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Motivation (Homotopy)

Let (E ,⊗, I ) be a closed monoidal category equipped with a
(cofibrantly generated) model structure, and let P be an E-operad.

P-Alg E⊥

Theorem (Berger - Moerdijk, ’07)
Suppose that:
I E is a monoidal model category.
I (Some other conditions that we won’t go into...)

Then it is possible to transfer the model structure from E to
P-algebras.
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Motivation (Rewriting)

Theorem (Squier’s Existence Theorem)
Let Σ be a convergent monoidal 1-polygraph, and M the monoid it
presents. Then it is possible to extend Σ into a monoidal
(2, 1)-polygraph such that:
I Elements of Σ2 correspond to critical pairs.
I The (strict) monoidal 2-groupoid generated by Σ forms a

coherent presentation of M.

Theorem (Existence Theorem generalised, Guiraud-Malbos,
’12)
Under the same hypothesis, it is possible to extend Σ into an
monoidal (ω, 1)-polygraph such that
I Elements of Σn correspond to critical n-fold branchings.
I The (strict) monoidal ω-groupoid generated by Σ forms a

polygraphic resolution of M.
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Motivation (Rewriting)

Theorem (Squier’s Detection Theorem)
Let Σ be a terminating monoidal (2, 1)-polygraph, and let M be
the monoid it presents. Suppose that for any critical pair (f , g)

there exists a 2-cell A ∈ Σ
m(1)
2 of the form

f

g

A

Then Σm(0) forms a coherent presentation of M.
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I Extend the Detection Theorem to higher dimensions.

I Understand the rewriting Theorems as computing efficient
cofibrant replacement within the framework of
Berger-Moerdijk’s Theorem.
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What is the homotopical setting?

We are looking for a model structure on monoid objects in
ω-groupoids:

Mon(ω-Gpd) ω-Gpd⊥

Question
Can we transfer the model structure of ω-Gpd through this
adjunction?
Is ω-Gpd equipped with a structure of monoidal model category?
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Monoidal model category

Definition
A monoidal model category is a closed monoidal category (E ,⊗, I )
equipped with a model structure such that:
I For any cofibrations f , f ′, f�f ′ is a cofibration:

x ⊗ x ′ y ⊗ x ′

x ⊗ y ′ z

y ⊗ y ′

f ⊗ 1

1⊗ f ′

f�f ′

f ⊗ 1

1⊗ f ′

I If f or f ′ is a trivial cofibration, then so is f�f ′

I (Some condition on I which is trivial if I is cofibrant)



The monoidal model structure of ω-Gpd
Question
Does ω-Gpd admit a structure of monoidal model category?

Proposition (Lack, ’02)
(ω-Gpd,×, I ) is not a monoidal model category.

Remark
If (E ,⊗, I ) is a monoidal model category, then the product of two
cofibrant objects is cofibrant.

∅ ⊗ ∅ y ⊗ ∅

∅ ⊗ y ′ z

y ⊗ y ′

f ⊗ 1

1⊗ f ′

f�f ′

f ⊗ 1

1⊗ f ′
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The monoidal model structure of ω-Gpd

Question
Does ω-Gpd admit a structure of monoidal model category?

Proposition (Lack, ’02)
(ω-Gpd,×, I ) is not a monoidal model category.

Remark
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• × • = • 6= •

Z Z Z× Z Z ∗ Z



The monoidal model structure of ω-Gpd

Question
Does ω-Gpd admit a structure of monoidal model category?

Proposition (Lack, ’02)
(ω-Gpd,×, I ) is not a monoidal model category.

Conjecture
(ω-Gpd,⊗, I ) is a monoidal model category, where ⊗ is the Gray
tensor product.

(ω-Cat,⊗, I ) is a monoidal model category, where ⊗ is the lax
Gray tensor product.
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The model and monoidal structures of ω-Cat

Proposition (L.)
If f and f ′ are two cofibrations in ω-Cat, then so is f�f ′.

Lemma
The model structure on ω-Cat is cofibrantly generated, with
generating cofibrations:

jn : �n → �n

Lemma

jn�jm = jn+m
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The model and monoidal structures of ω-Cat

Proposition (L.)
If f and f ′ are two cofibrations in ω-Cat, then so is f�f ′.

Corollary (Ara-Maltsiniotis, Hadzihasanovic, L.)
The Gray tensor product of two ω-polygraph is still an ω-polygraph.



Back to rewriting

Idea
I Use "Gray monoids": monoid objects in (ω-Cat,⊗) instead of

cartesian monoids.
I (For combinatorial reasons): work with cubical ω-categories

instead of globular ones.

First we need a notion of Gray polygraph for Gray monoids!

Theorem (Batanin, Garner, Shulman)
Let Î be the category of presheaves over an inverse category (e.g.
the globular sets, semi-simplicial sets, pre-cubical sets...)
Any monad T on Î induces a notion of T -polygraph generating
T -algebras.
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The setup (I)

Proposition (L.)
Gray monoids are monadic over cubical sets. So there is an
associated notion of Gray polygraph.

Let Σ be a convergent Gray (ω, 1)-polygraph, M the monoid
presented by Σ. There is a morphism of Gray monoids
π : ΣG(0) → M.

Problem
Find a sufficient condition so that π : ΣG(0) → M is a weak
equivalence of Gray monoids.
Since the model structure is just transferred through the
adjunction, a weak equivalence of Gray monoids is just a weak
equivalence between ω-groupoids!

Problem
Find a sufficient condition so that π : ΣG(0) → M is an equivalence
of ω-groupoids.
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The setup (II)

Problem
Find a sufficient condition so that π : ΣG(0) → M is an equivalence
of ω-groupoids.

ΣG(0) M

NF

π

We have π ◦NF = 1M .

Problem
Find a sufficient condition so that there exists a natural
transformation S : 1ΣG(0) ⇒ π ◦NF.



The Setup (III)

Problem
Find a sufficient condition so that there exists a natural
transformation S : 1ΣG(0) ⇒ π ◦NF.

Idea (General idea of rewriting)
We define first a natural transformation S : 1ΣG(1) ⇒ π ◦NF.

Bonus:
ΣG(1) is free as an (ω, 1)-category. So it will be enough to define S
on the generators.
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Natural transformation between cubical categories

ΣG(1) is free as an (ω, 1)-category on an (ω, 1)-polygraph Γ

I Γ0 = Σ
G(1)
0 : all the words on Σ0. For u ∈ Γ0, we want to

define:

u û
S(u)



Natural transformation between cubical categories

ΣG(1) is free as an (ω, 1)-category on an (ω, 1)-polygraph Γ

I Γ0 = Σ
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define:
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define:
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Natural transformation between cubical categories

ΣG(1) is free as an (ω, 1)-category on an (ω, 1)-polygraph Γ

I Γ0 = Σ
G(1)
0 : all the words on Σ0. For u ∈ Γ0, we want to

define:

u û
S(u)

I Γ1 = {ufv |u, v ∈ Γ0 and f ∈ Σ1}: all the rewriting steps. For
ufv ∈ Γ1, we want to define:

x y

x̂ x̂

ufv

S(x) S(y)S(ufv)

No compatibility with the product is required!



Let’s try! (I)

For u ∈ Γ0 which is not a normal form, we fix τu : u → v a
rewriting step of source u.

S(u) := u v v̂ = û
τu S(v)



Let’s try! (II)

S(u) := u v v̂ = û
τu S(v)

For ufv : x → y ∈ Γ1, we are looking to fill the following diagram:

x y

x̂ x̂

ufv

S(x) S(y)S(ufv)



Let’s try! (II)

S(u) := u v v̂ = û
τu S(v)

For ufv : x → y ∈ Γ1, we are looking to fill the following square:

x y

x ′

x̂ x̂

ufv

τx

S(x ′)

S(y)



Let’s try! (III)

We suppose given a cell Φ(τx , ufv) of suitable shape:

S(ufv) :=

x y y

x y x̂

x ′ z x̂

x̂ x̂ x̂

ufv

ufv

τx

S(x ′)

S(y)

S(y)

g

h S(z)

S(z)

Φ(τx , ufv) T1S(g)

S(h)



How to extend Φ to higher dimensions?

More generally, we want Φ : LocBr(Σ0,Σ1)n → Σ
G(1)
n .

Question
How to express the fact that Φ(f̄ ) has to have a "suitable shape"?

Define ∂1(f , g) = g and ∂2(f , g) = f , Φ(h) = h for all h ∈ Γ1.
Then we had:

∂−1 Φ(f , g) = Φ∂−1 (f , g) ∂−2 Φ(f , g) = Φ∂−2 (f , g)

This is starting to look like a morphism!
I Define ∂i (f1, . . . , fn) = (f1, . . . , f̂i , . . . , fn). The define a

semi-simplicial set structure on LocBr(Σ0,Σ1).
I The operations ∂−i induce a structure of semi-simplicial set on

ΣG(1).
We want Φ to be a morphism of semi-simplicial sets.
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The Detection Theorem, generalised

Theorem (L.)
Let Σ be a terminating targets-only Gray (ω, 1)-polygraph, and let
M be the monoid presented by Σ. We suppose that there exists a
morphism of simplicial monoids

Φ : BrLoc(Σ0,Σ1)→ ΣG(1)

such that for all A ∈ Σ, Φ(br(A)) = A.
Then the free Gray-monoid generated by Σ is equivalent to M.
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Theorem (L.)
Let Σ be a terminating targets-only Gray (ω, 1)-polygraph, and let
M be the monoid presented by Σ. We suppose that there exists a
morphism of simplicial monoids

Φ : BrLoc(Σ0,Σ1)→ ΣG(1)

such that for all A ∈ Σ, Φ(br(A)) = A.
Then the free Gray-monoid generated by Σ is equivalent to M.
Why do we need to define Φ on all branchings? Squier-like
Theorems should only require hypothesis about critical branchings!



The Detection Theorem, generalised

Theorem (L.)
Let Σ be a terminating targets-only Gray (ω, 1)-polygraph, and let
M be the monoid presented by Σ. We suppose that there exists a
morphism of simplicial monoids

Φ : BrLoc(Σ0,Σ1)→ ΣG(1)

such that for all A ∈ Σ, Φ(br(A)) = A.
Then the free Gray-monoid generated by Σ is equivalent to M.

Theorem (L.)
The simplicial monoid BrLoc(Σ0,Σ1) is freely generated by the
critical branchings.



The reduced standard presentation of a monoid (I)

We fix a monoid M.
We define a Gray (ω, 1)-polygraph Σ as follows:

Σn = {(m1| . . . |mn+1) |mi 6= 1}

∂−i (m1| . . . |mn+1) = (m1| . . . |mi−1)⊗ (mi | . . . |mn+1)

∂+
i (m1| . . . |mn+1) =


(m1| . . . |mimi+1|mi+2| . . . |mn+1) mimi+1 6=1

ε1(m3| . . . |mn+1) i=1 m1m2=1

Γ+
i−1(m1| . . . |mi−1|mi+2| . . . |mn+1) 2≤i<n mimi+1=1

εn−1(m1| . . . |mn−1) i=n mnmn+1=1



The reduced standard presentation of a monoid (II)

m1 ⊗m2 m1m2
(m1|m2)

m1 ⊗m2 ⊗m3 m1 ⊗m2m3

m1m2 ⊗m3 m1m2m3

m1 ⊗ (m2|m3)

(m1|m2)⊗m3 (m1|m2m3)

(m1m2|m3)

(m1|m2|m3)



The reduced standard presentation of a monoid (II)

m1 ⊗m2 m1m2
(m1|m2)

m1 ⊗m2 ⊗m3 m1 ⊗m2m3

m1m2 ⊗m3 m1m2m3

m1 ⊗ (m2|m3)

(m1|m2)⊗m3 (m1|m2m3)

(m1m2|m3)

(m1|m2|m3)

Theorem
The free Gray monoid ΣG(0) is equivalent to M.



Existence Theorem

Theorem
Let Σ be a convergent Gray 1-polygraph, and let M be the monoid
it presents. There exists an extension of Σ into a Gray
(ω, 1)-polygraph such that:
I The generating n-cells correspond to the critical branchings.
I Σ satisfies the hypothesis of the Detection Theorem. In

particular, ΣG(0) is weakly equivalent to M.

Remark
Gray 1-polygraph ≡ monoidal 1-polygraph
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Remark
Any cartesian monoid is a Gray monoid.
Therefore any Gray polygraph Σ induces a cartesian polygraph.

(Intuition: any group is a monoid, therefore any presentation of
monoid can be seen as a presentation of group).
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Future work

Remark
Any cartesian monoid is a Gray monoid.
Therefore any Gray polygraph Σ induces a cartesian polygraph.

Question
What is the relationship between ΣG(0) and Σc(0)? Is Σc(0) a
polygraphic resolution of M?

Question
Possible extension to operads beyond Mon?



It’s not a bug, it’s a feature!

Theorem (L.)
Let Σ be a terminating targets-only Gray (ω, 1)-polygraph, and let
M be the monoid presented by Σ. We suppose that there exists a
morphism of simplicial monoids

Φ : BrLoc(Σ0,Σ1)→ ΣG(1)

such that for all A ∈ Σ, Φ(br(A)) = A.
Then the free Gray-monoid generated by Σ is equivalent to M.

Theorem (L.)
The simplicial monoid BrLoc(Σ0,Σ1) is freely generated by the
critical branchings.


