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Introduction

Let C C CP? be a real algebraic curve with real part
RC C RP2.

16" Hilbert problem:

Determine the topological type of the pairs (RC, RP?), for smooth
C of degree d.

Harnack bound: The number of connected components of C is
<i(d-1)(d-2)+1

C is an M-curve if RC has the maximal number of components.



Introduction

A germ (C,0) of real plane curve singularity is a real plane
branch if it is analytically irreducible in (C2,0).
It has a Newton Puiseux parametrization:

{x(t) = t"

Yisn nit',  with n; € R.
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Introduction

Local version of 16" Hilbert problem

Let (C,0) € (C?,0) be a real algebraic plane curve singularity.
We denote by RC its real part.

Let B be a Milnor ball for (C,0).

A smoothing of C is a real analytic family C; with Gy = C and
C: N B smooth and transversal to 9B, for 0 < t < e.

Problem: Determine the possible topological types of smoothings
(RC:,RB).



Introduction

- The number of non-compact components of a smoothing is
equal to the number rg of real branches of C.

- The compact components of the smoothing are called ovals.
Local Harnack bound: the number of ovals of a smoothing of

(C,0)is <

(W(C) = r+1)if > 1,
((C)—r+3)if m=0,
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where:

- p(C) is the Milnor number of C.
- r is the number of branches of C viewed in (C2,0).



Introduction

Definition: C; is a M-smoothing if the number of ovals is equal
to the local Harnack bound.

» Risler proved that if (C,0) is a real branch a M-smoothing of
C exists and it can be constructed by the blowing up
construction.

» M-smoothings do not always exists (Kharlamov, Orevkov,
Shustin).

» Other classes of M-smoothings of real plane curves singularities
were obtained by Kharlamov, Risler, Shustin and Chevalier.



Introduction

- Risler's motivation was to study to which extent Mikhalkin's
rigidity property of Harnack curves in toric surfaces, generalizes to
the local case.



Some definitions: Positions of curves and lines in P2

- C is in maximal position with respect to a line L if there
exists an arc a C RC such that

anL=CnL, transversally.

- C has good oscillation with respect to L if in addition the points
in a N L appear in the same order on the arc a and on the line L.

- C is in maximal position with respect to lines Ly, Ly,..., L, if
there exists disjoint arcs ay,...,a, contained in the same
component of RC such that

a;NL=CnL;transversally, for i =1,...,r.



Harnack curves in toric surfaces

Let © be a two dimensional integral polytope in R220.
Z(©) is the toric surface defined by © and RZ(©) is its real part.

The moment map: (R*)? — int(©) induces a stratified
diffeomorphism
RZ(©) — | | n(©)/ ~,
peS
where S 2 Z3 is the group of symmetries of (R*)?, and ~ is a
natural identification between the edges.



Harnack curves in toric surfaces

- Let F € R[x, y] with Newton polygon ©.
- We denote by Cr the real alg. curve defined by F =0 in Z(©).

- Cr does not pass through the intersection points of the toric
coordinate axes.

Definition (Mikhalkin). Cr is a simple Harnack curve in Z(©) if
it is a M-curve and it is cyclically in maximal position with
good oscillation with respect to the toric coordinate lines of Z(©).



Harnack curves in toric surfaces

Theorem. (Mikhalkin) If C is a Harnack curve in Z(©) then the
topological type of the triple:

(RZ(©),RC,(R")?)

is uniquely determined by ©.
Remarks.

- Harnack curves in Z(©) can be constructed by patchworking.
- There is only one component meeting the coordinate axes.
- There are #(int(©) N Z?) other components which are ovals.



Harnack curves in toric surfaces

Example: O is the triangle with vertices (0,0) (3,0) and (0, 4).

By using the moment map the real part of a Harnack curve
Cr C Z(©) can be represented in the figure:




Harnack smoothings

Question: Does Mikhalkin's Theorem generalize to Harnack
smoothings?

Definition. A Harnack smoothing is a M-smoothing such that it
has maximal position with respect to the coordinate axes.

Example. A Harnack smoothing of the cusp y? — x3 = 0.

x=0
(x.f), (v.H),
y:
o —/
fol



Semi-quasi-homogeneous deformations and Viro method

Let f(x,y) = a;x'y/ € R{x,y} with local Newton polygon of
the form:

fr = [15_1(yP — 6kx9) is quasi-homogeneous (gcd(p, g) = 1).
The 0 € C are called the peripheral roots of f.



Semi-quasi-homogeneous deformations and Viro method

Set w(i,j) = nm — ni — mj for (i,j) € A and A := graph (w).

A :=graph(w)

Definition. F;(x, y) defines a semi-quasi-homogeneous
deformation of f(x,y) if Fo(x,y) = f(x,y) and the local Newton
polyhedron of F = Fi(x,y) € R[t]{x,y} is A+ R,

Notice that Fj is quasi-homogeneous in t,x, y



Semi-quasi-homogeneous deformations and Viro method

Theorem. (Viro) Let F = F;(x,y) define a sqgh-deformation of
Fo(x,y) as above. If the polynomial

is real Newton non-degenerate then F;(x, y) defines a
smoothing of Fy(x,y). The topological type of the smoothing C; is
determined by the topological type of real part of the curve Ca,
defined by (F3)e=1 =0, in RZ(A).



Semi-quasi-homogeneous deformations and Viro method

Real Newton non-degenerate implies that the real part of the
curve Cp is smooth and transversal to the toric coordinate axes.

Example. From a Harnack curve on the toric surface to a
sqh-smoothing of y3 — x?

N
4




Semi-quasi-homogeneous deformations and Viro method

Proposition 1. Let f(x,y) € R{x, y} as above define a real germ
(C,0) C (C2,0). Assume that all its peripheral roots are real and of
the same sign. Then:

- there exists a Harnack sqh-smoothing C;.

- the topological type of triple (RB,RC;, B N (R*)?) is unique.



Semi-quasi-homogeneous deformations and Viro patchworking

Remarks.

- The existence of this Harnack sqh-smoothing is obtained using
Viro patchworking.

- The unicity of the topological type is based on Mikhalkin's result.



Semi-quasi-homogeneous deformations and Viro method

Question. Does this result generalize to real plane branches?

We cannot apply Viro method since they are not Newton
non-degenerate in general.

Idea: Improve the singularity with a sequence of toric maps.



A sequence of toric maps

Example:
(C,0) the singularity defined by f := (y? — x3)3 — x10
Consider the monomial map

x = ulx?,
_ 1.3
y = uxg.

This map is a chart of a proper toric map, which is a composition
of point blow ups, which appears in the process of resolution of

(C,0).



A sequence of toric maps

We have that:

fom = u?x1 ((1 — u1)3 — uloxzo)

The divisor of f o1 has a exceptional term defined by: ufxi® =

On this chart only the component x; = 0, intersects the strict
transform C(1) of the branch C at the point u; = 1.

Set new coordinates (x1,y1 := 1 — uy). The strict transform
C(M), defined by

FW(xa,1—y1) =y —x¥(1 - yn)* =0,

is Newton non-degenerate with respect to (xi, y1).

0.



Constructing msqh-deformations

Idea. Construct a sqh-smoothing of C(1) and blow it down to get a
deformation G, of C.

Consider a sqh-deformation of C(!) of the form:

2 4
Gy, = Y13 —xi(L—y1)
+a00td + aroyaty + a0y t? + avixiyits + aroxats,
for suitable a; ; € R.

Problem: Blowing down this deformation we get meromorphic
functions in general.



Constructing msqh-deformations

Instead, we build functions M; ; € R[x, y], for (i,j) € (A1 NZ?)\ T4
such that:

Fo = f(x,y) + Y aity" M € R[] {x, v}

defines a deformation G, of (C,0) and:

» F: and f have the same local Newton polygon.

» F, is Newton non-degenerate for 0 # t; < 1.

> Ft(ll)(xl, 1 — y1) defines a sqgh-smoothing Ct(ll) of the strict
transform C().



Constructing msqh-deformations

In the previous example, set z = y? — x3.

Notice that the strict transform of z by 7 defines one of the local
coordinates y;. Then:

(r;s) 1(0,0) | (0.1) 1 (0,2) | (1,1) | (1,0)
M; s x9 x%z | X322 | XPyz | X8y

and
Fi, = ao.oMoot? Mo 1t} Moot +a1 1My 1t M ot}
t; = a0,0Mo,ot] +a1,0Mo,1ty +a02Mo 2ty +a1,1M11t1+ao,1M1otg.

for certain a;; € R.



Multi-Harnack smoothings

Let C be a real branch with two characteristic pairs.
Definition. We say that G, ¢, is a multi-Harnack smoothing of
Cif
» Ci, 1, is a Harnack smoothing of C with respect to the
coordinates axes (x,y) for 0 < tp < t; < 1.
> Ct(ll) ; C(l)0 +, is a Harnack smoothing of the strict
transform C(l) with respect to the coordinate axes (x1, y1).

» The charts of Cy, +, and C;, have regular intersection.



Multi-Harnack smoothings

If C 1, is @ multi-Harnack smoothing of C then:

> C,fll) is a Harnack smoothing of C() w.r.t. (x1, y1).

» C;, is Newton non-degenerate with peripheral roots of the

same sign.
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Multi-Harnack smoothings

» Regular intersection means that the charts of C;, and Gy,
glue up providing the maximal number of ovals.




Multi-Harnack smoothings

Theorem 2.

If C¢ is a multi-Harnack smoothing then the topological type of the
triples

(RB,RC;, BN (R*)?),

is determined by the embedded topological type of the branch
(C,0) C (C%,0).



A more general construction of M-smoothings

Theorem 3.

Consider a msqh-smoothing Cy, +, of a real branch (C,0), with two
characteristic pairs. Assume that:

- Ct(ll) is a sgh M-smoothing of C(1).

- Gt Is @ sqh M-smoothing of Cy,.

- Ct(l1 is in maximal position w.r.t. the exceptional divisor x; = 0.

- The charts of Cyy ¢, and Cy, have regular intersection.

Then, Cy, ¢, defines a M-smoothing of (C,0), for 0 < ty < t; < 1.



Multi-Harnack smoothings

Remarks.
- Theorem 2 and 3 can be stated for arbitrary real plane branches.

- Unicity of the topological type in Theorem 2 is deduced from
Mikhalkin theorem, combined with explicit form of the toric maps
appearing in the process.

- We build the deformations in terms of monomials in polynomials
X, Y =Y0, Y155 Vg1 S R[X7y] such that

(Xu f)O) (y()v f)07 DRI ()/g—l, f)O

define the minimal sequence of generators of the semigroup of the
branch C.

- The asymptotic size of the ovals in msgh-M-smoothings provides
also the generators of this semigroup.



Harnack smoothings

Remark. We can build with this method Harnack M-msgh
smoothings which are not multi-Harnack.

Example: Let f = (y? — x3)" — x?4.

We can construct geometrically a degree seven M-curve with
Newton polygon with vertices (0,7), (0,6) and (0,0), whose real
part is represented in the figure.

We build from it a sqh-smoothing of C(1).
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Harnack smoothings

We obtain the following after blowing down and taking a Harnack
smoothing.




Thanks!



