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INTRODUCTION

The ring of conditions Rn was introduced by De Concini and
Procesi in 1980-th. It is a version of intersection theory for
algebraic cycles in (C∗)n (actually they introduced an analogues
ring for any symmetric space). De Concini and Procesi reduced
basically the ring Rn to the cohomology rings of smooth toric
varieties using the good compactification theorem.

Recently two nice geometric descriptions of Rn were found.
Tropical geometry provides the first description. The second one
can be formulated in terms of volume function on the cone of
convex polyhedra with integral vertices in Rn.

I will discuss these two descriptions and will present a new
elementary proof of the good compactification theorem.
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1. THE RING OF CONDITIONS Rn.

Two k-dimensional cycles X1,X2 ⊂ (C∗)n are equivalent X1 ∼ X2

if for any (n − k)-dimensional cycle Y ⊂ (C∗)n and for almost any
g ∈ (C∗)n we have < X1, gY >=< X2, gY > (here < A,B > is
the intersection index of A and B).

If X1 ∼ X2 and Y1 ∼ Y2 then for almost any g1, g2 ∈ (C∗)n we
have X1 ∩ g1Y1 ∼ X2 ∩ g2Y2. If X1 =

∑
kiX

i
1 and Y1 =

∑
mkY

k
1

where X i
1 and Y k

1 are subvarieties then by X1 ∩ g1Y1 we mean the

cycle
∑

kimj(X
i
1 ∩ g1Y

j
2).

One can defined the product X ∗Y of equivalence classes X and Y
as the equivalence classes of the intersection X1 ∩ g1Y1 where X1

and Y1 are representatives of X and Y .

The ring of conditions Rn is the ring of the equivalence classes
of algebraic cycles with the multiplication ∗ and with the
tautological addition.
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2. GOOD COMPACTIFICATION

A complete toric variety M ⊃ (C∗)n is a good compactification for
a k-dimensional algebraic variety X ⊂ (C∗)n if the closure of X in
M does not intersect orbits of the action of (C∗)n on M whose
codimension is bigger than k .

The following good compactification theorem was proved by De
Conchini, Procesi and many others.

Theorem 1

One can find a good compactification for any given algebraic
subvariety in (C∗)n.

One can proof theorem 1 using the universal Grobner basis
technic. Later I will present its elementary proof.
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3. BERGMAN SET OF X ⊂ (C∗)n

A vector k ∈ Zn is essential for X if there is a meromorphic map
f : (C, 0)→ X ⊂ (C∗)n where f (t) = ctk + . . . and c ∈ (C∗)n. A
ray is essential for X if it contains an essential vector.

Definition 2

A finite union of rational cones σi ⊂ Rn is the Bergman set B(X )
of X iff its set of essential rays is the set of a rational rays in B(X ).

Theorem 3

Any variety X ⊂ ∗)n has the (unique) Bergman set B(X ). If each
irreducible component of X has complex dimension m then B(X )
is a finite union of rational cones σi with dimR σi = m.

Theorem 2 is equivalent to the good compactification theorem.
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4. RING Rn AND COHOMOLOGY RING

.
For a complete smooth toric variety Mn ⊃ (C∗)n and for any k
-dimensional cycle X =

∑
kiXi one can defined the cycle X in Mn

as
∑

kiX i where X i is the closure in Mn of Xi ⊂ (C∗)n.

The cycle X defines an element ρ(X ) in H2(n−k)(Mn,Λ) whose
value on the closure O i of an (n− k)-dimensional orbit Oi in Mn is
equal to the intersection index < X ,O i >.

A compactification Mn ⊃ (C∗)n is good for k -dimensional cycle
X =

∑
kiX

i in (C∗)n if it is good compactification for each Xi .

Theorem 4

If a smooth toric compactification Mn is good for cycles X ,Y and
Z where Z = X ∗ Y , then the product ρ(X )ρ(Y ) in the
cohomology ring H∗(Mn,Λ) of the elements ρ(X ) and ρ(Y ) is
equal to ρ(Z ).
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5. VOLUME AND THE RING OF CONDITIONS
5.1. Ring encoded by a polynomial P

To a homogeneous degree n polynomial P on a finite dimensional
C-linear space L one can associate a graded commutative ring
encoded by P.

(One can produce similar constructions for homogeneous
polynomials on infinite dimensional spaces and for functions on
free abelian groups analogues to homogeneous polynomials.)

Let D(L) be the ring of linear differential operators on L with
constant coefficients. This ring is graded by the order of the
operators. It is generated by Lie derivatives Lv along constant
vector fields v(x) ≡ v ∈ L and by operators of multiplication on
complex constants.

The ring D(L) is graded by the order of the operators:
D(L) = D0 ⊕ D1 ⊕ . . . .
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5.2. Ring encoded by P , continuation

Let IP ⊂ D(L) be a set defined by the following condition:
L ∈ IP ⇔ L(P) ≡ 0. It is easy to see that IP is a homogeneous
ideal.

Definition 5

The ring encoded by P on L is the factor ring A(L,P) = D(L)/IP .

One can to see that:
(1) A(L,P) is a graded ring with homogeneous components Ak

where 0 ≤ k ≤ n = degP;
(2) A0 = C;
3) there is a non-degenerate pairing between Ak and An−k with
values in A0, thus Ak = A∗(n−k) and An ∼ C.
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5.3. Rings H∗(Mn), Rn and the volume function

Let Mn be a smooth projective toric variety. Let Ln be the space of
virtual convex polyhedra whose support functions are linear on
each cone from the fan of Mn. Let n!V be the degree n
homogeneous polynomial on Ln whose value on ∆ ∈ Ln is the
volume of ∆ multiplied by n!.

Theorem 6

The intersection ring of Mn is isomorphic (up to a change of
grading) to the ring A(Ln, n!V ).

Let Ln be the (infinite dimensional) space of virtual convex
polyhedra ∆ with rational dual fans ∆⊥. One can extend to the
space Ln the degree n homogeneous polynomial n!V .

Theorem 7

The ring Rn is isomorphic to the ring A(Ln, n!V ).
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6. TROPICALIZATION OF Rn(Λ)
6.1. Λ-enriched fans

An enriched k-fan is a fan F ⊂ Rn of some toric variety equipped
with a weight function c : Fk → Λ defined on the set Fk of all
k-dimensional cones in F . The support |F| of F is the union of
all cones |σi | ⊂ Rn such that σi ∈ Fk and c(σi ) 6= 0.

Two enriched k-fans F1 and F2 are equivalent if:
1) their supports |F1| and |F2| are equal
2) their weight functions c1 and c2 induce the same weight
function on every common subdivision of the fans F1 and F2.

Thus an equivalence class of enriched k-fans can be considered
as a linear combination of k-dimensional rational cones with
nonzero coefficients in Λ defined up to subdivisions of cones.
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6.2: Balance condition for Λ-enriched fans

Let F be an enriched k-fan. For a cone σi ∈ Fk let L⊥i ⊂ (Rn)∗ be
the (n − k)-dimensional space dual to the span Li of σi ⊂ Rn. Let
O be an orientation of σi . Denote by e⊥i (O) ∈ Λn−kL⊥i the
(n − k)-vector, such that:

1) the integral volume of |e⊥i (O)| in L⊥i is equal to one;

2) the orientation of e⊥i (O) is induced from the orientation O of σi
and from the standard orientation of Rn.

An enriched k-fan F satisfies the balance condition if for any
orientation of any (k − 1)-dimensional cone ρ ∈ Fk−1 the relation∑

e⊥i (O(ρ))c(σi ) = 0

holds, where c is the weight function and summation is taken over
all σi ∈ Fk such that ρ ⊂ ∂σi and O(ρ) is such orientation of σi
that the orientation of ∂σi agrees with the orientation of ρ.
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(n − k)-vector, such that:

1) the integral volume of |e⊥i (O)| in L⊥i is equal to one;

2) the orientation of e⊥i (O) is induced from the orientation O of σi
and from the standard orientation of Rn.

An enriched k-fan F satisfies the balance condition if for any
orientation of any (k − 1)-dimensional cone ρ ∈ Fk−1 the relation∑

e⊥i (O(ρ))c(σi ) = 0

holds, where c is the weight function and summation is taken over
all σi ∈ Fk such that ρ ⊂ ∂σi and O(ρ) is such orientation of σi
that the orientation of ∂σi agrees with the orientation of ρ.



6.3: Intersection number of complementary fans

Let F1 and a F2 be balanced k-fan and (n − k)-fan. Cones
σ1
i ∈ F1, σ2

j ∈ F2 with dimσ1
i = k, dimσ2

j = n − k are

a-admissible for a vector a ∈ Rn if σ1
i ∩ (σ2

j + a) 6= ∅. Let Ci ,j be

the index of Λi
⊕

Λj in Zn where Λi = L1
i ∩ Zn, Λj = L2

j ∩ Zn and

L1
i , L2

j are linear spaces spanned by σ1
i , σ2

j .

Definition 8

The intersection number c(0) of F1 and F2 is equal to∑
Ci ,jc1(σ1

i )c2(σ2
j ), where a ∈ Rn is a generic vector and the sum

is taken over all a-admissible couples σ1
i , σ

2
j .

Definition 9

The tropical product F = F1 ×F2 is a 0-fan F = {0} with the
weight c(0) equal to the intersection number of the fans.
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6.4: Ring TRn(Λ) of balanced Λ-enriched fans

Consider a k-fan F1 and a m-fan F2 from the set TRn(Λ) of all
balanced Λ-enriched fans. Let d be n − (k + m). If d < 0 then
F1 ×F2 = 0. If d = 0 the fan F1 ×F2 is already defined. Below
we define the d-fan F = F1 ×F2 for d > 0.

Assume that F1 and and F2 are subfans of a complete fan G.
Then F = F1 ×F2 also is a subfan of G. The weight c(δ) of a con
δ with dim δ = d in G is defined below.
Let L be a space spanned by the cone δ and let (F1)δ and (F2)δ
be the enriched subfans of F1 and of F2 consisting of all cones
from these fans containing the cone δ.

Definition 10

The weight c(δ) of the cone δ in F = F1 ×F2 is equal to the
intersection number of the images under the factorization of (F1)δ
and (F2)δ in the factor space Rn/L.
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6.5. Ring Rn(Λ) and homology of toric varieties

.
Let ∆⊥ be the fan of a smooth complete projective toric variety
Mn. Let TRn(Λ,∆) be the ring of balanced Λ-enriched fans equal
to Λ-linear combination of cones from the fan ∆⊥.

Theorem 11

The ring TRn(Λ,∆) is isomorphic to the intersection ring
H∗(M∆,Λ). The component of TRn(Λ,∆) consisting of k-fans
under this isomorphism corresponds to the component H2k(M∆,Λ).

Theorem 12

The ring of conditions Rn(Λ) is isomorphic to the tropical ring
TRn(Λ) be the ring of balanced Λ-enriched fans.
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7. BKK THEOREM AND THE RING OF CONDITIONS

Let {Γi} for i = 1, . . . , n be a collection of hypersurfaces in (C∗)n
defined by equations Pi = 0 where Pi are Laurent polynomials with
Newton polyhedra ∆i .

Theorem 13

The intersection number of the hypersurfaces Γi in the ring Rn is
equal to the mixed volume of ∆1, . . . ,∆n multiplied by n!.

Let Fi be Λ-enriched (n − 1)-fan dual to the Newton polyhedron
∆i with the weight function c whose value at the (n − 1)
dimensional cone σ dual to a side Σ of ∆i to the integral length of
the Σ.

Theorem 14

The intersection number of the Λ-enriched fans Fi in the ring
TRn is equal to the mixed volume of ∆1, . . . ,∆n multiplied by n!.
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8. Appropriate complete intersection

Let I be an ideal in the ring of Laurent polynomials on (C∗)n and
let X be the variety defined by I . Assume that dimX = n − k.
The following appropriate complete intersection theorem holds.

Theorem 15

One can find P1, . . . ,Pk ∈ I such that the toric compactification
M∆ ⊃ (C∗)n associated with the polyhedron ∆ =

∑
∆(Pi ) is a

good compactification for Y defined by P1 = · · · = Pk = 0.

Good compactification theorem follows from theorem 15. Indeed
let I be an ideal defining X ⊂ (C∗)n with dimX = n − k .
According to theorem 2 one can choose P1, . . . ,Pk ∈ I and
construct a good compactification for the complete intersection Y
defined by the system P1 = · · · = Pk = 0. The same
compactification is good for X because X ⊂ Y and
dimX = dimY = n − k .
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