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Introduction

Let C ⊂ CP2 be a real algebraic curve with real part
RC ⊂ RP2.

16th Hilbert problem:

Determine the topological type of the pairs (RC ,RP2), for smooth
C of degree d .

Harnack bound: The number of connected components of C is
≤ 1

2(d − 1)(d − 2) + 1.

C is an M-curve if RC has the maximal number of components.



Introduction

A germ (C , 0) of real plane curve singularity is a real plane
branch if it is analytically irreducible in (C2, 0).
It has a Newton Puiseux parametrization:{

x(t) = tn,
y(t) =

∑
i≥n ηi t

i , with ηi ∈ R.



Introduction

Local version of 16th Hilbert problem

Let (C , 0) ⊂ (C2, 0) be a real algebraic plane curve singularity.
We denote by RC its real part.

Let B be a Milnor ball for (C , 0).

A smoothing of C is a real analytic family Ct with C0 = C and
Ct ∩ B smooth and transversal to ∂B , for 0 < t � ε.

Problem: Determine the possible topological types of smoothings
(RCt ,RB).



Introduction

- The number of non-compact components of a smoothing is
equal to the number rR of real branches of C .

- The compact components of the smoothing are called ovals.

Local Harnack bound: the number of ovals of a smoothing of
(C , 0) is ≤ { 1

2(µ(C )− r + 1) if rR ≥ 1,
1
2(µ(C )− r + 3) if rR = 0,

where:

- µ(C ) is the Milnor number of C .
- r is the number of branches of C viewed in (C2, 0).



Introduction

Definition: Ct is a M-smoothing if the number of ovals is equal
to the local Harnack bound.

I Risler proved that if (C , 0) is a real branch a M-smoothing of
C exists and it can be constructed by the blowing up
construction.

I M-smoothings do not always exists (Kharlamov, Orevkov,
Shustin).

I Other classes of M-smoothings of real plane curves singularities
were obtained by Kharlamov, Risler, Shustin and Chevalier.



Introduction

- Risler’s motivation was to study to which extent Mikhalkin’s
rigidity property of Harnack curves in toric surfaces, generalizes to
the local case.



Some definitions: Positions of curves and lines in P2

- C is in maximal position with respect to a line L if there
exists an arc a ⊂ RC such that

a ∩ L = C ∩ L, transversally.

- C has good oscillation with respect to L if in addition the points
in a ∩ L appear in the same order on the arc a and on the line L.

- C is in maximal position with respect to lines L1, L2, . . . , Lr if
there exists disjoint arcs a1, . . . , ar contained in the same
component of RC such that

ai ∩ L = C ∩ Li transversally, for i = 1, . . . , r .



Harnack curves in toric surfaces

Let Θ be a two dimensional integral polytope in R2
≥0.

Z (Θ) is the toric surface defined by Θ and RZ (Θ) is its real part.

The moment map: (R∗)2 → int(Θ) induces a stratified
diffeomorphism

RZ (Θ) −→
⊔
ρ∈S

ρ(Θ)/ ∼,

where S ∼= Z2
2 is the group of symmetries of (R∗)2, and ∼ is a

natural identification between the edges.



Harnack curves in toric surfaces

- Let F ∈ R[x , y ] with Newton polygon Θ.

- We denote by CF the real alg. curve defined by F = 0 in Z (Θ).

- CF does not pass through the intersection points of the toric
coordinate axes.

Definition (Mikhalkin). CF is a simple Harnack curve in Z (Θ) if
it is a M-curve and it is cyclically in maximal position with
good oscillation with respect to the toric coordinate lines of Z (Θ).



Harnack curves in toric surfaces

Theorem. (Mikhalkin) If C is a Harnack curve in Z (Θ) then the
topological type of the triple:

(RZ (Θ),RC , (R∗)2)

is uniquely determined by Θ.

Remarks.

- Harnack curves in Z (Θ) can be constructed by patchworking.
- There is only one component meeting the coordinate axes.
- There are #(int(Θ) ∩ Z2) other components which are ovals.



Harnack curves in toric surfaces

Example: Θ is the triangle with vertices (0, 0) (3, 0) and (0, 4).

By using the moment map the real part of a Harnack curve
CF ⊂ Z (Θ) can be represented in the figure:



Harnack smoothings

Question: Does Mikhalkin’s Theorem generalize to Harnack
smoothings?

Definition. A Harnack smoothing is a M-smoothing such that it
has maximal position with respect to the coordinate axes.

Example. A Harnack smoothing of the cusp y2 − x3 = 0.

}

0
(x,f)

}
(y,f)

0

x=0

y=0
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Semi-quasi-homogeneous deformations and Viro method

Let f (x , y) =
∑

aijx
iy j ∈ R{x , y} with local Newton polygon of

the form:

fΓ =
∏e

k=1(yp − θkxq) is quasi-homogeneous (gcd(p, q) = 1).
The θk ∈ C are called the peripheral roots of f .



Semi-quasi-homogeneous deformations and Viro method

Set w(i , j) = nm − ni −mj for (i , j) ∈ ∆ and ∆̂ := graph (w).

Definition. Ft(x , y) defines a semi-quasi-homogeneous
deformation of f (x , y) if F0(x , y) = f (x , y) and the local Newton
polyhedron of F = Ft(x , y) ∈ R[t]{x , y} is ∆̂ + R3

≥0.

Notice that F∆̂ is quasi-homogeneous in t, x , y



Semi-quasi-homogeneous deformations and Viro method

Theorem. (Viro) Let F = Ft(x , y) define a sqh-deformation of
F0(x , y) as above. If the polynomial

(F∆̂)t=1

is real Newton non-degenerate then Ft(x , y) defines a
smoothing of F0(x , y). The topological type of the smoothing Ct is
determined by the topological type of real part of the curve C∆,
defined by (F∆̂)t=1 = 0, in RZ (∆).



Semi-quasi-homogeneous deformations and Viro method

Real Newton non-degenerate implies that the real part of the
curve C∆ is smooth and transversal to the toric coordinate axes.

Example. From a Harnack curve on the toric surface to a
sqh-smoothing of y3 − x2



Semi-quasi-homogeneous deformations and Viro method

Proposition 1. Let f (x , y) ∈ R{x , y} as above define a real germ
(C , 0) ⊂ (C2, 0). Assume that all its peripheral roots are real and of
the same sign. Then:

- there exists a Harnack sqh-smoothing Ct .

- the topological type of triple (RB,RCt ,B ∩ (R∗)2) is unique.



Semi-quasi-homogeneous deformations and Viro patchworking

Remarks.

- The existence of this Harnack sqh-smoothing is obtained using
Viro patchworking.

- The unicity of the topological type is based on Mikhalkin’s result.



Semi-quasi-homogeneous deformations and Viro method

Question. Does this result generalize to real plane branches?

We cannot apply Viro method since they are not Newton
non-degenerate in general.

Idea: Improve the singularity with a sequence of toric maps.



A sequence of toric maps

Example:
(C , 0) the singularity defined by f := (y2 − x3)3 − x10

Consider the monomial map

x = u1
1x

2
1 ,

y = u1
1x

3
1 .

This map is a chart of a proper toric map, which is a composition
of point blow ups, which appears in the process of resolution of
(C , 0).



A sequence of toric maps

We have that:

f ◦ π1 = u6
1x

18
1
(
(1− u1)3 − u10

1 x20
1
)
.

The divisor of f ◦ π1 has a exceptional term defined by: u6
1x

18
1 = 0.

On this chart only the component x1 = 0, intersects the strict
transform C (1) of the branch C at the point u1 = 1.

Set new coordinates (x1, y1 := 1− u1). The strict transform
C (1), defined by

f (1)(x1, 1− y1) = y3
1 − x2

1 (1− y1)4 = 0,

is Newton non-degenerate with respect to (x1, y1).



Constructing msqh-deformations

Idea. Construct a sqh-smoothing of C (1) and blow it down to get a
deformation Ct1 of C .

Consider a sqh-deformation of C (1) of the form:

Gt1 = y3
1 − x2

1 (1− y1)4

+a0,0t
6
1 + a1,0y1t

4
1 + a0,2y

2
1 t

2
1 + a1,1x1y1t1 + a1,0x1t

3
1 ,

for suitable ai ,j ∈ R.

Problem: Blowing down this deformation we get meromorphic
functions in general.



Constructing msqh-deformations

Instead, we build functions Mi ,j ∈ R[x , y ], for (i , j) ∈ (∆1 ∩Z2) \Γ1
such that:

Ft1 := f (x , y) +
∑

ai ,j t
w1(i ,j)
1 Mi ,j ∈ R[t]{x , y}

defines a deformation Ct1 of (C , 0) and:

I Ft1 and f have the same local Newton polygon.
I Ft1 is Newton non-degenerate for 0 6= t1 � 1.

I F
(1)
t1 (x1, 1− y1) defines a sqh-smoothing C

(1)
t1 of the strict

transform C (1).



Constructing msqh-deformations

In the previous example, set z = y2 − x3.
Notice that the strict transform of z by π defines one of the local
coordinates y1. Then:

(r , s) (0, 0) (0, 1) (0, 2) (1, 1) (1, 0)

Mr ,s x9 x6z x3z2 x5yz x8y

and

Ft1 = a0,0M0,0t
6
1 +a1,0M0,1t

4
1 +a0,2M0,2t

2
1 +a1,1M1,1t1 +a0,1M1,0t

3
1 .

for certain ai ,j ∈ R.



Multi-Harnack smoothings

Let C be a real branch with two characteristic pairs.

Definition. We say that Ct0,t1 is a multi-Harnack smoothing of
C if

I Ct0,t1 is a Harnack smoothing of C with respect to the
coordinates axes (x , y) for 0 < t0 � t1 � 1.

I C
(1)
t1 := C

(1)
t0=0,t1 is a Harnack smoothing of the strict

transform C (1) with respect to the coordinate axes (x1, y1).
I The charts of Ct0,t1 and Ct1 have regular intersection.



Multi-Harnack smoothings

If Ct0,t1 is a multi-Harnack smoothing of C then:

I C
(1)
t1 is a Harnack smoothing of C (1) w.r.t. (x1, y1).

I Ct1 is Newton non-degenerate with peripheral roots of the
same sign.



Multi-Harnack smoothings

I Regular intersection means that the charts of Ct1 and Ct0,t1

glue up providing the maximal number of ovals.



Multi-Harnack smoothings

Theorem 2.

If Ct is a multi-Harnack smoothing then the topological type of the
triples

(RB̄,RCt ,B ∩ (R∗)2),

is determined by the embedded topological type of the branch
(C , 0) ⊂ (C2, 0).



A more general construction of M-smoothings

Theorem 3.

Consider a msqh-smoothing Ct0,t1 of a real branch (C , 0), with two
characteristic pairs. Assume that:

- C (1)
t1 is a sqh M-smoothing of C (1).

- Ct0,t1 is a sqh M-smoothing of Ct1 .
- C (1)

t1 is in maximal position w.r.t. the exceptional divisor x1 = 0.
- The charts of Ct0,t1 and Ct1 have regular intersection.

Then, Ct0,t1 defines a M-smoothing of (C , 0), for 0 < t0 � t1 � 1.



Multi-Harnack smoothings

Remarks.

- Theorem 2 and 3 can be stated for arbitrary real plane branches.

- Unicity of the topological type in Theorem 2 is deduced from
Mikhalkin theorem, combined with explicit form of the toric maps
appearing in the process.

- We build the deformations in terms of monomials in polynomials
x , y = y0, y1, . . . , yg−1 ∈ R[x , y ] such that

(x , f )0, (y0, f )0, . . . , (yg−1, f )0

define the minimal sequence of generators of the semigroup of the
branch C .

- The asymptotic size of the ovals in msqh-M-smoothings provides
also the generators of this semigroup.



Harnack smoothings

Remark. We can build with this method Harnack M-msqh
smoothings which are not multi-Harnack.

Example: Let f = (y2 − x3)7 − x24.

We can construct geometrically a degree seven M-curve with
Newton polygon with vertices (0, 7), (0, 6) and (0, 0), whose real
part is represented in the figure.

We build from it a sqh-smoothing of C (1).



Harnack smoothings

We obtain the following after blowing down and taking a Harnack
smoothing.



Thanks!


