CwA's of equivalences Equivalences of CwA's

Peter LeFanu Lumsdaine (mostly joint work with Chris Kapulkin)

Stockholm University

Categories in Homotopy and Rewriting, CIRM, Sept 27 2017

Uniqueness of interpretation

T: dependent type theory with e.g. Id, Σ , Π .

 C_0, C_1 : models of **T**, with same underlying category, two different implementations of the constructors. E.g. simplicial sets, two different choices of path-objects.

 $\vdash_{\mathbf{T}} A$ some (possibly complex) type.

Puzzle

```
Do we always have \llbracket A \rrbracket^{\mathbb{C}_0} \simeq \llbracket A \rrbracket^{\mathbb{C}_1}?
```

Uniqueness of interpretation

T: dependent type theory with e.g. Id, Σ , Π .

 C_0, C_1 : models of **T**, with same underlying category, two different implementations of the constructors. E.g. simplicial sets, two different choices of path-objects.

 $\vdash_{\mathbf{T}} A$ some (possibly complex) type.

Puzzle

```
Do we always have \llbracket A \rrbracket^{\mathbb{C}_0} \simeq \llbracket A \rrbracket^{\mathbb{C}_1}?
```

In same question for IHOL, this is 2-categorical universal property of syntax.

Concretely: \mathbb{C}^{\cong} also a model of IHOL, with structures of \mathbb{C}_0 , \mathbb{C}_1 on source/target of iso.

Categories with Attributes, Contextual Categories

Definition

Category with attributes: category C, presheaf Ty : $C^{op} \rightarrow Set$, and cartesian functor

and distinguished object $\diamond \in \mathbf{C}$.

- "types"/"fibrations": $A \in Ty(\Gamma), \chi_A : \Gamma.A \longrightarrow \Gamma$
- "terms": sections $a: \Gamma \longrightarrow \Gamma.A$

Definition

CwA **C** is contextual if every object of **C** uniquely expressible as iterated comprehension \diamond . A_1 A_n .

Contextual categories **Cxl** coreflective in **CwA**.

Type theory **T** with some logical constructors (Id, Σ , Π , ...) corresponds to CwA's with extra structure ("Id-structure", ...).

Theorem

For e.g. $\mathbf{T} = (\mathrm{Id}, \Sigma, \Pi)$, syntactic category $\mathbf{C}_{\mathbf{T}}$ is the initial CwA with Id-, Σ -, Π -structure, and is moreover contextual.

CwA's with T-structure give strictly algebraic notion of models of T.

Classes of maps

Definition

A map $F : \mathbb{C} \longrightarrow \mathbb{D}$ of contextual cats (resp. CwA's) with (at least) Id-types is:

- (local) equivalence (W) if types lift along F up to equivalence, and terms lift up to propositional equality;
- trivial fibration (*TF*) if types and terms lift on the nose;
- ▶ fibration (𝒫) if *F* has "path-lifting" for equivalences and propositional equalities.

Classes of maps

Definition

A map $F : \mathbb{C} \longrightarrow \mathbb{D}$ of contextual cats (resp. CwA's) with (at least) Id-types is:

- (local) equivalence (W) if types lift along F up to equivalence, and terms lift up to propositional equality;
- trivial fibration (*TF*) if types and terms lift on the nose;
- ▶ fibration (𝒫) if *F* has "path-lifting" for equivalences and propositional equalities.

Get awfs's $(\mathcal{C}, \mathcal{TF}) \longrightarrow (\mathcal{A}, \mathcal{F})$ on $Cxl_{Id,...}, CwA_{Id,...}$ Intuition:

- ► Maps in *C* built up by freely adjoining types, terms. (In particular: cofibrant CwA's are contextual.)
- Maps in A, by adjoining types/terms that are equivalent/propositionally equal to existing ones.

Assembly

Goal: fit these together into something like a model structure.

Assembly

Goal: fit these together into something like a model structure.

Key tool: something like "path objects" in $Cxl_{Id,...}$

I.e.: a fibration $C^{Eqv} \rightarrow C \times C$, representing "homotopy"/"natural equivalence" between functors into **C**.

So: objects/types of C^{Eqv} should be pairs of objs/types from C, connected by an equivalence.

$f: A \longrightarrow B$, admitting quasi-inverse	

$f: A \longrightarrow B$, admitting quasi-inverse	not enough data!

$f: A \longrightarrow B$, admitting quasi-inverse	not enough data!
$f: A \longrightarrow B$, with quasi-inverse (g, η, ϵ)	

$f: A \longrightarrow B$, admitting quasi-inverse	not enough data!
$f: A \longrightarrow B$, with quasi-inverse (g, η, ϵ)	bad def'n entirely: quasi-inverse data not essentially unique

$f: A \longrightarrow B$, admitting quasi-inverse	not enough data!
$f: A \longrightarrow B$, with quasi-inverse (g, η, ϵ)	bad def'n entirely: quasi-inverse data not essentially unique
$f : A \longrightarrow B$, with half-adjoint quasi- inverse $(g, \eta, \epsilon, \theta)$	

$f: A \longrightarrow B$, admitting quasi-inverse	not enough data!
$f: A \longrightarrow B$, with quasi-inverse (g, η, ϵ)	bad def'n entirely: quasi-inverse data not essentially unique
$f : A \longrightarrow B$, with half-adjoint quasi- inverse $(g, \eta, \epsilon, \theta)$	maybe?? too much fid- dly data!

$f: A \longrightarrow B$, admitting quasi-inverse	not enough data!
$f: A \longrightarrow B$, with quasi-inverse (g, η, ϵ)	bad def'n entirely: quasi-inverse data not essentially unique
$f : A \longrightarrow B$, with half-adjoint quasi- inverse $(g, \eta, \epsilon, \theta)$	maybe?? too much fid- dly data!
$A \xrightarrow{E} B equivalences$ Reedy span, s.t. both legs	

$f: A \longrightarrow B$, admitting quasi-inverse	not enough data!
$f: A \longrightarrow B$, with quasi-inverse (g, η, ϵ)	bad def'n entirely: quasi-inverse data not essentially unique
$f : A \longrightarrow B$, with half-adjoint quasi- inverse $(g, \eta, \epsilon, \theta)$	maybe?? too much fid- dly data!
$ \begin{array}{ccc} $	just right!

Candidate notions of equivalence of types, for C^{Eqv}:

$f: A \longrightarrow B$, admitting quasi-inverse	not enough data!
$f: A \longrightarrow B$, with quasi-inverse (g, η, ϵ)	bad def'n entirely: quasi-inverse data not essentially unique
$f : A \longrightarrow B$, with half-adjoint quasi- inverse $(g, \eta, \epsilon, \theta)$	maybe?? too much fid- dly data!
$ \begin{array}{ccc} $	just right!

Definition

C^{Eqv}: the CwA of Reedy span-equivalences in **C**.

A Reedy 2-globular object in a fibration category C:

$$A_0; \qquad A_1 \longrightarrow A_0 \times A_0; \qquad A_2 \longrightarrow A_1 \times_{A_0 \times A_0} A_1$$

A Reedy 2-globular object in a fibration category C:

$$A_0; \qquad A_1 \longrightarrow A_0 \times A_0; \qquad A_2 \longrightarrow A_1 \times_{A_0 \times A_0} A_1$$

A Reedy 2-globular type in a CwA C:

 $\vdash A_0$ type $x_0, y_0:A_0 \vdash A_1(x_0, y_0)$ type $x_0, y_0:A_0, x_1, y_1:A_1(x_0, y_0) \vdash A_2(x_0, y_0, x_1, y_1)$ type

A Reedy 2-globular object in a fibration category C:

$$A_0; \qquad A_1 \longrightarrow A_0 \times A_0; \qquad A_2 \longrightarrow A_1 \times_{A_0 \times A_0} A_1$$

A Reedy 2-globular type in a CwA C:

 $\vdash A_0 \text{ type} \qquad x_0, y_0:A_0 \vdash A_1(x_0, y_0) \text{ type}$ $x_0, y_0:A_0, x_1, y_1:A_1(x_0, y_0) \vdash A_2(x_0, y_0, x_1, y_1) \text{ type}$

Inverse category: the kind of category on which this construction makes sense; e.g. the (*n*-)globular and (*n*-)semi-simplicial categories.

Reedy span-equivalences

Proposition (following Shulman, Tonnelli)

C a CwA, *I* an inverse cat. Have a "Reedy" CwA structure on C^{I} , with types corresponding to "Reedy fibrations". Given Id, Σ , Π , Π_{ext} , ... on **C**, can lift them to C^{I} .

Reedy span-equivalences

Proposition (following Shulman, Tonnelli)

C a CwA, *I* an inverse cat. Have a "Reedy" CwA structure on C^{I} , with types corresponding to "Reedy fibrations". Given Id, Σ , Π , Π_{ext} , ... on **C**, can lift them to C^{I} .

A Reedy span $B \longrightarrow A_0 \times A_1$ is an equivalence if its legs $B \longrightarrow A_i$ are each equivalences.

Proposition

Reedy span-equivalences form a sub-CwA \mathbf{C}^{Eqv} of \mathbf{C}^{span} . If \mathbf{C} has Id, Σ , or Π_{ext} , then \mathbf{C}^{Eqv} is closed under these in \mathbf{C}^{span} .

Proof.

Closure under constructors: amounts to showing constructors preserve equivs. (Hence why need Π_{ext} ; can't lift Π alone.)

Wrapping up

 $C^{Eqv} \longrightarrow C \times C$ not quite path object: no refl, trans, generally. But:

Proposition

For **D** cofibrant, \mathbf{C}^{Eqv} induces an equiv. rel. on $\mathbf{CwA}_{Id,...}(\mathbf{D}, \mathbf{C})$.

A left semi model structure: almost a Quillen model structure, except $C \cap W = {}^{\bowtie}\mathcal{F}$ holds only under cofibrant domains.

Theorem

- (W, C, \mathcal{F}) form a left semi model structure on $\mathbf{Cxl}_{\mathrm{Id},\ldots}$.
- *N_f* : Cxl_{Id,...} → Cat_∞ preserves (and reflects) equivalences, hence induces (∞, 1)-functors:

$$\begin{array}{ccc} \mathbf{Cxl}_{\mathrm{Id},\Sigma} & \xrightarrow{\mathcal{N}_{f}} & \mathbf{Lex}_{\infty} \\ & & & & & & \\ \psi & & & & & & \\ \mathbf{Cxl}_{\mathrm{Id},\Sigma,\Pi_{\mathrm{ext}}} & \xrightarrow{\mathcal{N}_{f}} & \mathbf{LCCC}_{\infty} \end{array}$$

Application: internal language conjectures

- **Theorem** (Kapulkin, using Szumiło's N_f). Syntax of DTT with Id, Σ (+ Π_{ext}) yields lex (resp. locally cartesian closed) quasi-categories.
- ► **Theorem** (Kapulkin, Lumsdaine). This construction induces ∞-functors.
- ► Conjecture. These are ∞-equivalences. (Cf. Kapulkin, Szumiło, arXiv:1709.09519.)
- ▶ Dream. These lift to "full HoTT", and "elementary ∞-toposes" (both still to be defined.)

Logical application: canonicality of interpretation

Other applications of span-equivalences: constructing equivalences between theories/interpretations. E.g.:

 $T_{Id, \Sigma, \Pi_{ext}}: \text{ the syntactic category, initial in } Cxl_{Id, \Sigma, \Pi_{ext}}.$

Proposition

C a CwA, equipped with two (possibly different) choices of Id, Σ , Π_{ext} . Then the two induced interpretation functors

 $\llbracket - \rrbracket_0, \llbracket - \rrbracket_1 : \mathbf{T}_{\mathrm{Id}, \Sigma, \Pi_{\mathrm{ext}}} \longrightarrow \mathbf{C}$

are "naturally equivalent" by Reedy span-equivalences.

Logical application: canonicality of interpretation

Proof.

Can generalise \mathbf{C}^{Eqv} to "equiv-comma" CwA $(F_0, F_1)^{\text{Eqv}}$, for $F_i : \mathbf{D} \longrightarrow \mathbf{C}_i$ not necessarily strictly logical. Objects: span-equivs

Logical structure on $(F_0, F_1)^{\text{Eqv}}$: uses structure of \mathbf{C}_i on C_i .

Logical application: canonicality of interpretation

Proof.

Can generalise \mathbf{C}^{Eqv} to "equiv-comma" CwA $(F_0, F_1)^{\text{Eqv}}$, for $F_i : \mathbf{D} \longrightarrow \mathbf{C}_i$ not necessarily strictly logical. Objects: span-equivs

Logical structure on $(F_0, F_1)^{\text{Eqv}}$: uses structure of \mathbf{C}_i on C_i .

Now: take C_0 , C_1 both as C, with the two choices of logical structure; **D** also as **C**, with either choice. Then get:

Summary

Technical tools

- 3 classes of maps on CwA's/contextual cats
- the CwA's (Eqv **C**), ($^{Eqv}F_0, F_1$)

Applications

- ▶ ∞-categorical internal language conjectures
- canonicality of interpretation
- globular ω -categories from CwA's
- giving equivalences between different type theories