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Group theory = the study of symmetry

Example
Symmetries of a tessellation (periodic tiling)

symmetry group Γ = Z2 Γ " Z2

Thm (Bieberbach, 1910). ∀ tess of Rn, Γ " Zn.

Other spaces yield groups that are more interesting.
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Other spaces yield groups that are more interesting.

Rn is a symmetric space:
homogeneous:
every pt looks like all other pts.
∀x,y , ∃ isometry x ! y .

reflection through a point

x

x0

y

y 0

0

(x′ = − x) is an isometry.

Rem. Let G = Isom(X). X homog ⇒ G transitive
⇒ X = G/K with K = StabG(p) cpct.

Symmetry group of tessellation of X is lattice in G
if tiles are compact (or finite volume).
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Eg. Tess’ns of hyperbolic plane h2. (symmetric space)

G " SO(1,2) " SL(2,R).
KaleidoTile

c⃝Wikipedia

Γ = cocompact lattice Γ = SL(2,Z) " SO(2,1)Z

Tessellations of other symmetric spaces
correspond to lattices in other interesting groups.
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Other interesting groups G: simple Lie group.
SO(m,n) = {g∈SL(k,R) | gT Im,n g = Im,n }

(lattice: GZ)
SU(m,n): change R to C and gT to g∗= gT

(lattice: GZ+Zi)
Sp(m,n): change C to H

(lattice: GZ+Zi+Zj+Zk = GHZ)
SL(n,R), SL(n,C), SL(n,H)
Sp(2n,R), Sp(2n,C), SO(n,H)
finitely many “exceptional grps” (E6, E7, E8, F4, G2)

Theorem (Borel and Harish-Chandra)
Assume G simple Lie group, defined over Q.
Then GZ is a lattice in G.
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Proposition
G = simple Lie group = SL(n,R), SO(m,n), etc

such that GT = G (always true after conjugating)

K = {k∈G | kT = k− 1 } = max’l compact subgrp,
(K " SO(n), SO(m)×SO(n), etc).

⇒ G/K is a symmetric space.

Sketch of proof.
K cpct, so ∃ G-inv’t Riemannian metric on G/K.
Define φ(gK) = (gT)− 1K, so φ has order 2.
Average over {1,φ} to make metric φ-invariant.

So φ∈Isom(G/K).
IK is an isolated fixed pt of φ ⇒ DIKφ(v) = − v

⇒ φ is the reflection through IK.
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SL(2,Z) acts on upper half-plane h2 by[
a b
c d

]
∗z = az+b

cz+d .

So
{[

et 0
0 e− t

]
∗i
}
= {e2ti} = y-axis = geodesic.

Therefore, if gxtg− 1 is diagonal, and z = g∗i,
then {xt∗z} is a geodesic:

Geods in h2 ↔ one-param subgrps conj to diag mats.

Similar in G/K:

Prop. Suppose A is an RRR-split torus:
connected subgroup of G that is conjugate
via SL(k,R) to a group of diagonal matrices.

Then ∃p∈G/K, such that Ap is a flat:
isometrically embedded copy of Rm in G/K.
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Defn. rankRG = max dim of RRR-split torus.

Eg. rankR SO(m,n) = min(m,n) =m if m < n.

x2
1 + · · · + x2

m − x2
m+1 − · · · − x2

m+n
-x1xm+1 + x2xm+2 + · · · + xmx2m

− x2
2m+1 − · · · − x2

m+n
diag(t1, t2, . . . , tm,1/t1,1/t2, . . . ,1/tm,1,1, . . . ,1)

is an m-dimensional diag’l subgroup of G.

Thm. G/K is Gromov hyperbolic (neg sectional curvature)

" rankRG = 1
" G " SO(1, n), SU(1, n), Sp(1, n), “F − 20

4 ”

Always: G/K is CAT(0). (non-positive sectional curvature)
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Defn. Let G = SO
(
Q(x)

)
and Γ = GZ.

subspace V is totally isotropic if Q(V) = {0}.
Eg. For QI3,5: {(x,y, z,x,y, z,0,0)}.

rankQ(Γ) = max dim tot isotrop Q-subspace.

Eg. rankQ(Γ) = 0 ⇒ Q(x) not isotropic over Q
⇒ G/Γ compact.

Look at G/Γ from a large distance.

Limit is a point.
∴dimension of limit = 0 = rankQ(Γ).

This limit is the asymptotic cone of G/Γ .
Dave Witte Morris (U of Lethbridge) Lecture 2: Geometric aspects Marseille, Jan 2019 9 / 12

Example
Let Γ = SO(1, n)Z. Then Γ\hn not compact.

Γ\hn has finitely many cusps.

Limit = “star" of finitely many rays.
∴dimension of limit = 1 = rankQ(Γ).

Theorem (Hattori)
Asymptotic cone of G/Γ (or Γ\G/K) is a simplicial
complex whose dimension is rankQ(Γ).
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Theorem (Hattori)
Dimension of asymptotic cone of G/Γ is rankQ(Γ).

For general G, rankQGZ = max dim ofQQQ-split torus:
connected subgroup of G that is conjugate
via SL(k,Q) to a group of diagonal matrices.

Eg. rankQ SL(n,Z) = n − 1.

SL(3,R)/ SL(3,Z):

The defns of rankQGZ agree when G = SO
(
Q(x)

)
.
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Exer. Assume GT = G and K = {k∈G | kT = k− 1 }.
Define φ(gK) = (gT)− 1K and let p = IK∈G/K.
Show:

1 φ has order 2.
2 p is an isolated fixed point of φ:

If φ(giK) = giK for all i, and giK → p,
then gi∈K for all large i.

3 Dpφ(v) = − v for all v ∈Tp(G/K).
Assuming that φ is an isometry, this implies that φ
is the reflection through p (see below).

Rem. Let γ be a geodesic through p. Since φ is an isometry,
we know φ ◦ γ is the unique geodesic in the direction
Dpφ

(
γ′(0)

)
= − γ′(0). Therefore φ

(
γ(t)

)
= γ(− t) for all t

(and all γ). This means that φ is the reflection through p.
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