Complex torus, its good compactifications and the ring of conditions

Conference Perspectives in Real Geometry CIRM

Askold Khovanskii

Department of Mathematics, University of Toronto

September 18-22, 2017

The **ring of conditions** \mathcal{R}_n was introduced by De Concini and Procesi in 1980-th. It is a version of intersection theory for algebraic cycles in $(\mathbb{C}^*)^n$ (actually they introduced an analogues ring for any symmetric space). De Concini and Procesi reduced basically the ring \mathcal{R}_n to the cohomology rings of smooth toric varieties using the **good compactification theorem**.

The **ring of conditions** \mathcal{R}_n was introduced by De Concini and Procesi in 1980-th. It is a version of intersection theory for algebraic cycles in $(\mathbb{C}^*)^n$ (actually they introduced an analogues ring for any symmetric space). De Concini and Procesi reduced basically the ring \mathcal{R}_n to the cohomology rings of smooth toric varieties using the **good compactification theorem**.

Recently two nice geometric descriptions of \mathcal{R}_n were found. **Tropical geometry** provides the first description. The second one can be formulated in terms of **volume function** on the cone of convex polyhedra with integral vertices in \mathbb{R}^n .

The **ring of conditions** \mathcal{R}_n was introduced by De Concini and Procesi in 1980-th. It is a version of intersection theory for algebraic cycles in $(\mathbb{C}^*)^n$ (actually they introduced an analogues ring for any symmetric space). De Concini and Procesi reduced basically the ring \mathcal{R}_n to the cohomology rings of smooth toric varieties using the **good compactification theorem**.

Recently two nice geometric descriptions of \mathcal{R}_n were found. **Tropical geometry** provides the first description. The second one can be formulated in terms of **volume function** on the cone of convex polyhedra with integral vertices in \mathbb{R}^n .

I will discuss these two descriptions and will present a new elementary proof of the good compactification theorem.

If $X_1 \sim X_2$ and $Y_1 \sim Y_2$ then for almost any $g_1, g_2 \in (\mathbb{C}^*)^n$ we have $X_1 \cap g_1 Y_1 \sim X_2 \cap g_2 Y_2$.

If $X_1 \sim X_2$ and $Y_1 \sim Y_2$ then for almost any $g_1, g_2 \in (\mathbb{C}^*)^n$ we have $X_1 \cap g_1 Y_1 \sim X_2 \cap g_2 Y_2$. If $X_1 = \sum k_i X_1^i$ and $Y_1 = \sum m_k Y_1^k$ where X_1^i and Y_1^k are subvarieties then by $X_1 \cap g_1 Y_1$ we mean the cycle $\sum k_i m_j (X_1^i \cap g_1 Y_2^j)$.

If $X_1 \sim X_2$ and $Y_1 \sim Y_2$ then for almost any $g_1, g_2 \in (\mathbb{C}^*)^n$ we have $X_1 \cap g_1 Y_1 \sim X_2 \cap g_2 Y_2$. If $X_1 = \sum k_i X_1^i$ and $Y_1 = \sum m_k Y_1^k$ where X_1^i and Y_1^k are subvarieties then by $X_1 \cap g_1 Y_1$ we mean the cycle $\sum k_i m_j (X_1^i \cap g_1 Y_2^j)$.

One can defined the product X * Y of equivalence classes X and Y as the equivalence classes of the intersection $X_1 \cap g_1 Y_1$ where X_1 and Y_1 are representatives of X and Y.

(日) (同) (三) (三) (三) (○) (○)

If $X_1 \sim X_2$ and $Y_1 \sim Y_2$ then for almost any $g_1, g_2 \in (\mathbb{C}^*)^n$ we have $X_1 \cap g_1 Y_1 \sim X_2 \cap g_2 Y_2$. If $X_1 = \sum k_i X_1^i$ and $Y_1 = \sum m_k Y_1^k$ where X_1^i and Y_1^k are subvarieties then by $X_1 \cap g_1 Y_1$ we mean the cycle $\sum k_i m_j (X_1^i \cap g_1 Y_2^j)$.

One can defined the product X * Y of equivalence classes X and Y as the equivalence classes of the intersection $X_1 \cap g_1 Y_1$ where X_1 and Y_1 are representatives of X and Y.

The ring of conditions \mathcal{R}_n is the ring of the equivalence classes of algebraic cycles with the multiplication * and with the tautological addition.

The following **good compactification theorem** was proved by De Conchini, Procesi and many others.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The following **good compactification theorem** was proved by De Conchini, Procesi and many others.

Theorem 1

One can find a good compactification for any given algebraic subvariety in $(\mathbb{C}^*)^n$.

The following **good compactification theorem** was proved by De Conchini, Procesi and many others.

Theorem 1

One can find a good compactification for any given algebraic subvariety in $(\mathbb{C}^*)^n$.

One can proof theorem 1 using the **universal Grobner basis** technic. Later I will present its elementary proof.

A vector $k \in \mathbb{Z}^n$ is **essential** for X if there is a meromorphic map $f : (\mathbb{C}, 0) \to X \subset (\mathbb{C}^*)^n$ where $f(t) = ct^k + ...$ and $c \in (\mathbb{C}^*)^n$. A ray is **essential** for X if it contains an essential vector.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A vector $k \in \mathbb{Z}^n$ is **essential** for X if there is a meromorphic map $f : (\mathbb{C}, 0) \to X \subset (\mathbb{C}^*)^n$ where $f(t) = ct^k + ...$ and $c \in (\mathbb{C}^*)^n$. A ray is **essential** for X if it contains an essential vector.

Definition 2

A finite union of rational cones $\sigma_i \subset \mathbb{R}^n$ is the **Bergman set** B(X) of X iff its set of essential rays is the set of a rational rays in B(X).

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

A vector $k \in \mathbb{Z}^n$ is essential for X if there is a meromorphic map $f : (\mathbb{C}, 0) \to X \subset (\mathbb{C}^*)^n$ where $f(t) = ct^k + ...$ and $c \in (\mathbb{C}^*)^n$. A ray is essential for X if it contains an essential vector.

Definition 2

A finite union of rational cones $\sigma_i \subset \mathbb{R}^n$ is the **Bergman set** B(X) of X iff its set of essential rays is the set of a rational rays in B(X).

Theorem 3

Any variety $X \subset {}^*)^n$ has the (unique) Bergman set B(X). If each irreducible component of X has complex dimension m then B(X) is a finite union of rational cones σ_i with dim_{$\mathbb{R}} <math>\sigma_i = m$.</sub>

Theorem 2 is equivalent to the good compactification theorem.

For a complete smooth toric variety $M^n \supset (\mathbb{C}^*)^n$ and for any k-dimensional cycle $X = \sum k_i X_i$ one can defined the cycle \overline{X} in M^n as $\sum k_i \overline{X}_i$ where \overline{X}_i is the closure in M^n of $X_i \subset (\mathbb{C}^*)^n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For a complete smooth toric variety $M^n \supset (\mathbb{C}^*)^n$ and for any k-dimensional cycle $X = \sum k_i X_i$ one can defined the cycle \overline{X} in M^n as $\sum k_i \overline{X}_i$ where \overline{X}_i is the closure in M^n of $X_i \subset (\mathbb{C}^*)^n$.

The cycle \overline{X} defines an element $\rho(\overline{X})$ in $H^{2(n-k)}(M^n, \Lambda)$ whose value on the closure \overline{O}_i of an (n-k)-dimensional orbit O_i in M^n is equal to the intersection index $\langle \overline{X}, \overline{O}_i \rangle$.

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

For a complete smooth toric variety $M^n \supset (\mathbb{C}^*)^n$ and for any k-dimensional cycle $X = \sum k_i X_i$ one can defined the cycle \overline{X} in M^n as $\sum k_i \overline{X}_i$ where \overline{X}_i is the closure in M^n of $X_i \subset (\mathbb{C}^*)^n$.

The cycle \overline{X} defines an element $\rho(\overline{X})$ in $H^{2(n-k)}(M^n, \Lambda)$ whose value on the closure \overline{O}_i of an (n-k)-dimensional orbit O_i in M^n is equal to the intersection index $\langle \overline{X}, \overline{O}_i \rangle$.

A compactification $M^n \supset (\mathbb{C}^*)^n$ is good for k -dimensional cycle $X = \sum k_i X^i$ in $(\mathbb{C}^*)^n$ if it is good compactification for each X_i .

(日) (同) (三) (三) (三) (○) (○)

For a complete smooth toric variety $M^n \supset (\mathbb{C}^*)^n$ and for any k-dimensional cycle $X = \sum k_i X_i$ one can defined the cycle \overline{X} in M^n as $\sum k_i \overline{X}_i$ where \overline{X}_i is the closure in M^n of $X_i \subset (\mathbb{C}^*)^n$.

The cycle \overline{X} defines an element $\rho(\overline{X})$ in $H^{2(n-k)}(M^n, \Lambda)$ whose value on the closure \overline{O}_i of an (n-k)-dimensional orbit O_i in M^n is equal to the intersection index $\langle \overline{X}, \overline{O}_i \rangle$.

A compactification $M^n \supset (\mathbb{C}^*)^n$ is good for k -dimensional cycle $X = \sum k_i X^i$ in $(\mathbb{C}^*)^n$ if it is good compactification for each X_i .

Theorem 4

If a smooth toric compactification M^n is good for cycles X, Y and Z where Z = X * Y, then the product $\rho(X)\rho(Y)$ in the cohomology ring $H^*(M^n, \Lambda)$ of the elements $\rho(X)$ and $\rho(Y)$ is equal to $\rho(Z)$.

To a homogeneous degree *n* polynomial *P* on a finite dimensional \mathbb{C} -linear space \mathcal{L} one can associate a graded commutative ring *encoded by P*.

To a homogeneous degree *n* polynomial *P* on a finite dimensional \mathbb{C} -linear space \mathcal{L} one can associate a graded commutative ring *encoded by P*.

(One can produce similar constructions for homogeneous polynomials on infinite dimensional spaces and for functions on free abelian groups analogues to homogeneous polynomials.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

To a homogeneous degree *n* polynomial *P* on a finite dimensional \mathbb{C} -linear space \mathcal{L} one can associate a graded commutative ring *encoded by P*.

(One can produce similar constructions for homogeneous polynomials on infinite dimensional spaces and for functions on free abelian groups analogues to homogeneous polynomials.)

Let $D(\mathcal{L})$ be the ring of linear differential operators on \mathcal{L} with constant coefficients. This ring is graded by the order of the operators. It is generated by Lie derivatives L_v along constant vector fields $v(x) \equiv v \in \mathcal{L}$ and by operators of multiplication on complex constants.

To a homogeneous degree *n* polynomial *P* on a finite dimensional \mathbb{C} -linear space \mathcal{L} one can associate a graded commutative ring *encoded by P*.

(One can produce similar constructions for homogeneous polynomials on infinite dimensional spaces and for functions on free abelian groups analogues to homogeneous polynomials.)

Let $D(\mathcal{L})$ be the ring of linear differential operators on \mathcal{L} with constant coefficients. This ring is graded by the order of the operators. It is generated by Lie derivatives L_v along constant vector fields $v(x) \equiv v \in \mathcal{L}$ and by operators of multiplication on complex constants.

The ring $D(\mathcal{L})$ is graded by the order of the operators: $D(\mathcal{L}) = D_0 \oplus D_1 \oplus \ldots$ Let $I_P \subset D(\mathcal{L})$ be a set defined by the following condition: $L \in I_P \Leftrightarrow L(P) \equiv 0$. It is easy to see that I_P is a homogeneous ideal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $I_P \subset D(\mathcal{L})$ be a set defined by the following condition: $L \in I_P \Leftrightarrow L(P) \equiv 0$. It is easy to see that I_P is a homogeneous ideal.

Definition 5

The ring encoded by P on \mathcal{L} is the factor ring $A(\mathcal{L}, P) = D(\mathcal{L})/I_P$.

Let $I_P \subset D(\mathcal{L})$ be a set defined by the following condition: $L \in I_P \Leftrightarrow L(P) \equiv 0$. It is easy to see that I_P is a homogeneous ideal.

Definition 5

The ring encoded by P on \mathcal{L} is the factor ring $A(\mathcal{L}, P) = D(\mathcal{L})/I_P$.

One can to see that: (1) $A(\mathcal{L}, P)$ is a graded ring with homogeneous components A_k where $0 \le k \le n = \deg P$; (2) $A_0 = \mathbb{C}$; 3) there is a non-degenerate pairing between A_k and A_{n-k} with values in A_0 , thus $A_k = A_{(n-k)}^*$ and $A_n \sim \mathbb{C}$.

Let M^n be a smooth projective toric variety. Let L_n be the space of virtual convex polyhedra whose support functions are linear on each cone from the fan of M^n . Let n!V be the degree n homogeneous polynomial on L_n whose value on $\Delta \in \mathcal{L}_n$ is the volume of Δ multiplied by n!.

(日) (同) (三) (三) (三) (○) (○)

Let M^n be a smooth projective toric variety. Let L_n be the space of virtual convex polyhedra whose support functions are linear on each cone from the fan of M^n . Let n!V be the degree n homogeneous polynomial on L_n whose value on $\Delta \in \mathcal{L}_n$ is the volume of Δ multiplied by n!.

Theorem 6

The intersection ring of M^n is isomorphic (up to a change of grading) to the ring $A(L_n, n!V)$.

Let M^n be a smooth projective toric variety. Let L_n be the space of virtual convex polyhedra whose support functions are linear on each cone from the fan of M^n . Let n!V be the degree n homogeneous polynomial on L_n whose value on $\Delta \in \mathcal{L}_n$ is the volume of Δ multiplied by n!.

Theorem 6

The intersection ring of M^n is isomorphic (up to a change of grading) to the ring $A(L_n, n!V)$.

Let \mathcal{L}_n be the (infinite dimensional) space of virtual convex polyhedra Δ with rational dual fans Δ^{\perp} . One can extend to the space \mathcal{L}_n the degree *n* homogeneous polynomial *n*!*V*.

Let M^n be a smooth projective toric variety. Let L_n be the space of virtual convex polyhedra whose support functions are linear on each cone from the fan of M^n . Let n!V be the degree n homogeneous polynomial on L_n whose value on $\Delta \in \mathcal{L}_n$ is the volume of Δ multiplied by n!.

Theorem 6

The intersection ring of M^n is isomorphic (up to a change of grading) to the ring $A(L_n, n!V)$.

Let \mathcal{L}_n be the (infinite dimensional) space of virtual convex polyhedra Δ with rational dual fans Δ^{\perp} . One can extend to the space \mathcal{L}_n the degree *n* homogeneous polynomial *n*!*V*.

Theorem 7

The ring \mathcal{R}_n is isomorphic to the ring $A(\mathcal{L}_n, n!V)$.

6. TROPICALIZATION OF $\mathcal{R}_n(\Lambda)$ 6.1. Λ -enriched fans

An **enriched** k-fan is a fan $\mathcal{F} \subset \mathbb{R}^n$ of some toric variety equipped with a **weight function** $c : \mathcal{F}_k \to \Lambda$ defined on the set \mathcal{F}_k of all k-dimensional cones in \mathcal{F} . The **support** $|\mathcal{F}|$ of \mathcal{F} is the union of all cones $|\sigma_i| \subset \mathbb{R}^n$ such that $\sigma_i \in \mathcal{F}_k$ and $c(\sigma_i) \neq 0$.

6. TROPICALIZATION OF $\mathcal{R}_n(\Lambda)$ 6.1. Λ -enriched fans

An **enriched** *k*-fan is a fan $\mathcal{F} \subset \mathbb{R}^n$ of some toric variety equipped with a **weight function** $c : \mathcal{F}_k \to \Lambda$ defined on the set \mathcal{F}_k of all *k*-dimensional cones in \mathcal{F} . The **support** $|\mathcal{F}|$ of \mathcal{F} is the union of all cones $|\sigma_i| \subset \mathbb{R}^n$ such that $\sigma_i \in \mathcal{F}_k$ and $c(\sigma_i) \neq 0$.

Two enriched k-fans \mathcal{F}_1 and \mathcal{F}_2 are **equivalent** if: 1) their supports $|\mathcal{F}_1|$ and $|\mathcal{F}_2|$ are equal 2) their weight functions c_1 and c_2 induce the same weight function on every common subdivision of the fans \mathcal{F}_1 and \mathcal{F}_2 .

6. TROPICALIZATION OF $\mathcal{R}_n(\Lambda)$ 6.1. Λ -enriched fans

An **enriched** k-fan is a fan $\mathcal{F} \subset \mathbb{R}^n$ of some toric variety equipped with a **weight function** $c : \mathcal{F}_k \to \Lambda$ defined on the set \mathcal{F}_k of all k-dimensional cones in \mathcal{F} . The **support** $|\mathcal{F}|$ of \mathcal{F} is the union of all cones $|\sigma_i| \subset \mathbb{R}^n$ such that $\sigma_i \in \mathcal{F}_k$ and $c(\sigma_i) \neq 0$.

Two enriched k-fans \mathcal{F}_1 and \mathcal{F}_2 are **equivalent** if: 1) their supports $|\mathcal{F}_1|$ and $|\mathcal{F}_2|$ are equal 2) their weight functions c_1 and c_2 induce the same weight function on every common subdivision of the fans \mathcal{F}_1 and \mathcal{F}_2 .

Thus an equivalence class of enriched k-fans can be considered as a linear combination of k-dimensional rational cones with nonzero coefficients in Λ defined up to subdivisions of cones.

6.2: Balance condition for Λ-enriched fans

Let \mathcal{F} be an enriched k-fan. For a cone $\sigma_i \in \mathcal{F}_k$ let $L_i^{\perp} \subset (\mathbb{R}^n)^*$ be the (n-k)-dimensional space dual to the span L_i of $\sigma_i \subset \mathbb{R}^n$. Let O be an orientation of σ_i . Denote by $e_i^{\perp}(O) \in \Lambda^{n-k} L_i^{\perp}$ the (n-k)-vector, such that:

6.2: Balance condition for Λ-enriched fans

Let \mathcal{F} be an enriched k-fan. For a cone $\sigma_i \in \mathcal{F}_k$ let $L_i^{\perp} \subset (\mathbb{R}^n)^*$ be the (n-k)-dimensional space dual to the span L_i of $\sigma_i \subset \mathbb{R}^n$. Let O be an orientation of σ_i . Denote by $e_i^{\perp}(O) \in \Lambda^{n-k} L_i^{\perp}$ the (n-k)-vector, such that:

1) the integral volume of $|e_i^{\perp}(O)|$ in L_i^{\perp} is equal to one;

2) the orientation of $e_i^{\perp}(O)$ is induced from the orientation O of σ_i and from the standard orientation of \mathbb{R}^n .

6.2: Balance condition for Λ-enriched fans

Let \mathcal{F} be an enriched k-fan. For a cone $\sigma_i \in \mathcal{F}_k$ let $L_i^{\perp} \subset (\mathbb{R}^n)^*$ be the (n-k)-dimensional space dual to the span L_i of $\sigma_i \subset \mathbb{R}^n$. Let O be an orientation of σ_i . Denote by $e_i^{\perp}(O) \in \Lambda^{n-k} L_i^{\perp}$ the (n-k)-vector, such that:

1) the integral volume of $|e_i^{\perp}(O)|$ in L_i^{\perp} is equal to one;

2) the orientation of $e_i^{\perp}(O)$ is induced from the orientation O of σ_i and from the standard orientation of \mathbb{R}^n .

An enriched k-fan \mathcal{F} satisfies **the balance condition** if for any orientation of any (k - 1)-dimensional cone $\rho \in F_{k-1}$ the relation

$$\sum e_i^\perp(O(
ho))c(\sigma_i)=0$$

holds, where c is the weight function and summation is taken over all $\sigma_i \in \mathcal{F}_k$ such that $\rho \subset \partial \sigma_i$ and $O(\rho)$ is such orientation of σ_i that the orientation of $\partial \sigma_i$ agrees with the orientation of ρ_{i}

6.3: Intersection number of complementary fans

Let \mathcal{F}_1 and a \mathcal{F}_2 be balanced k-fan and (n - k)-fan. Cones $\sigma_i^1 \in \mathcal{F}_1, \ \sigma_j^2 \in \mathcal{F}_2$ with dim $\sigma_i^1 = k$, dim $\sigma_j^2 = n - k$ are a-admissible for a vector $a \in \mathbb{R}^n$ if $\sigma_i^1 \cap (\sigma_j^2 + a) \neq \emptyset$. Let $C_{i,j}$ be the index of $\Lambda_i \bigoplus \Lambda_j$ in \mathbb{Z}^n where $\Lambda_i = L_i^1 \cap \mathbb{Z}^n$, $\Lambda_j = L_j^2 \cap \mathbb{Z}^n$ and $L_i^1, \ L_i^2$ are linear spaces spanned by $\sigma_i^1, \ \sigma_j^2$.

6.3: Intersection number of complementary fans

Let \mathcal{F}_1 and a \mathcal{F}_2 be balanced k-fan and (n - k)-fan. Cones $\sigma_i^1 \in \mathcal{F}_1, \sigma_j^2 \in \mathcal{F}_2$ with dim $\sigma_i^1 = k$, dim $\sigma_j^2 = n - k$ are a-admissible for a vector $a \in \mathbb{R}^n$ if $\sigma_i^1 \cap (\sigma_j^2 + a) \neq \emptyset$. Let $C_{i,j}$ be the index of $\Lambda_i \bigoplus \Lambda_j$ in \mathbb{Z}^n where $\Lambda_i = L_i^1 \cap \mathbb{Z}^n$, $\Lambda_j = L_j^2 \cap \mathbb{Z}^n$ and L_i^1, L_j^2 are linear spaces spanned by σ_i^1, σ_j^2 .

Definition 8

The intersection number c(0) of \mathcal{F}_1 and \mathcal{F}_2 is equal to $\sum C_{i,j}c_1(\sigma_i^1)c_2(\sigma_j^2)$, where $a \in \mathbb{R}^n$ is a generic vector and the sum is taken over all *a*-admissible couples σ_i^1, σ_i^2 .

(日) (同) (三) (三) (三) (○) (○)

6.3: Intersection number of complementary fans

Let \mathcal{F}_1 and a \mathcal{F}_2 be balanced k-fan and (n - k)-fan. Cones $\sigma_i^1 \in \mathcal{F}_1, \sigma_j^2 \in \mathcal{F}_2$ with dim $\sigma_i^1 = k$, dim $\sigma_j^2 = n - k$ are a-admissible for a vector $a \in \mathbb{R}^n$ if $\sigma_i^1 \cap (\sigma_j^2 + a) \neq \emptyset$. Let $C_{i,j}$ be the index of $\Lambda_i \bigoplus \Lambda_j$ in \mathbb{Z}^n where $\Lambda_i = L_i^1 \cap \mathbb{Z}^n$, $\Lambda_j = L_j^2 \cap \mathbb{Z}^n$ and L_i^1, L_j^2 are linear spaces spanned by σ_i^1, σ_j^2 .

Definition 8

The intersection number c(0) of \mathcal{F}_1 and \mathcal{F}_2 is equal to $\sum C_{i,j}c_1(\sigma_i^1)c_2(\sigma_j^2)$, where $a \in \mathbb{R}^n$ is a generic vector and the sum is taken over all *a*-admissible couples σ_i^1, σ_i^2 .

Definition 9

The **tropical product** $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ is a 0-fan $\mathcal{F} = \{0\}$ with the weight c(0) equal to the intersection number of the fans.

Consider a k-fan \mathcal{F}_1 and a m-fan \mathcal{F}_2 from the set $T\mathcal{R}_n(\Lambda)$ of all balanced Λ -enriched fans. Let d be n - (k + m). If d < 0 then $\mathcal{F}_1 \times \mathcal{F}_2 = 0$. If d = 0 the fan $\mathcal{F}_1 \times \mathcal{F}_2$ is already defined. Below we define the d-fan $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ for d > 0.

Consider a k-fan \mathcal{F}_1 and a m-fan \mathcal{F}_2 from the set $T\mathcal{R}_n(\Lambda)$ of all balanced Λ -enriched fans. Let d be n - (k + m). If d < 0 then $\mathcal{F}_1 \times \mathcal{F}_2 = 0$. If d = 0 the fan $\mathcal{F}_1 \times \mathcal{F}_2$ is already defined. Below we define the d-fan $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ for d > 0.

Assume that \mathcal{F}_1 and and \mathcal{F}_2 are subfans of a complete fan \mathcal{G} . Then $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ also is a subfan of \mathcal{G} . The weight $c(\delta)$ of a con δ with dim $\delta = d$ in \mathcal{G} is defined below.

Consider a k-fan \mathcal{F}_1 and a m-fan \mathcal{F}_2 from the set $T\mathcal{R}_n(\Lambda)$ of all balanced Λ -enriched fans. Let d be n - (k + m). If d < 0 then $\mathcal{F}_1 \times \mathcal{F}_2 = 0$. If d = 0 the fan $\mathcal{F}_1 \times \mathcal{F}_2$ is already defined. Below we define the d-fan $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ for d > 0.

Assume that \mathcal{F}_1 and and \mathcal{F}_2 are subfans of a complete fan \mathcal{G} . Then $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ also is a subfan of \mathcal{G} . The weight $c(\delta)$ of a con δ with dim $\delta = d$ in \mathcal{G} is defined below.

Let *L* be a space spanned by the cone δ and let $(\mathcal{F}_1)_{\delta}$ and $(\mathcal{F}_2)_{\delta}$ be the enriched subfans of \mathcal{F}_1 and of \mathcal{F}_2 consisting of all cones from these fans containing the cone δ .

Consider a k-fan \mathcal{F}_1 and a m-fan \mathcal{F}_2 from the set $T\mathcal{R}_n(\Lambda)$ of all balanced Λ -enriched fans. Let d be n - (k + m). If d < 0 then $\mathcal{F}_1 \times \mathcal{F}_2 = 0$. If d = 0 the fan $\mathcal{F}_1 \times \mathcal{F}_2$ is already defined. Below we define the d-fan $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ for d > 0.

Assume that \mathcal{F}_1 and and \mathcal{F}_2 are subfans of a complete fan \mathcal{G} . Then $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ also is a subfan of \mathcal{G} . The weight $c(\delta)$ of a con δ with dim $\delta = d$ in \mathcal{G} is defined below.

Let *L* be a space spanned by the cone δ and let $(\mathcal{F}_1)_{\delta}$ and $(\mathcal{F}_2)_{\delta}$ be the enriched subfans of \mathcal{F}_1 and of \mathcal{F}_2 consisting of all cones from these fans containing the cone δ .

Definition 10

The weight $c(\delta)$ of the cone δ in $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ is equal to the intersection number of the images under the factorization of $(\mathcal{F}_1)_{\delta}$ and $(\mathcal{F}_2)_{\delta}$ in the factor space \mathbb{R}^n/L .

Let Δ^{\perp} be the fan of a smooth complete projective toric variety M^n . Let $T\mathcal{R}_n(\Lambda, \Delta)$ be the ring of balanced Λ -enriched fans equal to Λ -linear combination of cones from the fan Δ^{\perp} .

< ロ ト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Let Δ^{\perp} be the fan of a smooth complete projective toric variety M^n . Let $T\mathcal{R}_n(\Lambda, \Delta)$ be the ring of balanced Λ -enriched fans equal to Λ -linear combination of cones from the fan Δ^{\perp} .

Theorem 11

The ring $T\mathcal{R}_n(\Lambda, \Delta)$ is isomorphic to the intersection ring $H_*(M_{\Delta}, \Lambda)$. The component of $T\mathcal{R}_n(\Lambda, \Delta)$ consisting of k-fans under this isomorphism corresponds to the component $H_{2k}(M_{\Delta}, \Lambda)$.

(日) (同) (三) (三) (三) (○) (○)

Let Δ^{\perp} be the fan of a smooth complete projective toric variety M^n . Let $T\mathcal{R}_n(\Lambda, \Delta)$ be the ring of balanced Λ -enriched fans equal to Λ -linear combination of cones from the fan Δ^{\perp} .

Theorem 11

The ring $T\mathcal{R}_n(\Lambda, \Delta)$ is isomorphic to the intersection ring $H_*(M_{\Delta}, \Lambda)$. The component of $T\mathcal{R}_n(\Lambda, \Delta)$ consisting of k-fans under this isomorphism corresponds to the component $H_{2k}(M_{\Delta}, \Lambda)$.

Theorem 12

The ring of conditions $\mathcal{R}_n(\Lambda)$ is isomorphic to the tropical ring $T\mathcal{R}_n(\Lambda)$ be the ring of balanced Λ -enriched fans.

Theorem 13

The intersection number of the hypersurfaces Γ_i in the ring \mathcal{R}_n is equal to the mixed volume of $\Delta_1, \ldots, \Delta_n$ multiplied by n!.

Theorem 13

The intersection number of the hypersurfaces Γ_i in the ring \mathcal{R}_n is equal to the mixed volume of $\Delta_1, \ldots, \Delta_n$ multiplied by n!.

Let \mathcal{F}_i be Λ -enriched (n-1)-fan dual to the Newton polyhedron Δ_i with the weight function c whose value at the (n-1) dimensional cone σ dual to a side Σ of Δ_i to the integral length of the Σ .

(日) (同) (三) (三) (三) (○) (○)

Theorem 13

The intersection number of the hypersurfaces Γ_i in the ring \mathcal{R}_n is equal to the mixed volume of $\Delta_1, \ldots, \Delta_n$ multiplied by n!.

Let \mathcal{F}_i be Λ -enriched (n-1)-fan dual to the Newton polyhedron Δ_i with the weight function c whose value at the (n-1) dimensional cone σ dual to a side Σ of Δ_i to the integral length of the Σ .

Theorem 14

The intersection number of the Λ -enriched fans \mathcal{F}_i in the ring $T\mathcal{R}_n$ is equal to the mixed volume of $\Delta_1, \ldots, \Delta_n$ multiplied by n!.

Let *I* be an ideal in the ring of Laurent polynomials on $(\mathbb{C}^*)^n$ and let *X* be the variety defined by *I*. Assume that dim X = n - k. The following **appropriate complete intersection** theorem holds.

- ロ ト - 4 回 ト - 4 □ - 4

Let *I* be an ideal in the ring of Laurent polynomials on $(\mathbb{C}^*)^n$ and let *X* be the variety defined by *I*. Assume that dim X = n - k. The following **appropriate complete intersection** theorem holds.

Theorem 15

One can find $P_1, \ldots, P_k \in I$ such that the toric compactification $M_\Delta \supset (\mathbb{C}^*)^n$ associated with the polyhedron $\Delta = \sum \Delta(P_i)$ is a good compactification for Y defined by $P_1 = \cdots = P_k = 0$.

Let *I* be an ideal in the ring of Laurent polynomials on $(\mathbb{C}^*)^n$ and let *X* be the variety defined by *I*. Assume that dim X = n - k. The following **appropriate complete intersection** theorem holds.

Theorem 15

One can find $P_1, \ldots, P_k \in I$ such that the toric compactification $M_{\Delta} \supset (\mathbb{C}^*)^n$ associated with the polyhedron $\Delta = \sum \Delta(P_i)$ is a good compactification for Y defined by $P_1 = \cdots = P_k = 0$.

Good compactification theorem follows from theorem 15. Indeed let *I* be an ideal defining $X \subset (\mathbb{C}^*)^n$ with dim X = n - k. According to theorem 2 one can choose $P_1, \ldots, P_k \in I$ and construct a good compactification for the complete intersection *Y* defined by the system $P_1 = \cdots = P_k = 0$. The same compactification is good for *X* because $X \subset Y$ and dim $X = \dim Y = n - k$.

THANK YOU

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?