Normalisation strategies revisited

Maxime Lucas

September 26, 2017

Let $(\mathcal{E}, \otimes, I)$ be a closed monoidal category equipped with a (cofibrantly generated) model structure, and let P be an \mathcal{E} -operad.

P-Alg
$$\bot$$
 \mathcal{E}

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let $(\mathcal{E}, \otimes, I)$ be a closed monoidal category equipped with a (cofibrantly generated) model structure, and let P be an \mathcal{E} -operad.

$$P-Alg$$
 \bot \mathcal{E}

Theorem (Berger - Moerdijk, '07)

Suppose that:

- *E* is a monoidal model category.
- (Some other conditions that we won't go into...)

Then it is possible to transfer the model structure from \mathcal{E} to P-algebras.

As a consequence, there is a *cofibrant replacement functor* $Q: P-Alg \rightarrow P-Alg$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Example

- Boardman-Vogt resolution
- Bar-Cobar construction

As a consequence, there is a *cofibrant replacement functor* $Q: P-Alg \rightarrow P-Alg$.

Example

- Boardman-Vogt resolution
- Bar-Cobar construction

Question

Is it possible to use rewriting in order to compute efficiently cofibrant replacements?

(ロ) (型) (E) (E) (E) (O)

Motivation (Rewriting)

Theorem (Squier's Existence Theorem)

Let Σ be a convergent monoidal 1-polygraph, and M the monoid it presents. Then it is possible to extend Σ into a monoidal (2,1)-polygraph such that:

- Elements of Σ₂ correspond to critical pairs.
- The (strict) monoidal 2-groupoid generated by Σ forms a coherent presentation of M.

うして ふゆう ふほう ふほう うらつ

Motivation (Rewriting)

Theorem (Squier's Existence Theorem)

Let Σ be a convergent monoidal 1-polygraph, and M the monoid it presents. Then it is possible to extend Σ into a monoidal (2,1)-polygraph such that:

- Elements of Σ₂ correspond to critical pairs.
- The (strict) monoidal 2-groupoid generated by Σ forms a coherent presentation of M.

Theorem (Existence Theorem generalised, Guiraud-Malbos, '12)

Under the same hypothesis, it is possible to extend Σ into an monoidal $(\omega,1)\text{-polygraph}$ such that

- Elements of Σ_n correspond to critical n-fold branchings.
- The (strict) monoidal ω-groupoid generated by Σ forms a polygraphic resolution of M.

Motivation (Rewriting)

Theorem (Squier's Detection Theorem)

Let Σ be a terminating monoidal (2,1)-polygraph, and let M be the monoid it presents. Suppose that for any critical pair (f,g)there exists a 2-cell $A \in \Sigma_2^{m(1)}$ of the form

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Then $\Sigma^{m(0)}$ forms a coherent presentation of M.

• Extend the Detection Theorem to higher dimensions.

- Extend the Detection Theorem to higher dimensions.
- Understand the rewriting Theorems as computing efficient cofibrant replacement within the framework of Berger-Moerdijk's Theorem.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

What is the homotopical setting?

We are looking for a model structure on monoid objects in $\omega\text{-}\mathsf{groupoids}:$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

What is the homotopical setting?

We are looking for a model structure on monoid objects in $\omega\text{-}\mathsf{groupoids}:$

Question

Can we transfer the model structure of ω -**Gpd** through this adjunction?

What is the homotopical setting?

We are looking for a model structure on monoid objects in ω -groupoids:

Question

Can we transfer the model structure of ω -**Gpd** through this adjunction? Is ω -**Gpd** equipped with a structure of monoidal model category?

Monoidal model category

Definition

A monoidal model category is a closed monoidal category $(\mathcal{E}, \otimes, I)$ equipped with a model structure such that:

• For any cofibrations $f, f', f \Box f'$ is a cofibration:

・ロト ・ 日 ・ モート ・ 田 ・ うへで

- If f or f' is a trivial cofibration, then so is $f \Box f'$
- (Some condition on I which is trivial if I is cofibrant)

Question

Does ω -**Gpd** admit a structure of monoidal model category?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The monoidal model structure of ω -Gpd

Question

Does ω -**Gpd** admit a structure of monoidal model category?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Proposition (Lack, '02)

 $(\omega$ -Gpd, \times , I) is not a monoidal model category.

Question

Does ω -**Gpd** admit a structure of monoidal model category?

Proposition (Lack, '02)

 $(\omega$ -**Gpd**, \times , *I*) *is not* a monoidal model category.

Remark

If (\mathcal{E},\otimes,I) is a monoidal model category, then the product of two cofibrant objects is cofibrant.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Question

Does ω -**Gpd** admit a structure of monoidal model category?

Proposition (Lack, '02)

 $(\omega$ -**Gpd**, \times , *I*) *is not* a monoidal model category.

Remark

If $(\mathcal{E}, \otimes, I)$ is a monoidal model category, then the product of two cofibrant objects is cofibrant.

Question

Does ω -**Gpd** admit a structure of monoidal model category?

Proposition (Lack, '02)

 $(\omega$ -**Gpd**, \times , *I*) *is not* a monoidal model category.

Remark

If $(\mathcal{E}, \otimes, I)$ is a monoidal model category, then the product of two cofibrant objects is cofibrant.

Question

Does ω -**Gpd** admit a structure of monoidal model category?

Proposition (Lack, '02)

 $(\omega$ -**Gpd**, \times , *I*) is **not** a monoidal model category.

Remark

If $(\mathcal{E}, \otimes, I)$ is a monoidal model category, then the product of two cofibrant objects is cofibrant.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

The monoidal model structure of ω -Gpd

Question

Does ω -**Gpd** admit a structure of monoidal model category?

Proposition (Lack, '02)

 $(\omega$ -Gpd, \times , I) is not a monoidal model category.

Remark

If $(\mathcal{E}, \otimes, I)$ is a monoidal model category, then the product of two cofibrant objects is cofibrant.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Question

Does ω -**Gpd** admit a structure of monoidal model category?

Proposition (Lack, '02)

 $(\omega$ -Gpd, \times , I) is not a monoidal model category.

Conjecture

 $(\omega$ -**Gpd**, \otimes , I) is a monoidal model category, where \otimes is the Gray tensor product.

Question

Does ω -**Gpd** admit a structure of monoidal model category?

Proposition (Lack, '02)

 $(\omega$ -Gpd, \times , I) is not a monoidal model category.

Conjecture

 $(\omega$ -**Gpd**, \otimes , I) is a monoidal model category, where \otimes is the Gray tensor product.

 $(\omega$ -Cat, \otimes , I) is a monoidal model category, where \otimes is the lax Gray tensor product.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Proposition (L.)

If f and f' are two cofibrations in ω -Cat, then so is $f \Box f'$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition (L.)

If f and f' are two cofibrations in ω -Cat, then so is $f \Box f'$.

Lemma

The model structure on ω -Cat is cofibrantly generated, with generating cofibrations:

$$j_n:\Box_n\to\blacksquare_n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition (L.)

If f and f' are two cofibrations in ω -Cat, then so is $f \Box f'$.

Lemma

The model structure on ω -Cat is cofibrantly generated, with generating cofibrations:

$$j_n:\Box_n\to\blacksquare_n$$

Lemma

$$j_n \Box j_m = j_{n+m}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Proposition (L.)

If f and f' are two cofibrations in ω -Cat, then so is $f \Box f'$.

Corollary (Ara-Maltsiniotis, Hadzihasanovic, L.) The Gray tensor product of two ω -polygraph is still an ω -polygraph.

うして ふゆう ふほう ふほう うらつ

Back to rewriting

Idea

► Use "Gray monoids": monoid objects in (ω-Cat, ⊗) instead of cartesian monoids.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 (For combinatorial reasons): work with cubical ω-categories instead of globular ones.

Back to rewriting

Idea

► Use "Gray monoids": monoid objects in (ω-Cat, ⊗) instead of cartesian monoids.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- (For combinatorial reasons): work with cubical ω-categories instead of globular ones.
- First we need a notion of Gray polygraph for Gray monoids!

Back to rewriting

Idea

- ► Use "Gray monoids": monoid objects in (ω-Cat, ⊗) instead of cartesian monoids.
- (For combinatorial reasons): work with cubical ω-categories instead of globular ones.

First we need a notion of Gray polygraph for Gray monoids!

Theorem (Batanin, Garner, Shulman)

Let \hat{I} be the category of presheaves over an inverse category (e.g. the globular sets, semi-simplicial sets, pre-cubical sets...) Any monad T on \hat{I} induces a notion of T-polygraph generating T-algebras.

Proposition (L.)

Gray monoids are monadic over cubical sets. So there is an associated notion of Gray polygraph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition (L.)

Gray monoids are monadic over cubical sets. So there is an associated notion of Gray polygraph.

Let Σ be a convergent Gray $(\omega, 1)$ -polygraph, M the monoid presented by Σ . There is a morphism of Gray monoids $\pi : \Sigma^{G(0)} \to M$.

(ロ) (型) (E) (E) (E) (O)

Proposition (L.)

Gray monoids are monadic over cubical sets. So there is an associated notion of Gray polygraph.

Let Σ be a convergent Gray $(\omega, 1)$ -polygraph, M the monoid presented by Σ . There is a morphism of Gray monoids $\pi : \Sigma^{G(0)} \to M$.

Problem

Find a sufficient condition so that $\pi : \Sigma^{G(0)} \to M$ is a weak equivalence of Gray monoids.

うして ふゆう ふほう ふほう うらつ

Proposition (L.)

Gray monoids are monadic over cubical sets. So there is an associated notion of Gray polygraph.

Let Σ be a convergent Gray $(\omega, 1)$ -polygraph, M the monoid presented by Σ . There is a morphism of Gray monoids $\pi : \Sigma^{G(0)} \to M$.

Problem

Find a sufficient condition so that $\pi : \Sigma^{G(0)} \to M$ is a weak equivalence of Gray monoids.

Since the model structure is just transferred through the adjunction, a weak equivalence of Gray monoids is just a weak equivalence between ω -groupoids!

Let Σ be a convergent Gray $(\omega, 1)$ -polygraph, M the monoid presented by Σ . There is a morphism of Gray monoids $\pi : \Sigma^{G(0)} \to M$.

Problem

Find a sufficient condition so that $\pi : \Sigma^{G(0)} \to M$ is a weak equivalence of Gray monoids.

Since the model structure is just transferred through the adjunction, a weak equivalence of Gray monoids is just a weak equivalence between ω -groupoids!

Problem

Find a sufficient condition so that $\pi : \Sigma^{G(0)} \to M$ is an equivalence of ω -groupoids.

Problem

Find a sufficient condition so that $\pi : \Sigma^{G(0)} \to M$ is an equivalence of ω -groupoids.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

We have $\pi \circ \mathbf{NF} = \mathbf{1}_{M}$.

Problem

Find a sufficient condition so that there exists a natural transformation $S : 1_{\Sigma^{G(0)}} \Rightarrow \pi \circ NF$.

The Setup (III)

Problem Find a sufficient condition so that there exists a natural transformation $S : 1_{\Sigma^{G(0)}} \Rightarrow \pi \circ NF$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The Setup (III)

Problem

Find a sufficient condition so that there exists a natural transformation $S : 1_{\Sigma^{G(0)}} \Rightarrow \pi \circ NF$.

Idea (General idea of rewriting)

We define first a natural transformation $S : 1_{\Sigma^{G(1)}} \Rightarrow \pi \circ NF$.

ション ふゆ アメリア メリア しょうくの

The Setup (III)

Problem

Find a sufficient condition so that there exists a natural transformation $S : 1_{\Sigma^{G(0)}} \Rightarrow \pi \circ NF$.

Idea (General idea of rewriting)

We define first a natural transformation $S : 1_{\Sigma^{G(1)}} \Rightarrow \pi \circ NF$.

Bonus:

 $\Sigma^{G(1)}$ is free as an $(\omega, 1)$ -category. So it will be enough to define S on the generators.

ション ふゆ アメリア メリア しょうくの

Natural transformation between cubical categories

- $\Sigma^{\mathcal{G}(1)}$ is free as an $(\omega,1)$ -category on an $(\omega,1)$ -polygraph Γ
 - F₀ = Σ₀^{G(1)} : all the words on Σ₀. For u ∈ Γ₀, we want to define:

$$u \xrightarrow{S(u)} \hat{u}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Natural transformation between cubical categories

Σ^{G(1)} is free as an (ω, 1)-category on an (ω, 1)-polygraph Γ
Γ₀ = Σ₀^{G(1)} : all the words on Σ₀. For u ∈ Γ₀, we want to define:

$$u \xrightarrow{S(u)} \hat{u}$$

► $\Gamma_1 = \{ufv | u, v \in \Gamma_0^* \text{ and } f \in \Sigma_1\}$. For $ufv \in \Gamma_1$, we want to define:

$$\begin{array}{c} x \xrightarrow{u f v} y \\ S(x) \bigg| \begin{array}{c} S(u f v) \\ \hat{x} \xrightarrow{x} \end{array} \\ \hat{x} \end{array} \\ \begin{array}{c} y \\ f \\ \hat{x} \end{array}$$

Natural transformation between cubical categories

- $\Sigma^{{\cal G}(1)}$ is free as an $(\omega,1)\text{-category}$ on an $(\omega,1)\text{-polygraph}$ ${\sf \Gamma}$
 - $\Gamma_0 = \Sigma_0^{G(1)}$: all the words on Σ_0 . For $u \in \Gamma_0$, we want to define:

$$u \xrightarrow{S(u)} \hat{u}$$

► $\Gamma_1 = \{ufv | u, v \in \Gamma_0 \text{ and } f \in \Sigma_1\}$: all the rewriting steps. For $ufv \in \Gamma_1$, we want to define:

$$\begin{array}{c} x \xrightarrow{u f v} y \\ S(x) \bigg| \begin{array}{c} S(u f v) \\ \hat{x} \xrightarrow{g} \\ \hat{x} \end{array} \\ \hat{x} \end{array}$$

No compatibility with the product is required!

Let's try! (I)

For $u \in \Gamma_0$ which is not a normal form, we fix $\tau_u : u \to v$ a rewriting step of source u.

$$S(u) := u \xrightarrow{\tau_u} v \xrightarrow{S(v)} \hat{v} = \hat{u}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Let's try! (II)

$$S(u) := u \xrightarrow{\tau_u} v \xrightarrow{S(v)} \hat{v} = \hat{u}$$

For $ufv: x \to y \in \Gamma_1$, we are looking to fill the following diagram:

$$\begin{array}{c} x \xrightarrow{u f v} y \\ S(x) \downarrow & S(u f v) \downarrow \\ \hat{x} \xrightarrow{x} \hat{x} \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Let's try! (II)

$$S(u) := u \xrightarrow{\tau_u} v \xrightarrow{S(v)} \hat{v} = \hat{u}$$

For $ufv : x \to y \in \Gamma_1$, we are looking to fill the following square:

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Let's try! (III)

We suppose given a cell $\Phi(\tau_x, ufv)$ of suitable shape:

うして ふゆう ふほう ふほう うらつ

More generally, we want Φ : LocBr $(\Sigma_0, \Sigma_1)_n \rightarrow \Sigma_n^{G(1)}$.

Question

How to express the fact that $\Phi(\overline{f})$ has to have a "suitable shape"?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

More generally, we want Φ : LocBr $(\Sigma_0, \Sigma_1)_n \rightarrow \Sigma_n^{G(1)}$.

Question

How to express the fact that $\Phi(\overline{f})$ has to have a "suitable shape"? Define $\partial_1(f,g) = g$ and $\partial_2(f,g) = f$, $\Phi(h) = h$ for all $h \in \Gamma_1$. Then we had:

$$\partial_1^- \Phi(f,g) = \Phi \partial_1^-(f,g) \qquad \partial_2^- \Phi(f,g) = \Phi \partial_2^-(f,g)$$

More generally, we want Φ : LocBr $(\Sigma_0, \Sigma_1)_n \rightarrow \Sigma_n^{G(1)}$.

Question

How to express the fact that $\Phi(\overline{f})$ has to have a "suitable shape"? Define $\partial_1(f,g) = g$ and $\partial_2(f,g) = f$, $\Phi(h) = h$ for all $h \in \Gamma_1$. Then we had:

$$\partial_1^- \Phi(f,g) = \Phi \partial_1^-(f,g) \qquad \partial_2^- \Phi(f,g) = \Phi \partial_2^-(f,g)$$

ション ふゆ アメリア メリア しょうくの

This is starting to look like a morphism!

More generally, we want Φ : LocBr $(\Sigma_0, \Sigma_1)_n \rightarrow \Sigma_n^{G(1)}$.

Question

How to express the fact that $\Phi(\overline{f})$ has to have a "suitable shape"? Define $\partial_1(f,g) = g$ and $\partial_2(f,g) = f$, $\Phi(h) = h$ for all $h \in \Gamma_1$. Then we had:

$$\partial_1^- \Phi(f,g) = \Phi \partial_1^-(f,g) \qquad \partial_2^- \Phi(f,g) = \Phi \partial_2^-(f,g)$$

This is starting to look like a morphism!

- ▶ Define ∂_i(f₁,..., f_n) = (f₁,..., f̂_i,..., f_n). The define a semi-simplicial set structure on LocBr(Σ₀, Σ₁).
- The operations ∂⁻_i induce a structure of semi-simplicial set on Σ^{G(1)}.

We want Φ to be a morphism of semi-simplicial sets.

Theorem (L.)

Let Σ be a terminating targets-only Gray $(\omega, 1)$ -polygraph, and let M be the monoid presented by Σ . We suppose that there exists a morphism of simplicial monoids

$$\Phi:\mathsf{BrLoc}(\Sigma_0,\Sigma_1)\to\Sigma^{\mathcal{G}(1)}$$

うして ふゆう ふほう ふほう うらつ

such that for all $A \in \Sigma$, $\Phi(br(A)) = A$. Then the free Gray-monoid generated by Σ is equivalent to M.

Theorem (L.)

Let Σ be a terminating targets-only Gray $(\omega, 1)$ -polygraph, and let M be the monoid presented by Σ . We suppose that there exists a morphism of simplicial monoids

$$\Phi:\mathsf{BrLoc}(\Sigma_0,\Sigma_1)\to\Sigma^{G(1)}$$

ション ふゆ アメリア メリア しょうくの

such that for all $A \in \Sigma$, $\Phi(br(A)) = A$. Then the free Gray-monoid generated by Σ is equivalent to M.

Theorem (L.)

Let Σ be a terminating targets-only Gray $(\omega, 1)$ -polygraph, and let M be the monoid presented by Σ . We suppose that there exists a morphism of simplicial monoids

 $\Phi:\mathsf{BrLoc}(\Sigma_0,\Sigma_1)\to\Sigma^{\mathcal{G}(1)}$

such that for all $A \in \Sigma$, $\Phi(br(A)) = A$. Then the free Gray-monoid generated by Σ is equivalent to M. Why do we need to define Φ on all branchings? Squier-like Theorems should only require hypothesis about critical branchings!

Theorem (L.)

Let Σ be a terminating targets-only Gray $(\omega, 1)$ -polygraph, and let M be the monoid presented by Σ . We suppose that there exists a morphism of simplicial monoids

 $\Phi:\mathsf{BrLoc}(\Sigma_0,\Sigma_1)\to\Sigma^{G(1)}$

such that for all $A \in \Sigma$, $\Phi(br(A)) = A$.

Then the free Gray-monoid generated by Σ is equivalent to M.

Theorem (L.)

The simplicial monoid $BrLoc(\Sigma_0, \Sigma_1)$ is freely generated by the critical branchings.

The reduced standard presentation of a monoid (I)

We fix a monoid M. We define a Gray $(\omega, 1)$ -polygraph Σ as follows:

$$\Sigma_{n} = \{ (m_{1}| \dots |m_{n+1}) \mid m_{i} \neq 1 \}$$

$$\partial_{i}^{-}(m_{1}| \dots |m_{n+1}) = (m_{1}| \dots |m_{i-1}) \otimes (m_{i}| \dots |m_{n+1})$$

$$\partial_{i}^{+}(m_{1}| \dots |m_{n+1}) = \begin{cases} (m_{1}| \dots |m_{i}m_{i+1}|m_{i+2}| \dots |m_{n+1}) & m_{i}m_{i+1} \neq 1 \\ \epsilon_{1}(m_{3}| \dots |m_{n+1}) & i=1 \quad m_{1}m_{2} = 1 \\ \epsilon_{1}(m_{3}| \dots |m_{n+1}) & i=1 \quad m_{1}m_{2} = 1 \\ \Gamma_{i-1}^{+}(m_{1}| \dots |m_{i-1}|m_{i+2}| \dots |m_{n+1}) & 2 \leq i < n \quad m_{i}m_{i+1} = 1 \\ \epsilon_{n-1}(m_{1}| \dots |m_{n-1}) & i=n \quad m_{n}m_{n+1} = 1 \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The reduced standard presentation of a monoid (II)

$$m_1 \otimes m_2 \xrightarrow{(m_1|m_2)} m_1 m_2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The reduced standard presentation of a monoid (II)

$$m_1 \otimes m_2 \xrightarrow{(m_1|m_2)} m_1 m_2$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Theorem The free Gray monoid $\Sigma^{G(0)}$ is equivalent to M.

Existence Theorem

Theorem

Let Σ be a convergent Gray 1-polygraph, and let M be the monoid it presents. There exists an extension of Σ into a Gray $(\omega, 1)$ -polygraph such that:

• The generating n-cells correspond to the critical branchings.

うして ふゆう ふほう ふほう うらつ

 Σ satisfies the hypothesis of the Detection Theorem. In particular, Σ^{G(0)} is weakly equivalent to M.

Existence Theorem

Theorem

Let Σ be a convergent Gray 1-polygraph, and let M be the monoid it presents. There exists an extension of Σ into a Gray $(\omega, 1)$ -polygraph such that:

• The generating n-cells correspond to the critical branchings.

うして ふゆう ふほう ふほう うらつ

► Σ satisfies the hypothesis of the Detection Theorem. In particular, Σ^{G(0)} is weakly equivalent to M.

Remark

 ${\sf Gray} \ 1{\text -}{\sf polygraph} \equiv {\sf monoidal} \ 1{\text -}{\sf polygraph}$

Remark

Any cartesian monoid is a Gray monoid. Therefore any Gray polygraph Σ induces a cartesian polygraph.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Remark

Any cartesian monoid is a Gray monoid.

Therefore any Gray polygraph Σ induces a cartesian polygraph.

(Intuition: any group is a monoid, therefore any presentation of monoid can be seen as a presentation of group).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Remark

Any cartesian monoid is a Gray monoid.

Therefore any Gray polygraph Σ induces a cartesian polygraph.

Question

What is the relationship between $\Sigma^{G(0)}$ and $\Sigma^{c(0)}$? Is $\Sigma^{c(0)}$ a polygraphic resolution of M?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remark

Any cartesian monoid is a Gray monoid. Therefore any Gray polygraph Σ induces a cartesian polygraph.

Question

What is the relationship between $\Sigma^{G(0)}$ and $\Sigma^{c(0)}$? Is $\Sigma^{c(0)}$ a polygraphic resolution of M?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Question

Possible extension to operads beyond Mon?

It's not a bug, it's a feature!

Theorem (L.)

Let Σ be a terminating targets-only Gray $(\omega, 1)$ -polygraph, and let M be the monoid presented by Σ . We suppose that there exists a morphism of simplicial monoids

 $\Phi:\mathsf{BrLoc}(\Sigma_0,\Sigma_1)\to\Sigma^{\mathcal{G}(1)}$

such that for all $A \in \Sigma$, $\Phi(br(A)) = A$.

Then the free Gray-monoid generated by Σ is equivalent to M.

Theorem (L.)

The simplicial monoid $BrLoc(\Sigma_0, \Sigma_1)$ is freely generated by the critical branchings.