
CwA’s of equivalences
Equivalences of CwA’s

Peter LeFanu Lumsdaine
(mostly joint work with Chris Kapulkin)

Stockholm University

Categories in Homotopy and Rewriting, CIRM, Sept 27 2017

1 / 14



2 / 14



Uniqueness of interpretation

T: dependent type theory with e.g. Id, Σ, Π.

C0,C1: models of T, with same underlying category, two di�erent
implementations of the constructors. E.g. simplicial sets, two
di�erent choices of path-objects.

`T A some (possibly complex) type.

Puzzle
Do we always have [[A]]C0 ' [[A]]C1?

In same question for IHOL, this is 2-categorical universal property of
syntax.

Concretely: C� also a model of IHOL, with structures of C0, C1 on
source/target of iso.

3 / 14



Uniqueness of interpretation

T: dependent type theory with e.g. Id, Σ, Π.

C0,C1: models of T, with same underlying category, two di�erent
implementations of the constructors. E.g. simplicial sets, two
di�erent choices of path-objects.

`T A some (possibly complex) type.

Puzzle
Do we always have [[A]]C0 ' [[A]]C1?

In same question for IHOL, this is 2-categorical universal property of
syntax.

Concretely: C� also a model of IHOL, with structures of C0, C1 on
source/target of iso.

3 / 14



Categories with Attributes, Contextual Categories
De�nition
Category with attributes: category C, presheaf Ty : Cop Set, and
cartesian functor ∫

C Ty C→

C

χ

cod

and distinguished object � ∈ C.

I “types”/“�brations”: A ∈ Ty(Γ), χA : Γ.A Γ

I “terms”: sections a : Γ Γ.A

De�nition
CwA C is contextual if every object of C uniquely expressible as
iterated comprehension �.A1. · · · .An.

Contextual categories Cxl core�ective in CwA.
4 / 14



Logical structure on CwA’s

Type theory T with some logical constructors (Id, Σ, Π, . . . )
corresponds to CwA’s with extra structure (“Id-structure”, . . . ).

Theorem
For e.g. T = (Id, Σ, Π), syntactic category CT is the initial CwA with
Id-, Σ-, Π-structure, and is moreover contextual.

CwA’s with T-structure give strictly algebraic notion of models of T.

5 / 14



Classes of maps

De�nition
A map F : C D of contextual cats (resp. CwA’s) with (at least)
Id-types is:
I (local) equivalence (W) if types lift along F up to equivalence,

and terms lift up to propositional equality;
I trivial �bration (TF ) if types and terms lift on the nose;
I �bration (F ) if F has “path-lifting” for equivalences and

propositional equalities.

Get awfs’s (C,TF ) (A,F ) on CxlId, ... , CwAId, ... . Intuition:
I Maps in C built up by freely adjoining types, terms. (In

particular: co�brant CwA’s are contextual.)
I Maps in A, by adjoining types/terms that are

equivalent/propositionally equal to existing ones.

6 / 14



Classes of maps

De�nition
A map F : C D of contextual cats (resp. CwA’s) with (at least)
Id-types is:
I (local) equivalence (W) if types lift along F up to equivalence,

and terms lift up to propositional equality;
I trivial �bration (TF ) if types and terms lift on the nose;
I �bration (F ) if F has “path-lifting” for equivalences and

propositional equalities.

Get awfs’s (C,TF ) (A,F ) on CxlId, ... , CwAId, ... . Intuition:
I Maps in C built up by freely adjoining types, terms. (In

particular: co�brant CwA’s are contextual.)
I Maps in A, by adjoining types/terms that are

equivalent/propositionally equal to existing ones.

6 / 14



Assembly

Goal: �t these together into something like a model structure.

Key tool: something like “path objects” in CxlId, ... .

I.e.: a �bration CEqv C × C, representing “homotopy”/“natural
equivalence” between functors into C.

CEqv

C
CD

F1

F2

H

So: objects/types of CEqv should be pairs of objs/types from C,
connected by an equivalence.

7 / 14



Assembly

Goal: �t these together into something like a model structure.

Key tool: something like “path objects” in CxlId, ... .

I.e.: a �bration CEqv C × C, representing “homotopy”/“natural
equivalence” between functors into C.

CEqv

C
CD

F1

F2

H

So: objects/types of CEqv should be pairs of objs/types from C,
connected by an equivalence.

7 / 14



De�nitions of equivalence

Candidate notions of equivalence of types, for CEqv:

f : A B, admitting quasi-inverse not enough data!

f : A B, with quasi-inverse (g,η, ϵ) bad def’n entirely:
quasi-inverse data not
essentially unique

f : A B, with half-adjoint quasi-
inverse (g,η, ϵ,θ )

maybe?? too much �d-
dly data!

E

A B
Reedy span, s.t. both legs
equivalences

just right!

De�nition
CEqv: the CwA of Reedy span-equivalences in C.

8 / 14



De�nitions of equivalence

Candidate notions of equivalence of types, for CEqv:

f : A B, admitting quasi-inverse

not enough data!

f : A B, with quasi-inverse (g,η, ϵ) bad def’n entirely:
quasi-inverse data not
essentially unique

f : A B, with half-adjoint quasi-
inverse (g,η, ϵ,θ )

maybe?? too much �d-
dly data!

E

A B
Reedy span, s.t. both legs
equivalences

just right!

De�nition
CEqv: the CwA of Reedy span-equivalences in C.

8 / 14



De�nitions of equivalence

Candidate notions of equivalence of types, for CEqv:

f : A B, admitting quasi-inverse not enough data!

f : A B, with quasi-inverse (g,η, ϵ) bad def’n entirely:
quasi-inverse data not
essentially unique

f : A B, with half-adjoint quasi-
inverse (g,η, ϵ,θ )

maybe?? too much �d-
dly data!

E

A B
Reedy span, s.t. both legs
equivalences

just right!

De�nition
CEqv: the CwA of Reedy span-equivalences in C.

8 / 14



De�nitions of equivalence

Candidate notions of equivalence of types, for CEqv:

f : A B, admitting quasi-inverse not enough data!

f : A B, with quasi-inverse (g,η, ϵ)

bad def’n entirely:
quasi-inverse data not
essentially unique

f : A B, with half-adjoint quasi-
inverse (g,η, ϵ,θ )

maybe?? too much �d-
dly data!

E

A B
Reedy span, s.t. both legs
equivalences

just right!

De�nition
CEqv: the CwA of Reedy span-equivalences in C.

8 / 14



De�nitions of equivalence

Candidate notions of equivalence of types, for CEqv:

f : A B, admitting quasi-inverse not enough data!

f : A B, with quasi-inverse (g,η, ϵ) bad def’n entirely:
quasi-inverse data not
essentially unique

f : A B, with half-adjoint quasi-
inverse (g,η, ϵ,θ )

maybe?? too much �d-
dly data!

E

A B
Reedy span, s.t. both legs
equivalences

just right!

De�nition
CEqv: the CwA of Reedy span-equivalences in C.

8 / 14



De�nitions of equivalence

Candidate notions of equivalence of types, for CEqv:

f : A B, admitting quasi-inverse not enough data!

f : A B, with quasi-inverse (g,η, ϵ) bad def’n entirely:
quasi-inverse data not
essentially unique

f : A B, with half-adjoint quasi-
inverse (g,η, ϵ,θ )

maybe?? too much �d-
dly data!

E

A B
Reedy span, s.t. both legs
equivalences

just right!

De�nition
CEqv: the CwA of Reedy span-equivalences in C.

8 / 14



De�nitions of equivalence

Candidate notions of equivalence of types, for CEqv:

f : A B, admitting quasi-inverse not enough data!

f : A B, with quasi-inverse (g,η, ϵ) bad def’n entirely:
quasi-inverse data not
essentially unique

f : A B, with half-adjoint quasi-
inverse (g,η, ϵ,θ )

maybe?? too much �d-
dly data!

E

A B
Reedy span, s.t. both legs
equivalences

just right!

De�nition
CEqv: the CwA of Reedy span-equivalences in C.

8 / 14



De�nitions of equivalence

Candidate notions of equivalence of types, for CEqv:

f : A B, admitting quasi-inverse not enough data!

f : A B, with quasi-inverse (g,η, ϵ) bad def’n entirely:
quasi-inverse data not
essentially unique

f : A B, with half-adjoint quasi-
inverse (g,η, ϵ,θ )

maybe?? too much �d-
dly data!

E

A B
Reedy span, s.t. both legs
equivalences

just right!

De�nition
CEqv: the CwA of Reedy span-equivalences in C.

8 / 14



De�nitions of equivalence

Candidate notions of equivalence of types, for CEqv:

f : A B, admitting quasi-inverse not enough data!

f : A B, with quasi-inverse (g,η, ϵ) bad def’n entirely:
quasi-inverse data not
essentially unique

f : A B, with half-adjoint quasi-
inverse (g,η, ϵ,θ )

maybe?? too much �d-
dly data!

E

A B
Reedy span, s.t. both legs
equivalences

just right!

De�nition
CEqv: the CwA of Reedy span-equivalences in C.

8 / 14



De�nitions of equivalence

Candidate notions of equivalence of types, for CEqv:

f : A B, admitting quasi-inverse not enough data!

f : A B, with quasi-inverse (g,η, ϵ) bad def’n entirely:
quasi-inverse data not
essentially unique

f : A B, with half-adjoint quasi-
inverse (g,η, ϵ,θ )

maybe?? too much �d-
dly data!

E

A B
Reedy span, s.t. both legs
equivalences

just right!

De�nition
CEqv: the CwA of Reedy span-equivalences in C.

8 / 14



Reedy diagrams, by example
A 2-globular object in a category C:

A2 A1 A0
t

s

t

s

, ss = st, ts = tt

A Reedy 2-globular object in a �bration category C:

A0; A1 A0 × A0; A2 A1 ×A0×A0 A1

A Reedy 2-globular type in a CwA C:

` A0 type x0, y0:A0 ` A1(x0, y0) type

x0, y0:A0, x1, y1:A1(x0, y0) ` A2(x0, y0, x1, y1) type

Inverse category: the kind of category on which this construction
makes sense; e.g. the (n-)globular and (n-)semi-simplicial categories.

9 / 14



Reedy diagrams, by example
A 2-globular object in a category C:

A2 A1 A0
t

s

t

s

, ss = st, ts = tt

A Reedy 2-globular object in a �bration category C:

A0; A1 A0 × A0; A2 A1 ×A0×A0 A1

A Reedy 2-globular type in a CwA C:

` A0 type x0, y0:A0 ` A1(x0, y0) type

x0, y0:A0, x1, y1:A1(x0, y0) ` A2(x0, y0, x1, y1) type

Inverse category: the kind of category on which this construction
makes sense; e.g. the (n-)globular and (n-)semi-simplicial categories.

9 / 14



Reedy diagrams, by example
A 2-globular object in a category C:

A2 A1 A0
t

s

t

s

, ss = st, ts = tt

A Reedy 2-globular object in a �bration category C:

A0; A1 A0 × A0; A2 A1 ×A0×A0 A1

A Reedy 2-globular type in a CwA C:

` A0 type x0, y0:A0 ` A1(x0, y0) type

x0, y0:A0, x1, y1:A1(x0, y0) ` A2(x0, y0, x1, y1) type

Inverse category: the kind of category on which this construction
makes sense; e.g. the (n-)globular and (n-)semi-simplicial categories.

9 / 14



Reedy diagrams, by example
A 2-globular object in a category C:

A2 A1 A0
t

s

t

s

, ss = st, ts = tt

A Reedy 2-globular object in a �bration category C:

A0; A1 A0 × A0; A2 A1 ×A0×A0 A1

A Reedy 2-globular type in a CwA C:

` A0 type x0, y0:A0 ` A1(x0, y0) type

x0, y0:A0, x1, y1:A1(x0, y0) ` A2(x0, y0, x1, y1) type

Inverse category: the kind of category on which this construction
makes sense; e.g. the (n-)globular and (n-)semi-simplicial categories.

9 / 14



Reedy span-equivalences

Proposition (following Shulman, Tonnelli)

C a CwA, I an inverse cat. Have a “Reedy” CwA structure on CI , with
types corresponding to “Reedy �brations”.
Given Id, Σ, Π, Πext, . . . on C, can lift them to CI .

A Reedy span B A0 × A1 is an equivalence if its legs B Ai are
each equivalences.

Proposition

Reedy span-equivalences form a sub-CwA CEqv of Cspan.
If C has Id, Σ, or Πext, then CEqv is closed under these in Cspan.

Proof.
Closure under constructors: amounts to showing constructors
preserve equivs. (Hence why need Πext; can’t lift Π alone.) �

10 / 14



Reedy span-equivalences

Proposition (following Shulman, Tonnelli)

C a CwA, I an inverse cat. Have a “Reedy” CwA structure on CI , with
types corresponding to “Reedy �brations”.
Given Id, Σ, Π, Πext, . . . on C, can lift them to CI .

A Reedy span B A0 × A1 is an equivalence if its legs B Ai are
each equivalences.

Proposition

Reedy span-equivalences form a sub-CwA CEqv of Cspan.
If C has Id, Σ, or Πext, then CEqv is closed under these in Cspan.

Proof.
Closure under constructors: amounts to showing constructors
preserve equivs. (Hence why need Πext; can’t lift Π alone.) �

10 / 14



Wrapping up
CEqv C × C not quite path object: no re�, trans, generally. But:

Proposition

For D co�brant, CEqv induces an equiv. rel. on CwAId, ...(D,C).

A left semi model structure: almost a Quillen model structure, except
C ∩W = lF holds only under co�brant domains.

Theorem

I (W,C,F ) form a left semi model structure on CxlId, ... .
I Nf : CxlId, ... Cat∞ preserves (and re�ects) equivalences,
hence induces (∞, 1)-functors:

CxlId,Σ Lex∞

CxlId,Σ,Πext LCCC∞

Nf

Nf

11 / 14



Application: internal language conjectures
I Theorem (Kapulkin, using Szumiło’s Nf ). Syntax of DTT with

Id, Σ (+ Πext) yields lex (resp. locally cartesian closed)
quasi-categories.

I Theorem (Kapulkin, Lumsdaine). This construction induces
∞-functors.

I Conjecture. These are∞-equivalences. (Cf. Kapulkin, Szumiło,
arXiv:1709.09519.)

I Dream. These lift to “full HoTT”, and “elementary∞-toposes”
(both still to be de�ned.)

HoTT

DTTId,Σ,Πext

DTTId,Σ

ElTopos∞

LCCC∞

Lex∞

Ho∞

Ho∞

Ho∞

12 / 14



Logical application: canonicality of interpretation

Other applications of span-equivalences: constructing equivalences
between theories/interpretations. E.g.:

TId,Σ,Πext : the syntactic category, initial in CxlId,Σ,Πext .

Proposition

C a CwA, equipped with two (possibly di�erent) choices of Id, Σ, Πext.
Then the two induced interpretation functors

[[−]]0, [[−]]1 : TId,Σ,Πext C

are “naturally equivalent” by Reedy span-equivalences.

13 / 14



Logical application: canonicality of interpretation
Proof.
Can generalise CEqv to “equiv-comma” CwA (F0, F1)

Eqv, for
Fi : D Ci not necessarily strictly logical. Objects: span-equivs

D

F0C0 F1C1.

Logical structure on (F0, F1)
Eqv: uses structure of Ci on Ci.

Now: take C0, C1 both as C, with the two choices of logical
structure; D also as C, with either choice. Then get:

(1C, 1C)Eqv

C0

C1TId,Σ,Πext

[[−]]0

[[−]]1

�

14 / 14



Logical application: canonicality of interpretation
Proof.
Can generalise CEqv to “equiv-comma” CwA (F0, F1)

Eqv, for
Fi : D Ci not necessarily strictly logical. Objects: span-equivs

D

F0C0 F1C1.

Logical structure on (F0, F1)
Eqv: uses structure of Ci on Ci.

Now: take C0, C1 both as C, with the two choices of logical
structure; D also as C, with either choice. Then get:

(1C, 1C)Eqv

C0

C1TId,Σ,Πext

[[−]]0

[[−]]1

�

14 / 14



Summary

Technical tools

I 3 classes of maps on CwA’s/contextual cats
I the CwA’s (EqvC), (EqvF0, F1)

Applications

I ∞-categorical internal language conjectures
I canonicality of interpretation
I globular ω-categories from CwA’s
I giving equivalences between di�erent type theories

15 / 14


