Lecture 2: Geometric aspects

Dave Witte Morris

University of Lethbridge, Alberta, Canada

http://people.uleth.ca/~dave.morris
Dave.Morris@uleth.ca

o Symmetric spaces
o classical simple Lie groups
o Real rank and Q-rank

Group theory = the study of symmetry |

Example
Symmetries of a tessellation (periodic tiling)

symmetry group I' = 72 =272

Thm (Bieberbach, 1910). V tess of R"™, T = Z™. |

Other spaces yield groups that are more interesting.J

Other spaces yield groups that are more interesting. |

R" is a symmetric space: y/.\.
o homogeneous: Jox
every pt looks like all other pts. g/o/ i

Vx,y, disometry x — y. xO-"
o reflection through a point ’\'/ -

(x' = —x) is anisometry.

Rem. Let G = Isom(X). X homog = G transitive
= X = G/K with K = Stabg(p) cpct.

Symmetry group of tessellation of X is lattice in G
if tiles are compact (or finite volume).

Eg. Tess'ns of hyperbolic plane §2.

G = SO(l 2) = SL(2,R).
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I' = cocompact lattice I'=SL(2,Z) = SO(2, 1)

Tessellations of other symmetric spaces
correspond to lattices in other interesting groups.

Utner mteresting groups G:  simple Lle group.
o SO(m,n) = {g € SL(k,R) | gT Liung = Im,n}
(lattice: Gz)
o SU(m,n): change R to C and g7 to g* = g7
(lattice: Gz.7i)

o Sp(m,n): change C to H
(lattice: Gz+zi+zj+zx = Gu,)
o SL(n,R), SL(n,C), SL(n,H)

o Sp(2n,R), Sp(2n,C), SO(n, H)
o finitely many “exceptional grps” (g, E;,Es, Fi, G2)

Theorem (Borel and Harish-Chandra)
Assume G simple Lie group, defined over Q.

Then Gy is a lattice in G.

Proposition
o G = simple Lie group = SL(n,R), SO(m,n), etc
such that G" = G (always true after conjugating)
o K={keG|k" =k} =maxt compact subgrp,

(K = SO(n), SO(m) xSO(n), etc).
= G/K is a symmetric space.

Sketch of proof.
K cpct, so 3 G-inv’'t Riemannian metric on G/K.
Define ¢(gK) = (g") "' K, so ¢ has order 2.
Average over {1, ¢} to make metric ¢-invariant.
So ¢ € Isom(G/K).
IK is an isolated fixed pt of ¢ = Dixp(v) = —
= ¢ is the reflection through IK. O




SL(2,7) acts on upper half-plane §> by

ab _ az+b
[c d] *Z=zva
So {[eot eqf] ” i} = {e’ti} = y-axis = geodesic.

Therefore, if gxtg~'is diagonal, and z = g * i,
then {x! % z} is a geodesic:
Geods in h* — one-param subgrps conj to diag mats.

Similar in G/K: |

Prop. Suppose A is an R-split torus:
connected subgroup of G that is conjugate
via SL(k,R) to a group of diagonal matrices.
Then dp € G/K, such that Ap is a flat:
isometrically embedded copy of R™ in G/K.

Defn. rankg G = max dim of R-split torus. |

Eg. rankg SO(m,n) = min(m,n) = m if m < n. )
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diag(ty,to, ..., tm, 1/t1, 1/t2, ..., 1/tm, 1,1,...,1)
is an m-dimensional diag’l subgroup of G.

Thm. G/K is Gromov hyperbolic (neg sectional curvature)
< rankg G =1
< G = SO(1,n), SU(1,n), Sp(1,n), “F;2°”

Always: G/K is CAT(0).

(non-positive sectional curvature) J

Detn. Let G = SO(Q(x)) and I' = G7.
o subspace V is totally isotropic if Q (V) = {0}.
Eg. For Q1,.: {(x,¥,2,x,%,2,0,0)}.
o rankq(I') = max dim tot isotrop Q-subspace.

Eg. rankqg(I') = 0 = Q(x) not isotropic over Q
= G/I' compact.
Look at G/T from a large distance.
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Limit is a point.
.. dimension of limit = 0 = rankg(T).

This limit is the asymptotic cone of G/I. J

rxample

LetI = SO(1,n)z. Then I'\h” not compact.
I'\h" has finitely many cusps.

/

Limit = “star" of finitely many rays.
.. dimension of limit = 1 = rankg (T).

Theorem (Hattori)
Asymptotic cone of G/T (or I'\G/K) is a simplicial
complex whose dimension is rankq(I').

Theorem (Hattori)
Dimension of asymptotic cone of G /T is rankg(T).

For general G, rankg Gz = max dim of Q-split torus:
connected subgroup of G that is conjugate
via SL(k, Q) to a group of diagonal matrices.

Eg. rankq SL(n,Z) =n — 1.

SL(3,R)/SL(3,2):

The defns of rankg Gz agree when G = SO(Q(x)). )

Exer. Assume ¢G' =Gand K =3ike G| k' =Kk™"§.
Define ¢p(gK) = (g") 'K and let p = IK € G/K.
Show:
@ ¢ has order 2.
@ p is an isolated fixed point of ¢:
If $(giK) = giK for all i, and g;K — p,
then g; € K for all large i.
@ Dydp(v) = -vforalv e T,(G/K).
Assuming that ¢ is an isometry, this implies that ¢
is the reflection through p (see below).
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Rem. Let y be a geodesic through p. Since ¢ is an isometry,
we know ¢ o y is the unique geodesic in the direction

D, (y'(0)) = —y'(0). Therefore ¢p(y(t)) = y(—t) forall t
(and all y). This means that ¢ is the reflection through p.




