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Abstract
During this mini-course, the students will learn the
basic theory of lattices in semisimple Lie groups.
Examples will be provided by simple arithmetic
constructions. Aspects of the geometric and
algebraic structure of lattices will be discussed, and
the Superrigidity and Arithmeticity Theorems of
Margulis will be described.
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Lattices in Lie groups 1: Introduction

What is a lattice subgroup?
Arithmetic construction of lattices.
Compactness criteria.
Classical simple Lie groups.
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A simple example.

R2 is a connected Lie group
group: (x1, x2)+ (y1, y2) = (x1 +y1, x2 +y2)
Riemannian manifold (metric space, connected)

distance is right-invariant: d(x + a,y + a) = d(x,y)
group ops (x +y and −x) continuous (differentiable)

Z2 is a discrete subgroup (no accumulation points)

Every point in R2 is within
bdd distance C =

√
2 of Z2

⇒ Z2 is a cocompact lattice
in R2.

Replace R2 with interesting group G.
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Z2 is a cocompact lattice in R2.
Replace R2 with interesting group G.

Γ is a cocompact lattice in G: (discrete subgroup)
Every pt in G is within bounded distance of Γ .

g = cγ where c is bounded — in cpct set
∃ compact C ⊆ G, G = C Γ .
G/Γ is cpct. (gnΓ → gΓ ! ∃{γn}, gnγn → g)

Γ is a lattice in G:
only require C (or G/Γ ) to have finite volume.

Usual way to make a lattice: let Γ = {Z-points} = GZ.
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Z2 is a cocompact lattice in R2.
Replace R2 with interesting group G.

Eg. G = Isom(hyperbolic n-space )( SO(1, n)
hn = {x ∈Rn+1 | x2

1 −x2
2 −x2

3 − · · · −x2
n = 1 }+

More general: G = SO(m,n) = SO(Im,n)
where Im,n = diag(1,1, . . . ,1, − 1,−1, . . . ,−1).

Example

xT I1,2x = xT

⎡
⎢⎣

1
−1
−1

⎤
⎥⎦

⎡
⎢⎣
x1

x2

x3

⎤
⎥⎦ =

[
x1 x2 x3

]
⎡
⎢⎣

x1

− x2

− x3

⎤
⎥⎦

=
[
x2

1 − x2
2 − x2

3

]
= x2

1 − x2
2 − x2

3.
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xT I1,2x = x2
1 − x2

2 − x2
3

For k×k matrix S (invertible, symmetric) and x ∈Rk:
QS(x) := xT S x (quadratic form)

QI(x) = x2
1 + x2

2 + · · ·x2
k = ∥x∥2

QIm,n(x) = x2
1+· · ·x2

m−x2
m+1−· · ·−x2

m+n
(special orthogonal group) SL(k,R) = {k×k, det = 1 }
SO(S) := {g ∈ SL(k,R) | gT S g = S }

= {g ∈SL(k,R) | QS(gx) = QS(x) }
= SO

(
QS(x)

)
.

QS is defined overQQQ if coefficients are in Q.
QS is isotropic overQQQ if ∃v∈(Qk)×, Q(v) = 0.

Exer. S′ = cT TST ⇒ SO(S′) = T−1 SO(S)T - SO(S)
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Z2 is a cocompact lattice in R2.
Replace R2 with interesting group G.

Usual way to make a lattice: let Γ = GZ.

Eg. G = SO(m,n) = SO (Im,n)⇒ G/GZ is not cpct
unless m = 0 or n = 0. (G cpct ⇒ GZ finite ⇒ boring)

More general

Assume G = SO
(
Q(x)

)
with Q(x) defined over Q.

G/GZ is cpct ! Q(x) is not isotropic over Q.

Eg. Here is a cocompact lattice in SO(1,2):
Let G = SO (7x2

1 − x2
2 − x2

3) - SO(1,2).
Then GZ is a cocompact lattice in G. (Since 7 ≠#+#.)
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More general

Assume G = SO
(
Q(x)

)
with Q(x) defined over Q.

G/GZ is cpct ! Q(x) is not isotropic over Q.

Proof (⇒⇒⇒) for SO(1,2)SO(1,2)SO(1,2).

G/GZ compact ⇒ G(Z3)× closed ⇒ $→
0 ∉ G(Z3)×.

SO(1,2) - Q SO
(
Q(x)

)
with Q(x) = x1x2 + x2

3.
⎡
⎢⎣

1/2 1/2 0
1/2 −1/2 0
0 0 1

⎤
⎥⎦

T

I1,2

⎡
⎢⎣

1/2 1/2 0
1/2 −1/2 0
0 0 1

⎤
⎥⎦ =

⎡
⎢⎣

0 1/2 0
1/2 0 0
0 0 1

⎤
⎥⎦

• at = diag(1/t, t,1)⇒ Q(atx) = Q(x)⇒ at ∈G.
• v := (1,0,0)∈Z3 & atv = (1/t,0,0)→

$→
0 .

Fact. G/GZ always has finite vol: GZ is a lattice in G.
(if Q(x) is defined over Q)
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More general

Assume G = SO
(
Q(x)

)
with Q(x) defined over Q.

G/GZ is cpct ! Q(x) is not isotropic over Q.

Proof (⇐⇐⇐)
G/GZ ↩ SL(k,R)/ SL(k,Z) : gGZ ' g SL(k,R)
Proof has 2 parts:

1 G/GZ is closed in SL(k,R)/ SL(k,Z).
(because Q(x) is defined over Q)

2 G/GZ is bounded in SL(k,R)/ SL(k,Z).
(because Q(x) is not isotropic over Q)
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More general
Assume G = SO

(
Q(x)

)
with Q(x) defined over Q.

G/GZ is cpct ! Q(x) is not isotropic over Q.

Part 1: G/GZ is closed in SL(k,R)/ SL(k,Z).

Proof.
Suppose gnγn → g with gn ∈G and γn ∈SL(k,Z).
For x ∈Zn: Q(γnx) = Q(gnγnx)→ Q(gx),

but Q(γnx)∈Q(Zn) ⊂ Z.
So Q(γnx) = Q(gx) is eventually constant:

Q(γnx) = Q(γ∞x).
Then Q(gx) = Q(γnx) = Q(γ∞x).

So Q(g · γ−1
∞ x) = Q(γ∞ · γ−1

∞ x) = Q(x).
Therefore gγ−1

∞ ∈ SO
(
Q(x)

)
= G.
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Part 1: G/GZ is closed in SL(k,R)/ SL(k,Z).
Part 2: G/GZ is bounded in SL(k,R)/ SL(k,Z).
Lemma (Mahler Compactness Criterion)
Let C ⊂ SL(k,R).
The image of C in SL(k,R)/ SL(k,Z) is bounded

⇐⇒ $→
0 is not an accumulation point of C Zn.

Proof (⇒).
Spse cnzn → $→

0 and cnγn → h. Since hZn is discrete,
and h(γ−1

n zn)≈cnzn ≈
$→
0 , we have zn = $→

0 .

Converse is an exercise (for k = 2).

Part 2 of the proof.
gnzn∈G(Zn)×⇒ Q(gnzn)=Q(zn)∈Q

(
(Zn)×

)
⊆ Z×

⇒ Q(gnzn) ̸→ 0 ⇒ gnzn ̸→ 0.
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More general

Assume G = SO
(
Q(x)

)
with Q(x) defined over Q.

G/GZ is cpct ! Q(x) is not isotropic over Q.

Eg. 7x2
1 − x2

2 − x2
3 is not isotropic over Q.

Theorem of Number Theory
Q(x) isotropic over R with at least 5 variables

⇒ Q(x) is isotropic over Q.

Generalization of fact that every positive integer is a sum of 4 squares.

So More general never provides a cocompact lattice
in SO(m,n) with m+n≥5 (unless m = 0 or n = 0).
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Cocompact lattices in SO(m,n)
Q(x) = x2

1 + x2
2 −αx2

3 −αx2
4 −αx2

5 , α =
√

2,
G = SO

(
Q(x)

)
- SO(2,3),

Γ = GZ[α] = (Z+ Zα)-points.
Then Γ is a cocompact lattice in G.

Idea of proof. σ(a+ bα) := a− bα. (Galois aut)
Gσ := SO(Qσ)= SO(x2

1+x2
2+αx2

3+αx2
4+αx2

5)- SO(5).
Map ω' (ω,ωσ) embeds Z[α]↩ R⊕R.

(1,1σ), (α,ασ) are lin indep so image discrete.
So image of Γ in G×Gσ is discrete. Cocpct lattice!

Q(x) not isotropic over Q[α]:
Q(v) = 0 ⇒ Qσ(vσ) = 0 ⇒ vσ = 0 ⇒ v = 0.

Can mod out compact group Gσ .
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Replace R2 with interesting G: simple Lie group.
SO(m,n) = {g ∈SL(k,R) | gT Im,n g = Im,n }

(lattice: GZ)
SU(m,n): change R to C and gT to g∗= gT

(lattice: GZ+Zi)
Sp(m,n): change C to H

(lattice: GZ+Zi+Zj+Zk = GHZ)
SL(n,R), SL(n,C), SL(n,H)
Sp(2n,R), Sp(2n,C), SO(n,H)
finitely many “exceptional grps” (E6, E7, E8, F4, G2)

Theorem (Borel and Harish-Chandra)
Assume G simple Lie group, defined over Q.
Then GZ is a lattice in G.
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Exercise
Assume Γ is a lattice in G.

1 Show that every finite-index subgroup of Γ is a
lattice in G.

2 Show that if Γ is a cocompact lattice in G, then
every finite-index subgroup of Γ is a cocompact
lattice in G.

3 Show that the following are equivalent:
1 G is compact.
2 Γ is finite.
3 vol(G) is finite.
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Hint: You may assume the following basic facts
about volume (for subsets of G):

vol(Eg) = vol(E) for all g ∈G.
If E is compact, then vol(E) <∞.
If U is open and nonempty, then vol(U) > 0.
If E ⊆ F , then vol(E)≤vol(F).
vol(E∪F)≤vol(E)+ vol(F).
If E and F are disjoint, and are either open or
closed, then vol(E∪F) = vol(E)+ vol(F).

Furthermore, G is locally compact. This means that
every closed ball Br(g) is compact.

Rem. Since G has a lattice, we also have vol(gE) = vol(E) for
all g ∈G. However, for some Lie groups, it is only true that
vol(E) = vol(Eg) (or only that vol(E) = vol(gE)), not both.
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Exercise
Prove (⇐) of Mahler Compactness Criterion for k=2.

Hint: Let {cn} be a sequence of points in C .
Since C ⊆ SL(2,R), there is a sequence {γn} in
SL(2,Z), such that cnγn

[ 1
0
]

is bounded. (Why?)
By passing to a subsequence, we may assume
cnγn

[ 1
0
]

converges to some v1 ∈R2.
Note that v1 ≠0. (Why?)
Now show there is a sequence {γ′n} in

[ 1 ∗
0 1
]
, such

that cnγnγ′n
[ 0

1
]

converges to some v2 ∈R2.
This implies cnγnγ′n → [v1 v2].
So {cn SL(2,Z)} has a convergent subsequence.
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Definition
An element u of SL(k,Q) is unipotent if the
following equivalent conditions are true:

1 1 is the only eigenvalue of u (in C).
2 (u− I)k = 0.
3 u is conjugate in SL(k,Q) to matrix that is

upper-triangular with only 1s on the diagonal.

Exercise
Assume G = SO

(
QS(x)

)
, with QS defined over Q.

Show that if GZ has a unipotent element other
than I, then G/GZ is not compact.

Hint: Find u∈G and v1, v2 ∈(Qk)×, such that uv1 = v1
and uv2 = v1 + v2. Also note that (uv)T S (uw) = vT S w.
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