Lattices in Lie groups

Dave Witte Morris
University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

During this mini-course, the students will learn the basic theory of lattices in semisimple Lie groups. Examples will be provided by simple arithmetic constructions. Aspects of the geometric and algebraic structure of lattices will be discussed, and the Superrigidity and Arithmeticity Theorems of Margulis will be described.

Lattices in Lie groups 1: Introduction

- What is a lattice subgroup?
- Arithmetic construction of lattices.
- Compactness criteria.
- Classical simple Lie groups.

A simple example.

- \mathbb{R}^{2} is a connected Lie group
- group: $\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$
- Riemannian manifold (metric space, connected) distance is right-invariant: $d(x+a, y+a)=d(x, y)$
- group ops $(x+y$ and $-x)$ continuous (differentiable)
- \mathbb{Z}^{2} is a discrete subgroup (no accumulation points)
- Every point in \mathbb{R}^{2} is within bdd distance $C=\sqrt{2}$ of \mathbb{Z}^{2}
$\Rightarrow \mathbb{Z}^{2}$ is a cocompact lattice in \mathbb{R}^{2}.

Replace \mathbb{R}^{2} with interesting group G.
\mathbb{Z}^{2} is a cocompact lattice in \mathbb{R}^{2}.
Replace \mathbb{R}^{2} with interesting group G.
Γ is a cocompact lattice in G : (discrete subgroup)

- Every pt in G is within bounded distance of Γ. $g=c \gamma$ where c is bounded - in cpct set
- \exists compact $C \subseteq G, G=C \Gamma$.
- G / Γ is cpct. $\quad\left(g_{n} \Gamma \rightarrow g \Gamma \Leftrightarrow \exists\left\{\gamma_{n}\right\}, g_{n} \gamma_{n} \rightarrow g\right)$
Γ is a lattice in G :
only require C (or G / Γ) to have finite volume.
Usual way to make a lattice: let $\Gamma=\{\mathbb{Z}$-points $\}=G_{\mathbb{Z}}$.
\mathbb{Z}^{2} is a cocompact lattice in \mathbb{R}^{2}.
Replace \mathbb{R}^{2} with interesting group G.
Eg. $G=\operatorname{Isom}($ hyperbolic n-space $) \doteq \operatorname{SO}(1, n)$

$$
\mathfrak{h}^{n}=\left\{x \in \mathbb{R}^{n+1} \mid x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-\cdots-x_{n}^{2}=1\right\}^{+}
$$

More general: $G=\mathrm{SO}(m, n)=\mathrm{SO}\left(\mathrm{I}_{m, n}\right)$
where $I_{m, n}=\operatorname{diag}(1,1, \ldots, 1,-1,-1, \ldots,-1)$.

Example

$$
\begin{gathered}
x^{\top} \mathrm{I}_{1,2} x=x^{\top}\left[\begin{array}{ll}
1 & \\
& -1 \\
& -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{r}
x_{1} \\
-x_{2} \\
-x_{3}
\end{array}\right] \\
=\left[x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\right]=x_{1}^{2}-x_{2}^{2}-x_{3}^{2} .
\end{gathered}
$$

$$
x^{\top} I_{1,2} x=x_{1}^{2}-x_{2}^{2}-x_{3}^{2}
$$

For $k \times k$ matrix S (invertible, symmetric) and $x \in \mathbb{R}^{k}$:

- $Q_{S}(x):=x^{\top} S x \quad$ (quadratic form)

$$
Q_{\mathrm{I}}(x)=x_{1}^{2}+x_{2}^{2}+\cdots x_{k}^{2}=\|x\|^{2}
$$

$$
-Q_{\mathrm{I}_{m, n}}(x)=x_{1}^{2}+\cdots x_{m}^{2}-x_{m+1}^{2}-\cdots-x_{m+n}^{2}
$$

- (special orthogonal group) $\operatorname{SL}(k, \mathbb{R})=\{k \times k$, det $=1\}$ $\mathrm{SO}(S):=\left\{g \in \operatorname{SL}(k, \mathbb{R}) \mid g^{\top} S g=S\right\}$

$$
\begin{aligned}
& =\left\{g \in \operatorname{SL}(k, \mathbb{R}) \mid Q_{S}(g x)=Q_{S}(x)\right\} \\
& =\operatorname{SO}\left(Q_{S}(x)\right)
\end{aligned}
$$

- Q_{S} is defined over \mathbb{Q} if coefficients are in \mathbb{Q}.
- Q_{S} is isotropic over \mathbb{Q} if $\exists v \in\left(\mathbb{Q}^{k}\right)^{\times}, Q(v)=0$.

Exer. $S^{\prime}=c T^{\top} S T \Rightarrow \mathrm{SO}\left(S^{\prime}\right)=T^{-1} \mathrm{SO}(S) T \cong \mathrm{SO}(S)$
\mathbb{Z}^{2} is a cocompact lattice in \mathbb{R}^{2}. Replace \mathbb{R}^{2} with interesting group G. Usual way to make a lattice: let $\Gamma=G_{\mathbb{Z}}$.

Eg. $G=\mathrm{SO}(m, n)=\mathrm{SO}\left(\mathrm{I}_{m, n}\right) \Rightarrow G / G_{\mathbb{Z}}$ is not cpct unless $m=0$ or $n=0 . \quad\left(G\right.$ cpct $\Rightarrow G_{\text {Z }}$ finite \Rightarrow boring)

More general

Assume $G=\operatorname{SO}(Q(x))$ with $Q(x)$ defined over \mathbb{Q}. $G / G_{\mathbb{Z}}$ is cpct $\Leftrightarrow Q(x)$ is not isotropic over \mathbb{Q}.

Eg. Here is a cocompact lattice in $\mathrm{SO}(1,2)$:
Let $G=\operatorname{SO}\left(7 x_{1}^{2}-x_{2}^{2}-x_{3}^{2}\right) \cong \mathrm{SO}(1,2)$.
Then $G_{\mathbb{Z}}$ is a cocompact lattice in G. (Since $\left.7 \neq \square+\square.\right)$

More general

Assume $G=\operatorname{SO}(Q(x))$ with $Q(x)$ defined over \mathbb{Q}. $G / G_{\mathbb{Z}}$ is cpct $\Leftrightarrow Q(x)$ is not isotropic over \mathbb{Q}.

Proof (\Rightarrow) for SO $(1,2)$.
$G / G_{\mathbb{Z}}$ compact $\Rightarrow G\left(\mathbb{Z}^{3}\right)^{\times}$closed $\Rightarrow \overrightarrow{0} \notin \overline{G\left(\mathbb{Z}^{3}\right)^{\times}}$.
$\mathrm{SO}(1,2) \cong \mathbb{Q} \mathrm{SO}(Q(x))$ with $Q(x)=x_{1} x_{2}+x_{3}^{2}$.
$\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 1 / 2 & -1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]^{\top} \mathrm{I}_{1,2}\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 1 / 2 & -1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & 1 / 2 & 0 \\ 1 / 2 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

- $a_{t}=\operatorname{diag}(1 / t, t, 1) \Rightarrow Q\left(a_{t} x\right)=Q(x) \Rightarrow a_{t} \in G$.
- $v:=(1,0,0) \in \mathbb{Z}^{3} \& a_{t} v=(1 / t, 0,0) \rightarrow \overrightarrow{0}$.

Fact. $G / G_{\mathbb{Z}}$ always has finite vol: $G_{\mathbb{Z}}$ is a lattice in G. (if $Q(x)$ is defined over \mathbb{Q})

More general

Assume $G=\operatorname{SO}(Q(x))$ with $Q(x)$ defined over \mathbb{Q}. $G / G_{\mathbb{Z}}$ is cpct $\Leftrightarrow Q(x)$ is not isotropic over \mathbb{Q}.

Proof (\Leftarrow)

$G / G_{\mathbb{Z}} \hookrightarrow \operatorname{SL}(k, \mathbb{R}) / \operatorname{SL}(k, \mathbb{Z}): g G_{\mathbb{Z}} \mapsto g \operatorname{SL}(k, \mathbb{R})$
Proof has 2 parts:
(1) $G / G_{\mathbb{Z}}$ is closed in $\operatorname{SL}(k, \mathbb{R}) / \operatorname{SL}(k, \mathbb{Z})$.
(because $Q(x)$ is defined over \mathbb{Q})
(2) $G / G_{\mathbb{Z}}$ is bounded in $\operatorname{SL}(k, \mathbb{R}) / \operatorname{SL}(k, \mathbb{Z})$.
(because $Q(x)$ is not isotropic over \mathbb{Q})

viore genera

Assume $G=\operatorname{SO}(Q(x))$ with $Q(x)$ defined over \mathbb{Q}. $G / G_{\mathbb{Z}}$ is cpct $\Leftrightarrow Q(x)$ is not isotropic over \mathbb{Q}.

Part 1: $G / G_{\mathbb{Z}}$ is closed in $\operatorname{SL}(k, \mathbb{R}) / \operatorname{SL}(k, \mathbb{Z})$.

Proof.

Suppose $g_{n} \gamma_{n} \rightarrow g$ with $g_{n} \in G$ and $\gamma_{n} \in \operatorname{SL}(k, \mathbb{Z})$.
For $x \in \mathbb{Z}^{n}: \quad Q\left(\gamma_{n} x\right)=Q\left(g_{n} \gamma_{n} x\right) \rightarrow Q(g x)$, but $Q\left(\gamma_{n} x\right) \in Q\left(\mathbb{Z}^{n}\right) \subset \mathbb{Z}$.
So $Q\left(\gamma_{n} x\right)=Q(g x)$ is eventually constant: $Q\left(\gamma_{n} x\right)=Q\left(\gamma_{\infty} x\right)$.
Then $Q(g x)=Q\left(\gamma_{n} x\right)=Q\left(\gamma_{\infty} x\right)$.
So $Q\left(g \cdot \gamma_{\infty}^{-1} x\right)=Q\left(\gamma_{\infty} \cdot \gamma_{\infty}^{-1} x\right)=Q(x)$.
Therefore $g \gamma_{\infty}^{-1} \in \operatorname{SO}(Q(x))=G$.
part 1: $G / G_{\mathbb{Z}}$ is ciosea in $\operatorname{SL}\left(\kappa, \mathbb{K}_{K}\right) / \operatorname{SL}(\kappa, 《)$.
Part 2: $G / G_{\mathbb{Z}}$ is bounded in $\operatorname{SL}(k, \mathbb{R}) / \operatorname{SL}(k, \mathbb{Z})$.
Lemma (Mahler Compactness Criterion)
Let $C \subset \operatorname{SL}(k, \mathbb{R})$.
The image of C in $\operatorname{SL}(k, \mathbb{R}) / \operatorname{SL}(k, \mathbb{Z})$ is bounded $\Leftrightarrow \overrightarrow{0}$ is not an accumulation point of $C \mathbb{Z}^{n}$.

Proof (\Rightarrow).

Spse $c_{n} z_{n} \rightarrow \overrightarrow{0}$ and $c_{n} \gamma_{n} \rightarrow h$. Since $h \mathbb{Z}^{n}$ is discrete, and $h\left(\gamma_{n}^{-1} z_{n}\right) \approx c_{n} z_{n} \approx \overrightarrow{0}$, we have $z_{n}=\overrightarrow{0}$.

Converse is an exercise (for $k=2$).

Part 2 of the proof.

$g_{n} z_{n} \in G\left(\mathbb{Z}^{n}\right)^{\times} \Rightarrow Q\left(g_{n} z_{n}\right)=Q\left(z_{n}\right) \in Q\left(\left(\mathbb{Z}^{n}\right)^{\times}\right) \subseteq \mathbb{Z}^{\times}$

$$
\Rightarrow Q\left(g_{n} z_{n}\right)+0 \quad \Rightarrow g_{n} z_{n}+0
$$

More general

Assume $G=\operatorname{SO}(Q(x))$ with $Q(x)$ defined over \mathbb{Q}. $G / G_{\mathbb{Z}}$ is cpct $\Leftrightarrow Q(x)$ is not isotropic over \mathbb{Q}.

Eg. $7 x_{1}^{2}-x_{2}^{2}-x_{3}^{2}$ is not isotropic over \mathbb{Q}.
Theorem of Number Theory
$Q(x)$ isotropic over \mathbb{R} with at least 5 variables $\Rightarrow Q(x)$ is isotropic over \mathbb{Q}.

Generalization of fact that every positive integer is a sum of 4 squares.
So More general never provides a cocompact lattice in $\operatorname{SO}(m, n)$ with $m+n \geq 5$ (unless $m=0$ or $n=0$).

Cocompact lattices in $\mathbf{S U}(m, n)$

- $Q(x)=x_{1}^{2}+x_{2}^{2}-\alpha x_{3}^{2}-\alpha x_{4}^{2}-\alpha x_{5}^{2}, \quad \alpha=\sqrt{2}$,
- $G=\operatorname{SO}(Q(x)) \cong \operatorname{SO}(2,3)$,
- $\Gamma=G_{\mathbb{Z}[\alpha]}=(\mathbb{Z}+\mathbb{Z} \alpha)$-points.

Then Γ is a cocompact lattice in G.
Idea of proof. $\sigma(a+b \alpha):=a-b \alpha$. (Galois aut) $G^{\sigma}:=\mathrm{SO}\left(Q^{\sigma}\right)=\mathrm{SO}\left(x_{1}^{2}+x_{2}^{2}+\alpha x_{3}^{2}+\alpha x_{4}^{2}+\alpha x_{5}^{2}\right) \cong \mathrm{SO}(5)$. Map $\omega \mapsto\left(\omega, \omega^{\sigma}\right)$ embeds $\mathbb{Z}[\alpha] \hookrightarrow \mathbb{R} \oplus \mathbb{R}$.
$\left(1,1^{\sigma}\right),\left(\alpha, \alpha^{\sigma}\right)$ are lin indep so image discrete. So image of Γ in $G \times G^{\sigma}$ is discrete. Cocpct lattice! $Q(x)$ not isotropic over $\mathbb{Q}[\alpha]$:
$Q(v)=0 \Rightarrow Q^{\sigma}\left(v^{\sigma}\right)=0 \Rightarrow v^{\sigma}=0 \Rightarrow v=0$. Can mod out compact group G^{σ}.

Replace $\mathbb{R}^{<}$with interesting G : simple Lie group.

- $\operatorname{SO}(m, n)=\left\{g \in \operatorname{SL}(k, \mathbb{R}) \mid g^{\top} \mathrm{I}_{m, n} g=\mathrm{I}_{m, n}\right\}$ (lattice: $G_{\mathbb{Z}}$)
- $\operatorname{SU}(m, n)$: change \mathbb{R} to \mathbb{C} and g^{\top} to $g^{*}=\overline{g^{\top}}$
(lattice: $G_{\mathbb{Z}+\mathbb{Z}}$)
- $\operatorname{Sp}(m, n)$: change \mathbb{C} to \mathbb{H}
(lattice: $G_{\mathbb{Z}+\mathbb{Z} i+\mathbb{Z} j+\mathbb{Z} k}=G_{\mathbb{H}_{\mathbb{Z}}}$)
- $\operatorname{SL}(n, \mathbb{R}), \operatorname{SL}(n, \mathbb{C}), \operatorname{SL}(n, \mathbb{H})$
- $\operatorname{Sp}(2 n, \mathbb{R}), \operatorname{Sp}(2 n, \mathbb{C}), \operatorname{SO}(n, \mathbb{H})$
- finitely many "exceptional grps" ($\left.E_{6}, E_{7}, E_{8}, F_{4}, G_{2}\right)$

Theorem (Borel and Harish-Chandra)
Assume G simple Lie group, defined over \mathbb{Q}. Then $G_{\mathbb{Z}}$ is a lattice in G.

Exercise

Assume Γ is a lattice in G.
Show that every finite-index subgroup of Γ is a lattice in G.
(2) Show that if Γ is a cocompact lattice in G, then every finite-index subgroup of Γ is a cocompact lattice in G.
(3) Show that the following are equivalent:
(1) G is compact.
(2) Γ is finite.
(3) $\operatorname{vol}(G)$ is finite.

Hint: You may assume the following basic facts about volume (for subsets of G):

- $\operatorname{vol}(E g)=\operatorname{vol}(E)$ for all $g \in G$.
- If E is compact, then $\operatorname{vol}(E)<\infty$.
- If U is open and nonempty, then $\operatorname{vol}(U)>0$.
- If $E \subseteq F$, then $\operatorname{vol}(E) \leq \operatorname{vol}(F)$.
- $\operatorname{vol}(E \cup F) \leq \operatorname{vol}(E)+\operatorname{vol}(F)$.
- If E and F are disjoint, and are either open or closed, then $\operatorname{vol}(E \cup F)=\operatorname{vol}(E)+\operatorname{vol}(F)$.
Furthermore, G is locally compact. This means that every closed ball $B_{r}(g)$ is compact.

Rem. Since G has a lattice, we also have $\operatorname{vol}(g E)=\operatorname{vol}(E)$ for all $g \in G$. However, for some Lie groups, it is only true that $\operatorname{vol}(E)=\operatorname{vol}(E g)$ (or only that $\operatorname{vol}(E)=\operatorname{vol}(g E)$), not both.

Exercise

Prove (\Leftrightarrow) of Mahler Compactness Criterion for $k=2$.
Hint: Let $\left\{c_{n}\right\}$ be a sequence of points in C.
Since $C \subseteq \operatorname{SL}(2, \mathbb{R})$, there is a sequence $\left\{\gamma_{n}\right\}$ in $\operatorname{SL}(2, \mathbb{Z})$, such that $c_{n} \gamma_{n}\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is bounded. (Why?) By passing to a subsequence, we may assume $c_{n} \gamma_{n}\left[\begin{array}{l}1 \\ 0\end{array}\right]$ converges to some $v_{1} \in \mathbb{R}^{2}$.
Note that $v_{1} \neq 0$. (Why?)
Now show there is a sequence $\left\{\gamma_{n}^{\prime}\right\}$ in $\left[\begin{array}{ll}1 & * \\ 0 & 1\end{array}\right]$, such that $c_{n} \gamma_{n} \gamma_{n}^{\prime}\left[\begin{array}{l}0 \\ 1\end{array}\right]$ converges to some $v_{2} \in \mathbb{R}^{2}$. This implies $c_{n} \gamma_{n} \gamma_{n}^{\prime} \rightarrow\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]$.
So $\left\{c_{n} \operatorname{SL}(2, \mathbb{Z})\right\}$ has a convergent subsequence.

vennition

An element u of $\operatorname{SL}(k, \mathbb{Q})$ is unipotent if the following equivalent conditions are true:
(1) 1 is the only eigenvalue of u (in \mathbb{C}).
(2) $(u-I)^{k}=0$.
(3) u is conjugate in $\operatorname{SL}(k, \mathbb{Q})$ to matrix that is upper-triangular with only 1s on the diagonal.

Exercise

Assume $G=\operatorname{SO}\left(Q_{S}(x)\right)$, with Q_{S} defined over \mathbb{Q}. Show that if $G_{\mathbb{Z}}$ has a unipotent element other than I, then $G / G_{\mathbb{Z}}$ is not compact.

[^0]
[^0]: Hint: Find $u \in G$ and $v_{1}, v_{2} \in\left(\mathbb{Q}^{k}\right)^{\times}$, such that $u v_{1}=v_{1}$ and $u v_{2}=v_{1}+v_{2}$. Also note that $(u v)^{\top} S(u w)=v^{\top} S w$.

