



Other interesting groups G: simple Lie group.	Proposition
 SO(m, n) = { g ∈ SL(k, ℝ) g^T I_{m,n} g = I_{m,n} } (lattice: G_Z) SU(m, n): change ℝ to ℂ and g^T to g* = g^T (lattice: G_{Z+Zi}) Sp(m, n): change ℂ to ℍ (lattice: G_{Z+Zi+Zj+Zk} = G_{H_Z}) SL(n, ℝ), SL(n, ℂ), SL(n, ℍ) Sp(2n, ℝ), Sp(2n, ℂ), SO(n, ℍ) finitely many "exceptional grps" (E₆, E₇, E₈, F₄, G₂) 	• $G = simple \ Lie \ group = SL(n, \mathbb{R}), \ SO(m, n), \ etc$ $such \ that \ G^{T} = G (always \ true \ after \ conjugating)$ • $K = \{k \in G \mid k^{T} = k^{-1}\} = max'l \ compact \ subgrp,$ $(K \doteq SO(n), \ SO(m) \times SO(n), \ etc).$ $\Rightarrow G/K \ is \ a \ symmetric \ space.$ Sketch of proof. $K \ cpct, \ so \ \exists \ G\ inv't \ Riemannian \ metric \ on \ G/K.$ Define $\phi(gK) = (g^{T})^{-1}K$, so ϕ has order 2. Average over $\{1, \phi\}$ to make metric $\phi\ invariant.$
Theorem (Borel and Harish-Chandra) Assume G simple Lie group, defined over \mathbb{Q} . Then $G_{\mathbb{Z}}$ is a lattice in G.	So $\phi \in \text{Isom}(G/K)$. IK is an isolated fixed pt of $\phi \Rightarrow D_{\text{IK}}\phi(v) = -v$ $\Rightarrow \phi$ is the reflection through IK.

 $SL(2,\mathbb{Z})$ acts on upper half-plane \mathfrak{h}^2 by **Defn.** rank_{\mathbb{R}} *G* = max dim of **\mathbb{R}-split torus**. $\begin{bmatrix} a & b \\ c & d \end{bmatrix} * Z = \frac{az+b}{cz+d}.$ **Eg.** rank_{\mathbb{R}} SO $(m, n) = \min(m, n) = m$ if m < n. So $\left\{ \begin{bmatrix} e^t & 0\\ 0 & e^{-t} \end{bmatrix} * i \right\} = \{e^{2t}i\} = \mathcal{Y}$ -axis = geodesic. $x_1^2 + \dots + x_m^2 - x_{m+1}^2 - \dots - x_{m+n}^2$ $\cong x_1 x_{m+1} + x_2 x_{m+2} + \dots + x_m x_{2m}$ $- x_{2m+1}^2 - \dots - x_{m+n}^2$ Therefore, if gx^tg^{-1} is diagonal, and z = g * i, then $\{x^t * z\}$ is a geodesic: Geods in $\mathfrak{h}^2 \leftrightarrow$ one-param subgrps conj to diag mats. diag $(t_1, t_2, \dots, t_m, 1/t_1, 1/t_2, \dots, 1/t_m, 1, 1, \dots, 1)$ Similar in G/K: is an *m*-dimensional diag'l subgroup of *G*. **Prop.** Suppose *A* is an **R-split torus**: **Thm.** *G*/*K* is Gromov hyperbolic (neg sectional curvature) connected subgroup of *G* that is conjugate \Leftrightarrow rank_R G = 1via $SL(k, \mathbb{R})$ to a group of diagonal matrices. \Leftrightarrow $G \doteq$ SO(1, n), SU(1, n), Sp(1, n), "F₄⁻²⁰" Then $\exists p \in G/K$, such that Ap is a **flat**: isometrically embedded copy of \mathbb{R}^m in G/K. *Always:* G/K is CAT(0). (non-positive sectional curvature)



