Positive Opetopes with Contractions form a Test Category

Marek Zawadowski

University of Warsaw

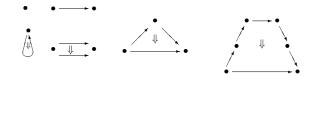
Categories in Homotopy Theory and Rewriting CIRM Luminy, Marseille September 29, 2017

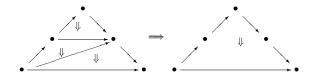
Plan of the talk

- Opetopes informal introduction
- Overview of (definitions) opetopic sets
- **Oppe**_{*i*} category of positive opetopic sets with contractions
- Main Theorem (and what it takes to prove it)
- **③** Informal description of the product $I \times P$
- Formal description of $I \times P$ in $\widehat{\mathbf{pOpe}}_{\iota}$

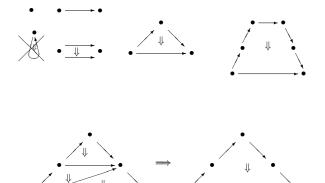
Opetopes - informal introduction

Opetopes are shapes like these...





Opetopes are shapes like these...



Morphisms of opetopes send faces to faces of the same dimension preserving domains and codomains (face maps only) **Ope**:

$$3 \xrightarrow{6} 2$$
 $3 \xrightarrow{2} 5$ $3 \xrightarrow{4} 1$

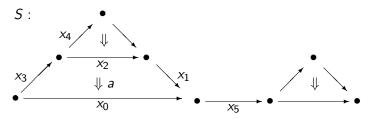
Contraction morphisms of opetopes send faces to faces of **at most** the same dimension preserving domains and codomains (some degeneracies allowed) \mathbf{pOpe}_{ι} :

OpetopicSets		
Type of definition	Authors	
Algebraic	$Baez - Dolan 1997^*,$	
	Hermida – Makkai – Power 2001, Cheng 2003	
	Szawiel – MZ 2015, Fiore – Saville 2017	
Categorical	Burroni 1994, MZ 2009	
Combinatorial	Palm 2003, Cheng 2003, MZ 2007	
Category of Opetopes		
BD 1997*, HMP 2001, TP 2003, MZ 2007		
Sets of Opetopes		
Leinster 2003, Ch 2003, Kock – Joyal – Batanin – Mascari 2007		
Opetopic cardinals		
MZ 2007		

Positive opetopes have easier combinatorics and from now on I will talk only about **positive** opetopes and positive opetopic sets, positive opetopic sets with contractions, and the like.

Positive Opetopic Cardinals primitive notions

An example of a positive 2-dimensional opetopic cardinal



Primitive notions:

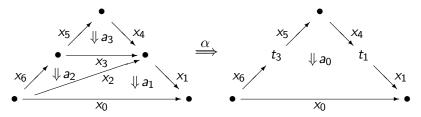
- γ the codomain operation: $\gamma(a) = x_0$
- δ the domain operation: δ(a) = {x₁, x₂, x₃} (positive = non-empty set)

Derived notions:

• <- - lower order:
$$x_3 < x_2 < x_1 < x_5$$
; $(\gamma(x_3) \in \delta(x_2))$
• <+ - upper order: $x_4 < x_2 < x_1$; $(x_2 \in \delta(a) \text{ and } \gamma(a) = x_0)$

Positive Opetopic Cardinals globularity axiom

An example of a 3-dimensional positive opetope



$$\begin{aligned} \gamma(\alpha) &= a_0, \quad \delta(\alpha) = \{a_1, a_2, a_3\} \\ \gamma\gamma(\alpha) &= x_0, \qquad \delta\gamma(\alpha) = \{x_1, x_4, x_5, x_6\} \\ \gamma\delta(\alpha) &= \{x_0, x_2, x_3\}, \qquad \delta\delta(\alpha) = \{x_1, x_2, x_3, x_4, x_5, x_6\} \end{aligned}$$

Globularity. For any face α of dimension ≥ 2

 $\gamma\gamma(\alpha) = \gamma\delta(\alpha) - \delta\delta(\alpha), \qquad \qquad \delta\gamma(\alpha) = \delta\delta(\alpha) - \gamma\delta(\alpha).$

Positive Opetopic Cardinals

A family of sets $S = \{S_k\}_{k \in \omega}$ (almost all empty), S_k - faces of dimension k, together with operations γ , δ and relations $<^+$ and $<^-$ is a positive opetopic cardinal iff it satisfies **Globularity.** For any face $\alpha \in S_{\geq 2}$

 $\gamma\gamma(\alpha) = \gamma\delta(\alpha) - \delta\delta(\alpha), \qquad \qquad \delta\gamma(\alpha) = \delta\delta(\alpha) - \gamma\delta(\alpha).$

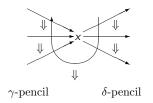
Strictness. The relation $<^+$ on each set S_k is a strict order (transitive irreflexive). The relation $<^+$ on S_0 is a linear order.

Disjointness. $<^+ \cap <^- = \emptyset$.

Pencil linearity. The sets of cells with common codomain $(\gamma$ -pencil) and the sets of cells that have the same distinguished cell in the domain $(\delta$ -pencil) are linearly ordered by $<^+$.

Positive Opetopic Cardinals order in pencils

Pencil order \prec_x over face x



The size of a positive opetopic cardinal S is defined as an infinite sequence of natural numbers

$$size(S) = \{size(S)_k\}_{k \in \omega} = \{|S_k - \delta(S_{k+1})|\}_{k \in \omega}$$

(almost all equal 0). A positive opetopic cardinal S is a *positive opetope* iff $size(S)_k \leq 1$ for $k \in \omega$. *Example.*



Category of Positive Opetopes

A morphism of positive opetopic cardinals $f : T \to S$ is a family of functions $f_k : T_k \to S_k$, for $k \in \omega$, that commutes with γ 's and δ 's, i.e. for any $a \in T_{\geq 1}$,

$$\gamma(f(a)) = f(\gamma(a)) \text{ and } f_a : \delta(a), \longrightarrow \delta(f(a))$$

is a bijection, where f_a is the restriction of f to $\delta(a)$.

Thus we have a category **pOpe** of positive opetopes and the above morphism (face maps).

We have an embedding functor

```
(-)^*: \mathsf{pOpe} \longrightarrow \omega\mathsf{Cat}
```

 $S\mapsto S^*$

k-cells in S^* are sub-opetopic cardinals T of S with $dim(T) \le k$.

This embedding is full on isomorphisms and hence we can think of morphisms in **pOpe** as some ω -functors, those that send generators to generators.

The category \mathbf{pOpe}_{ι} of positive opetopes with contractions is the category whose objects are positive opetopes and whose morphisms are ω -functors that send generators to either generators or (iterated) identities on generators.

Theorem

The category \mathbf{pOpe}_{ι} of positive operopes with contractions is a test category.

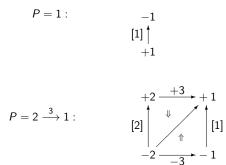
Since \mathbf{pOpe}_{ι} has terminal object it suffice to show that the one dimensional opetope *I*:

is locally aspherical. It is enough to show that for any positive opetope P the product $I \times P$ is aspherical (see G. Maltsiniotis book, La théorie de l'homotopie de Grothendieck, for much more). I will show that

$$I \times P = \bigcup_{\vec{x} \in \mathsf{Flags}(P)} P^{\vec{x}}$$

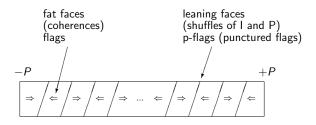
where **Flags**(*P*) is the set of flags in *P* and $P^{\vec{x}}$ is an opetope.

Some examples of products

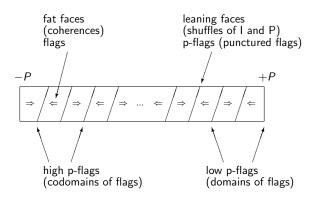


General picture of $I \times P$:

General picture of $I \times P$:



General picture of $I \times P$:



We have an embedding $\kappa : \mathbf{pOpe} \longrightarrow \mathbf{pOpe}_{\iota}$ and hence a left Kan extension

 $\kappa_{!}: \widehat{\mathsf{pOpe}} \longrightarrow \widehat{\mathsf{pOpe}}_{\iota}$

We shall describe the object Cyl(P) in \overrightarrow{pOpe} that is aspherical already in \overrightarrow{pOpe} so that $\kappa_{!}(Cyl(P))$ is the product of I and P in $\overrightarrow{pOpe}_{\iota}$.

Formal definition of Cyl(P)

The notion of a flag is due to T. Palm (2003). A *flag* in P is a sequence of faces in P

$$\vec{x} = \begin{bmatrix} x_k \\ x_{k-1} \\ \dots \\ x_0 \end{bmatrix}$$

so that x_i is a face of dimension i and $x_i \in \delta(x_{i+1}) \cup \gamma(x_{i+1})$, i = 0, ..., k - 1. A flag is maximal if x_k is the top face of P, i.e. dim(P) = k. Sign of flag

$$sgn(x_k, x_{k-1}, \dots, x_1) = \begin{cases} 1 & \text{if } k = 1 \\ sgn(x_{k-1}, \dots, x_0) & \text{if } x_{k-1} = \gamma(x_k) \\ (-1) \cdot sgn(x_{k-1}, \dots, x_0) & \text{if } x_{k-1} \in \delta(x_k) \end{cases}$$

Flags_P - is the set of maximal flags in P.

Flag order \lhd on **Flags**_{*P*}, the set of maximal flags in *P*. Let $\vec{x}, \vec{y} \in \mathbf{Flags}_P$ be two different flags. Let $k = \min\{j | x_j \neq y_j\}$. We put $\vec{x} \lhd \vec{y}$ iff

1
$$k = 0$$
 and $y_0 <^+ x_0$,

3 or
$$k > 0$$
, sgn $(x_{k-1}, \ldots, x_l) = 1$ and $x_k \prec_{x_{k-1}} y_k$

 $or k > 0, \ \operatorname{sgn}(x_{k-1}, \ldots, x_l) = -1 \text{ and } \operatorname{and} y_k \prec_{x_{k-1}}^{op} x_k.$

Clearly, the flag order is a strict and linear. Its reflexive closure will be denoted by \trianglelefteq .

Formal definition of **Cyl**(*P*) p-flags

Lemma

Two consecutive flags differ by exactly one face.

'Intersection' of two consecutive flags is a p-flag (plug 0 - a dummy face) in place flags differ. They are of form **high p-flag** (\vec{x}_{high}) **low p-flag** (\vec{x}_{low})

$$\begin{array}{c} x_k \\ 0 \\ x_{k-2} \\ \dots \\ x_0 \end{array}$$

$$\begin{array}{c} x_k \\ \gamma(x_k) \\ \cdots \\ \gamma^{(l+2)}(x_k) \\ t \\ 0 \\ x_{l-1} \\ \cdots \\ x_0 \end{array}$$

where $t \in \delta \gamma^{(l+2)}(x_k)$.

20 / 36

Faces in the opetopic set Cyl(P) in pOpe:

- Flat faces $\{-\} \times P$ and $\{+\} \times P$;
- 2 All flags of all faces of P;
- \bigcirc All p-flags of all faces in P.

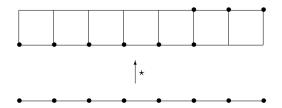
The dimension of a face -p or +p is the dimension of p. The dimension of a flag or p-flag is the number of non-zero faces in the sequence. **Cyl**(P)_k is the set of all faces of **Cyl**(P) of dimension k.

We have a 'projection' function $\pi_P : \mathbf{Cyl}(P) \longrightarrow P$ such that for a face $\varphi \in \mathbf{Cyl}(P)$

$$\pi_{P}(\varphi) = \begin{cases} x & \text{if } \varphi \in \{-x, +x\}, \\ x_{k} & \text{if } \varphi = x_{k}, \dots, x_{0} \end{cases}$$

22 / 36

Intuitions from symplicial sets $\triangle_1 \times \triangle_7$:



Formal definition of **Cyl**(*P*) star operation

We define an 'inverse' operation to projection on flags

 $\star : P \times \mathbf{Flags}_P \to \mathbf{Cyl}(P)$

so that, for $\vec{x} = [x_n, \dots, x_0] \in \mathbf{Flags}_P$ and $p \in P_k$, we have $p \star \vec{x} = \begin{cases} \vec{x}_{\lceil k} & \text{if } p = x_k; \\ (\text{flag}) \\ [p, 0, \vec{x}_{\lceil k-2]}] & \text{otherwise, if } k > 0 \text{ and } x_k <^+ p; \\ (\text{high p-flag}) \\ [p, t, 0, \vec{x}_{\lceil k-2]}] & \text{otherwise, if } k > 1, x_{k-1} \leq^+ t \in \delta(p); \\ (\text{low p-flag}) \\ [p, \gamma(p) \star \vec{x}] & \text{otherwise, if } k > 2, \gamma(p) \star \vec{x} \text{ is a p-flag;} \\ (\text{induction, low p-flag}) \\ -p & \text{otherwise, if } \gamma^{(0)}(p) \leq^+ x_0; \\ (\text{bottom flat face}) \\ +p & \text{otherwise, if } x_0 <^+ \gamma^{(0)}(p). \end{cases}$ (top flat face)

Formal definition of Cyl(P) domains and codomains of flags

Let
$$\vec{x} = x_k, \ldots, x_0$$
 be a flag in **Cyl**(*P*). We put

$$\gamma(\vec{x}) = \vec{x}_{high}$$

and

$$\delta(\vec{x}) = \{\vec{x}_{\lceil k-1}, \vec{x}_{low}\}$$

$$\delta(\vec{x}) = \begin{cases} \{\vec{x}_{\lceil k-1}, -x_k\} & \text{if } \vec{x} \text{ is the first flag,} \\ \{\vec{x}_{\lceil k-1}, +x_k\} & \text{if } \vec{x} \text{ is the last flag,} \\ \{\vec{x}_{\lceil k-1}, \vec{x}_{low}\} & \text{otherwise.} \end{cases}$$

Formal definition of Cyl(P)domains and codomains of p-flags

Let $\vec{x} = x_k, \ldots, \hat{x_i}, \ldots, x_0$ be a p-falg in P. We put

$$\gamma(\vec{x}) = \gamma(x_k) \star \vec{x} = \begin{cases} \left[\begin{array}{c} \gamma(x_k) \\ x_{n-3} \\ \cdots \\ x_0 \end{array} \right] & \text{if } i = k-1, k-2 \\ \\ \left[\begin{array}{c} x_{k-1} \\ x_{k-2} \\ \cdots \\ \hat{x_i} \\ \cdots \\ x_0 \end{array} \right] & \text{otherwise.} \end{cases}$$

$$\delta(\vec{x}) = \begin{cases} \{p \star \vec{x} \mid p \in \delta(x_k)\} & \text{if } \vec{x} \text{ is a low p-flag,} \\ \\ \{p \star \vec{x} \mid p \in \delta(x_k)\} \cup \{\vec{x}_{\lceil k-2}\} & \text{if } \vec{x} \text{ is a high p-flag.} \end{cases}$$

Formal definition of Cyl(P) domains and codomains of flat faces

For $p \in P_{\geq 1}$ we have

$$\gamma(-p) = -\gamma(p), \quad \gamma(+p) = +\gamma(p)$$

and

$$\delta(-p) = \{-q : q \in \delta(p)\}, \quad \delta(+p) = \{+q : q \in \delta(p)\}.$$

Let \vec{x} be a flag or p-flag in P.

By $P^{\vec{x}}$ we denote the least subset of faces of $\mathbf{Cyl}(P)$ containing the face \vec{x} and closed under γ 's and δ 's.

Lemma $P^{\vec{x}}$ is an opetope.

Theorem

Let x' ⊲ x be two consecutive flags. Then, in pOpe, we have
(∪ y Py) ∩ Px = Px'∩x;
Cyl(P) = ∪_{x∈FlagsP} Px in pOpe;
I × P = Cyl_ℓ(P) := κ_!(Cyl(P)) in pOpe_ℓ;
I × P is aspherical in pOpe_ℓ.

Combinatorial definition of contractions

Let P and Q be positive opetopes. A contraction morphism of opetopes (or contraction for short) $h: Q \longrightarrow P$ is function $h: |Q| \longrightarrow |P|$ between faces of opetopes such that

- $dim(q) \ge dim(h(q))$ for $q \in Q$.
- (preservation of codomains) $h(\gamma^{(k)}(q)) = \gamma^{(k)}(h(q))$, for k ≥ 0 and $q \in Q_{k+1}$,
- (preservation of domains)

• if $dim(h(q)) \ge dim(q) - 1$, then h restricts to a bijection

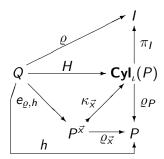
$$(\delta^{(k)}(q) - \ker(h)) \xrightarrow{h} \delta^{(k)}(h(q))$$

for $k \geq 0$ and $q \in Q_{k+1}$; where the kernel of h is defined as

$$\ker(h) = \{q \in Q | \dim(q) > \dim(h(q))\},\$$

 $\textbf{ o if } dim(h(q)) < dim(q) - 1, \text{ then } \delta^{(k)}(q) \subseteq \ker(h).$

Universal property of product $I \times P$



We say that the face $q \in Q_1 \langle \varrho, h \rangle$ -splits face $p \in P_0$ iff $h(q) = 1_p$ and $\varrho(q) = \mathbf{a}$. We say that the face $q \in Q_{k+1} \langle \rho, h \rangle$ -splits face $p \in P_k$ with k > 0iff

1
$$h(q) = p$$
 and $\rho(q) = a$;

② There is a face $q' \in \delta(q)$ such that $q' \langle \varrho, h \rangle$ -splits $h(q') \in P_{k-1}$.

If q is a splitting face, then p = h(q) is the splitted face.

We say that the face $q \in Q_1$ is a $\langle \varrho, h \rangle$ -threshold face iff $h(q) = \in P_1$ and $\varrho(q) = \mathbf{a}$. We say that the face $q \in Q_{k+1}$ is a $\langle \rho, h \rangle$ -threshold face iff $h(q) = \in P_{k+1}$ and there is a $\langle \rho, h \rangle$ -splitting faces in $\delta(q)$.

Universal property of product $I \times P$ splitting faces and threshold faces in a cone over product

Universal property of product $I \times P$

Given $\iota\text{-maps}\ h$ and ϱ as above, we define a $\iota\text{-map}$

$$H: Q \longrightarrow \mathbf{Cyl}_{L}(P)$$

as follows. Let $q \in Q$. If $\varrho(q) \in \{-,+\}$, then we put

$$H(q) = \begin{cases} -h(q) & \text{if } \varrho(q) = -\\ +h(q) & \text{if } \varrho(q) = + \end{cases}$$

If defined, $\sigma(q)$, $\tau(q)$ are splitting and threshold faces in $\delta(q)$, respectively. If $\varrho(q) = \mathbf{a}$, we put

$H(q) = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	[<i>h</i> (<i>q</i>)]	if $q \in Q_1$ is a splitting face, i.e. $h(q) \in P_0$ ($H(q)$ is a flag of length 1);
	[<i>h</i> (<i>q</i>), 0]	if $q \in Q_1$ is not a splitting face, i.e. $h(q) \in P_1$ ($H(q)$ is a p-flag of length 2);
	$[h(q), H(\sigma(q))]$	if $q \in Q_{\geq 2}$ is a splitting face $(H(q) \text{ is a flag });$
	$[h(q), 0, H(\sigma(q))]$	if $q \in Q_{\geq 2} - \ker(h)$ and $\sigma(q)$ is defined $(H(q) \text{ is a high p-flag});$
	$[h(q), H(\tau(q))]$	if $q \in Q_{\geq 2} - \ker(h)$ and $\tau(q)$ is defined $(H(q) \text{ is a low p-flag of codim 2});$
	$[h(q), H(\gamma(q))]$	otherwise, if $q \in Q_{\geq 2} - \ker(h)$ (<i>H</i> (<i>q</i>) is a low p-flag of codim > 2);
Į	$H(\gamma(q))$	otherwise $(H(q)$ is an identity on a face).

Thank You for Your Attention!