, \Gamma]$ is finite. So $[\Gamma, \Gamma] \subseteq Z(\Gamma)$. Therefore, after passing to a finite-index subgroup, we may assume $[\Gamma, \Gamma] = \{I\}$. So Γ is abelian. $\rightarrow \leftarrow \Box$

Cor. If rank _{\mathbb{R}} $G \ge 2$, then [Γ , Γ] has finite index in Γ .	Free subgroups
Can replace $\operatorname{rank}_{\mathbb{R}} G \ge 2$ with weaker assump that $G \not\approx \operatorname{SO}(1, n)$, $\operatorname{SU}(1, n)$.	
Conjecture. For $G = SO(1, n)$, $[\Gamma', \Gamma']$ has <u>infinite</u> index, for some finite-index subgroup Γ' .	Proposition Γ contains a nonabelian free subgroup.
Eg. Torsion-free lattice in SO(1, 2) is free group or surface group. Abelianization is infinite.	Proof is an application of the Ping-Pong Lemma.
Theorem. If $\operatorname{rank}_{\mathbb{R}} G = 1$, then Γ has <u>many</u> normal subgroups of infinite index. (True for every Gromov hyperbolic group.)	

Borel Density Theorem Cor. $\Gamma \notin connected$, proper subgroup H.	Exercise
Proof (requires Lie theory). Let $𝔅$ be the Lie algebra of <i>H</i> . This is a subspace of $𝔅$. Since Γ ⊆ <i>H</i> , we know Γ normalizes <i>H</i> . So $𝔅$ is Γ-invariant for the adjoint representation. Therefore, $𝔅$ must be <i>G</i> -invariant, so <i>H</i> ⊲ <i>G</i> . Since <i>G</i> is simple, we conclude that <i>H</i> = <i>G</i> . Cor. Γ is not contained in any Zariski-closed, proper	Exercise Let <i>a</i> be a diagonal matrix in SL(n , \mathbb{R}), and $v \in \mathbb{R}^n$. If $\{a^k v \mid k \in \mathbb{Z}\}$ is bounded, show $av = v$. Exercise Show that if N is a finite, normal subgroup of Γ , then $N \subseteq Z(G)$. <i>Hint:</i> Show that the centralizer of N is a finite-index subgrp of Γ , and apply the Borel Density Theorem.
subgroup <i>H</i> of <i>G</i> : Γ is Zariski dense . Proof. <i>H</i> has $< \infty$ components $\Rightarrow H^{\circ} \supset \Gamma$.	