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Theorem (Berger - Moerdijk, '07)
Suppose that:
» & is a monoidal model category.
» (Some other conditions that we won't go into...)

Then it is possible to transfer the model structure from & to
P-algebras.
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Motivation (Homotopy)

As a consequence, there is a cofibrant replacement functor
Q : P-Alg — P-Alg.

Example

» Boardman-Vogt resolution

» Bar-Cobar construction

Question

Is it possible to use rewriting in order to compute efficiently
cofibrant replacements?
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Theorem (Squier’s Existence Theorem)

Let X be a convergent monoidal 1-polygraph, and M the monoid it
presents. Then it is possible to extend ¥ into a monoidal
(2,1)-polygraph such that:

» Elements of ¥, correspond to critical pairs.

» The (strict) monoidal 2-groupoid generated by ¥ forms a
coherent presentation of M.
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Theorem (Squier’s Existence Theorem)

Let X be a convergent monoidal 1-polygraph, and M the monoid it
presents. Then it is possible to extend ¥ into a monoidal
(2,1)-polygraph such that:

» Elements of ¥, correspond to critical pairs.

» The (strict) monoidal 2-groupoid generated by ¥ forms a
coherent presentation of M.

Theorem (Existence Theorem generalised, Guiraud-Malbos,
'12)
Under the same hypothesis, it is possible to extend ¥ into an
monoidal (w, 1)-polygraph such that

» Elements of ¥,, correspond to critical n-fold branchings.

» The (strict) monoidal w-groupoid generated by ¥ forms a
polygraphic resolution of M.



Motivation (Rewriting)

Theorem (Squier's Detection Theorem)

Let ¥ be a terminating monoidal (2,1)-polygraph, and let M be

the monoid it presents. Suppose that for any critical pair (f, g)

there exists a 2-cell A € £ of the form

' 1\
Nt

Then £™©) forms a coherent presentation of M.
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Goals of this talk

» Extend the Detection Theorem to higher dimensions.

» Understand the rewriting Theorems as computing efficient
cofibrant replacement within the framework of
Berger-Moerdijk's Theorem.
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What is the homotopical setting?

We are looking for a model structure on monoid objects in
w-groupoids:

/\
Mon(w-Gpd) 1 w-Gpd
\—/

Question

Can we transfer the model structure of w-Gpd through this
adjunction?

Is w-Gpd equipped with a structure of monoidal model category?



Monoidal model category

Definition
A monoidal model category is a closed monoidal category (£, ®, /)
equipped with a model structure such that:

» For any cofibrations f, f/, fIf’ is a cofibration:

X®X/@; /
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» If f or f' is a trivial cofibration, then so is fOIf’

» (Some condition on | which is trivial if / is cofibrant)
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The monoidal model structure of w-Gpd

Question
Does w-Gpd admit a structure of monoidal model category?

Proposition (Lack, '02)
(w-Gpd, %, ) is not a monoidal model category.

Remark

If (£,®,1) is a monoidal model category, then the product of two
cofibrant objects is cofibrant.
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The monoidal model structure of w-Gpd

Question
Does w-Gpd admit a structure of monoidal model category?

Proposition (Lack, '02)

(w-Gpd, %, 1) is not a monoidal model category.

Conjecture

(w-Gpd, ®, 1) is a monoidal model category, where ® is the Gray
tensor product.

(w-Cat, ®, 1) is a monoidal model category, where ® is the lax
Gray tensor product.
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The model and monoidal structures of w-Cat

Proposition (L.)

If f and f' are two cofibrations in w-Cat, then so is fOIf'.

Lemma
The model structure on w-Cat is cofibrantly generated, with
generating cofibrations:

Jn:Up— 1,

Lemma

jnDjm = _jn—i—m



The model and monoidal structures of w-Cat

Proposition (L.)
If f and f' are two cofibrations in w-Cat, then so is fLJf'.

Corollary (Ara-Maltsiniotis, Hadzihasanovic, L.)
The Gray tensor product of two w-polygraph is still an w-polygraph.
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Back to rewriting

Idea
» Use "Gray monoids": monoid objects in (w-Cat, ®) instead of
cartesian monoids.

» (For combinatorial reasons): work with cubical w-categories
instead of globular ones.

First we need a notion of Gray polygraph for Gray monoids!

Theorem (Batanin, Garner, Shulman)

Let T be the category of presheaves over an inverse category (e.g.
the globular sets, semi-simplicial sets, pre-cubical sets...)

Any monad T on 1 induces a notion of T-polygraph generating
T-algebras.
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The setup (1)

Let X be a convergent Gray (w, 1)-polygraph, M the monoid
presented by . There is a morphism of Gray monoids
7260 5 M.

Problem
Find a sufficient condition so that m : £¢(0) — M is a weak
equivalence of Gray monoids.

Since the model structure is just transferred through the
adjunction, a weak equivalence of Gray monoids is just a weak
equivalence between w-groupoids!

Problem
Find a sufficient condition so that 7 : £¢(©) — M is an equivalence
of w-groupoids.



The setup (I1)

Problem
Find a sufficient condition so that 7 : £¢©) — M is an equivalence
of w-groupoids.

¥ 6(0) M
\/
NF
We have m o NF = 1.

Problem
Find a sufficient condition so that there exists a natural
transformation S : 1yc) = 7o NF.
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The Setup (I11)

Problem
Find a sufficient condition so that there exists a natural
transformation S : 1yc) = 7o NF.

|dea (General idea of rewriting)
We define first a natural transformation S : 1y¢a) = mo NF.

Bonus:
¥ ¢(1) is free as an (w, 1)-category. So it will be enough to define S

on the generators.
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Natural transformation between cubical categories

¥ ¢(1) is free as an (w, 1)-category on an (w, 1)-polygraph I

> [ = ZOG(I) . all the words on ¥3. For u € Iy, we want to
define:

» [y ={ufvlu,v eT§and f € X1}. For ufv € I'1, we want to
define:

ufv
_
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Natural transformation between cubical categories

¥ ¢(1) is free as an (w, 1)-category on an (w, 1)-polygraph I

> [ = Zg(l) . all the words on Y. For u € Iy, we want to
define:

» [y ={ufv|u,v €T and f € X1}: all the rewriting steps. For
ufv € T'1, we want to define:

No compatibility with the product is required!



Let's try! (1)

For u € 'y which is not a normal form, we fix 7, : u — v a
rewriting step of source u.

Ty S(v
S(u):=u v )

<>
Il
<




Let's try! (I1)

Tu S(V)




Let's try! (I1)

Tu S(V)

x>
x>



Let's try! (I11)

We suppose given a cell ®(7y, ufv) of suitable shape:

ufv

X y Y
(s0)
x — ufy — y — S(y) — &
S(ufv) = 7, D (7, ufv) é’ T15(g)
X h—— 7 —5(z) — %

S(x') S(h)  5(2)

A

X X

x>
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How to extend @ to higher dimensions?

More generally, we want ¢ : LocBr(Xo, X1), — yeW.

Question

How to express the fact that ®(f) has to have a "suitable shape"?
Define 01(f,g) = g and 9»(f,g) = f, ®(h) = hfor all h € T;.
Then we had:

0, (f,g) = ®0; (f,g) 0, ®(f,g) =0, (f,g)

This is starting to look like a morphism!

» Define 0i(f,...,f) = (f,...,fi,...,fn). The define a
semi-simplicial set structure on LocBr(Xg, X1).

» The operations 0, induce a structure of semi-simplicial set on
zG(l)_

We want ® to be a morphism of semi-simplicial sets.
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The Detection Theorem, generalised

Theorem (L.)

Let ¥ be a terminating targets-only Gray (w, 1)-polygraph, and let
M be the monoid presented by .. We suppose that there exists a
morphism of simplicial monoids

® : BrLoc(Xo, ¥;) — £¢M)

such that for all A € X, ®(br(A)) = A.
Then the free Gray-monoid generated by ¥ is equivalent to M.

Why do we need to define ® on all branchings? Squier-like
Theorems should only require hypothesis about critical branchings!



The Detection Theorem, generalised

Theorem (L.)

Let ¥ be a terminating targets-only Gray (w, 1)-polygraph, and let
M be the monoid presented by Y. We suppose that there exists a
morphism of simplicial monoids

¢ : BrLoc(Xo, ¥;) — £
such that for all A € ¥, ®(br(A)) = A.
Then the free Gray-monoid generated by ¥ is equivalent to M.

Theorem (L.)

The simplicial monoid BrLoc(Xo,X1) is freely generated by the
critical branchings.



The reduced standard presentation of a monoid (I)

We fix a monoid M.
We define a Gray (w, 1)-polygraph X as follows:

Lo =A{(m|...|mps1) | mi # 1}

af(ml\ .. \m,,_,_l) = (m1] c. ‘m,'_]_) &® (m,] . ]m,,+1)
(m1| e |m,-m,-+1|m,-+2| e |m,,+1) mimj;1#1
€eqlmz|...|m i=1 =1
O (] mpea) = § A7) o
F,._l(m1| e |m,~_1|m,~+2| e ‘mn+1) 2<i<n mimjz1=1

e,,_l(ml\ . |m,,_1) i=n  mympy1=1



The reduced standard presentation of a monoid (II)

ma|my
m; & mop ( ’ )

mymo

my ® (my|m3)
my®@ my@m3 ———— mp & mMams3

(m1|m2)®m3 (m1|m2]m3) (m1|m2m3)

mm @m3 — 5 mymoms
(mimz|m3)



The reduced standard presentation of a monoid (II)

(m1|m2)

my ® mp mymy

my ® (ma|m3)

m; ® my ® m3 my & moms
(m1|mz) @ ms (m1|mo|m3) (m1lmams)
mymy @ m3 mymom3

(myma|ms)

Theorem
The free Gray monoid ¥¢(© s equivalent to M.
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Theorem
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> Y satisfies the hypothesis of the Detection Theorem. In
particular, ¥6©) js weakly equivalent to M.



Existence Theorem

Theorem
Let ¥ be a convergent Gray 1-polygraph, and let M be the monoid
it presents. There exists an extension of ¥ into a Gray
(w, 1)-polygraph such that:
» The generating n-cells correspond to the critical branchings.

> Y satisfies the hypothesis of the Detection Theorem. In
particular, ¥6©) js weakly equivalent to M.

Remark
Gray 1-polygraph = monoidal 1-polygraph



Future work

Remark
Any cartesian monoid is a Gray monoid.
Therefore any Gray polygraph X induces a cartesian polygraph.



Future work

Remark
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(Intuition: any group is a monoid, therefore any presentation of
monoid can be seen as a presentation of group).
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Future work

Remark
Any cartesian monoid is a Gray monoid.
Therefore any Gray polygraph X induces a cartesian polygraph.

Question
What is the relationship between ¥¢(©) and ¥¢(0) 7 |5 ¥<(0) 4
polygraphic resolution of M?

Question
Possible extension to operads beyond Mon?



It's not a bug, it's a feature!

Theorem (L.)

Let ¥ be a terminating targets-only Gray (w, 1)-polygraph, and let
M be the monoid presented by Y. We suppose that there exists a
morphism of simplicial monoids

¢ : BrLoc(Xo, ¥;) — £
such that for all A € ¥, ®(br(A)) = A.
Then the free Gray-monoid generated by ¥ is equivalent to M.

Theorem (L.)

The simplicial monoid BrLoc(Xo,X1) is freely generated by the
critical branchings.



