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Kinetic theory

— System described by the evolution of the density of particles
f=f(t,x,v) =0,teR" the time, x € Q the position and
v € R the velocity.

f(t, x, v) dx dv = quantity of particules in the volume
element dx dv centered in (x, v) € Q X R3.
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Kinetic theory

- No external force or interaction: free transport equation

atf+V'va=0.

— Ifinteraction between particles or with a background medium,
equation of kind

atf+v'VX = S’Q

collision term

- Maxwell (1867), Boltzmann (1872): Boltzmann collision oper-
ator for neutral particles (gaz).

2/17



The Boltzmann equation

Boltzmann equation in the torus

0if +v-Vxf =Q(f.f), (t x,v) eR* x T’ xR?

ate.Nm) = |

R3

o B = 0) (V) ) = [(1) 8(w) ) dvs do

collision kernel  “appearing”  “disappearing”
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The Boltzmann equation

Boltzmann equation in the torus

f +v-Vef = Q. f), (txv)eRY xT’xR?

Qe N = [ | B =0) (F0)gh) = f(gln) )d do

collision kernel  “appearing”  “disappearing”

3

I 1 .y . .
v, v« and v, v, are the velocities of a pair of particles before
and after collision.
— Conservation of momentum and energy:

Vv =V F v, |v|2+|v*|2=|v'|2+|v>'k|2.
— Parametrization of (v', vi):
vt V= v PovE v v vy 2
V=" t+t——F 0 V=%~ 0 og€S".
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The collision kernel

- Physical motivation: particles interacting according to a re-

pulsive potential of the form ¢(r) = r_(p_D, p € (2,+00).
We only deal with the case p > 5 < Hard potentials.

— The collision kernel B(v — vy, o) satisfies

V_V*

B(v — vy, 0) = C|v—vsx|” b(cos 0), cosB =

v — vi
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The collision kernel

- Physical motivation: particles interacting according to a re-

pulsive potential of the form ¢(r) = r—(p—1), p € (2,+00).
We only deal with the case p > 5 < Hard potentials.

The collision kernel B(v — vy, 0) satisfies

B(v — vs,0) = C|v—vg|" b(cos B), cosB = AN
lv — vy
— bis not integrable on s
. -1-2s 1
sin 6 b(cos ) = 6 , S=F, VY 6 e (0,7/2].
Hard potentials < s € (0, 1/4).
— The kinetic factor |v — vy | satisfies y = I’j—:?.

Hard potentials < y > 0.
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Weak form and consequences

For ¢ = ¢(v) a test function,

| av.ned-

1 I I
p fRsngxgz B(v=va, 0)f fu (@ + &% — & — §u) do dvi dv.
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Weak form and consequences

For ¢ = ¢(v) a test function,

| av.ned-

% JR3><[R3><§2 B(v —vs, 0) f fx <¢' + e — ¢ — ¢>*) do dvy dv.

— Conservation of mass, momentum and energy:

1

[,a(f,f)m( Vi )dv=o
R3 2

v
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Weak form and consequences

For ¢ = ¢(v) a test function,

[ aunpd-
% JR3><IR3XSZ B(V — Vx, U)ff* <¢' + ¢’>k - ¢ - ¢*) do dV* dv.

— Entropy inequality (H-theorem):

D)1=~ [ QU A)v) logf(v)dv =0
and
D(f) = 0 & f = y = Maxwellian (Gaussian in v)
Q(p,p) =0
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A priori estimates

2
We fix 1 = (Zﬁ)_3/2€_|v| 12,

In what follows, we shall consider initial data fy with
same mass, momentum, energy as p.

A priori estimates: if f; is solution of the Boltzmann equation
associated with fj s.t.

J(1+ V2 + [ log fol ) fo dx dv < o0

then f € L}° (I_; N Llog L):

(o]
sup[(1 v+ Iogft|)fthdV+ J'O D(f;) ds < oo.

t=0

Problem:
Does f; P 1? If yes, what is the rate of convergence?
— 00
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Main result in the homogeneous case
af = QUf.f), (t,v)eR" x R3

Theorem (T. ’14)

Consider fy = 0 of finite entropy. Then if f; is a “smooth” solution
associated to the initial datum fy, 31 > 0, C > 0 s.t.

Vezo, |lfi-upllpscCe™

— Cauchy theory: Arkeryd ’81, Goudon '97, Villani '98, Fournier-
Mouhot ’09, Desvillettes-Mouhot ’09...

— Regularization properties of the equation: Elmroth ’83, Desvil-

lettes "93, Wennberg ’97, Alexandre-Desvillettes-Villani-Wennberg
’00, Chen-He ’11...
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Main result in the homogeneous case

of = QUf.f), (tv)eR" xR’

Theorem (T. ’14)

Consider fy = 0 of finite entropy. Then if f; is a “smooth” solution
associated to the initial datum fy, 31 >0, C > 0 s.t.

Viz0, |Ifi—pllpsCe?h

<= Improvement of the (better than any) polynomial rate of Vil-
lani ’03 (see also Carlen-Carvalho ’94, Toscani-Villani ’99...).

= Improvement of Mouhot '06 result (cutoff case).
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Strategy of the proof

af = Q(f.f)
- Linearization around the equilibrium: f = y+ h
athz Q(IJ, h)+ Q(h,u) (+ Q(hr h) )
- Y Y
Ah = linear part Nonlinear part: negligible?

— Study of the linearized operator A (semigroup estimates):

— enlargement argument to link the linear and nonlinear
theories.

— Proof of bilinear estimates on the collision operator Q.
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Enlargement argument

2, —=1/2 1 k
E:=12(u"?) C &= L'((n)9)
%—/ \_Y_’
small Hilbert space large Banach space

Baranger-Mouhot ’05 Decay of the semigroup?
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Enlargement argument

2, =1/2 1 k
E:= 2y~ V%) C &= L'((n)9
_V—J %—J
small Hilbert space large Banach space
Baranger-Mouhot ’05 Decay of the semigroup?

(1) There exists A > 0 such that for any hy € E, we have:

—-A
V20, [ISA(6)(I=To)holle < e I[(1=Mo)holle-
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Enlargement argument

2, —1/2 1 k
E:= 2% C &= L'((n)9
| — | —
small Hilbert space large Banach space
Baranger-Mouhot ’05 Decay of the semigroup?

(2) Exhibit a splitting of A:

A= A + B , a<o
“~

(]
“B-regular”  a— (hypo)dissipative

(3) Notion of regularity: AS3(t) has some regularizing proper-
ties (¢ ~E) with an exponential rate e
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The conclusion: decay of the semigroup Sp(t) in €

Theorem (Gualdani-Mischler-Mouhot *13)

For any hy € & and any d > max(a, —A), there exists a constant
C = 1 such that:

V20, [[SA(t)(]=Tp)holle < Ce® |11 =) holle -

Key element of the proof: Duhamel formula

t
SA(t) = Sp(t) + J'O S(t — 5)ASx(s) ds.
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Proof of exponential decay to equilibrium

- Exponential decay of Sp(t) in Lz(u_”z) (already known from
Baranger-Mouhot ’05).

— Enlargement argument = exponential decay of Sp(t) in the
larger space L1((v)k) with k > 2.
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Proof of exponential decay to equilibrium

- Exponential decay of Sp(t) in Lz(u_”z) (already known from
Baranger-Mouhot ’05).

- Enlargement argument = exponential decay of Sp(t) in the
larger space L1((v)k) with k > 2.

— There exists a neighborhood of i/ in which the linear part of
the equation is dominant.
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Proof of exponential decay to equilibrium

Exponential decay of Sp(t) in Lz(u_”z) (already known from
Baranger-Mouhot ’05).

Enlargement argument = exponential decay of Sp(t) in the
larger space L1((v)k) with k > 2.

There exists a neighborhood of 1 in which the linear part of
the equation is dominant.

Thanks to Villani’s result, we know that a solution of the
equation is going to reach this stability neighborhood.
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Proof of exponential decay to equilibrium

Exponential decay of Sp(t) in Lz(u_1/2) (already known from
Baranger-Mouhot ’05).

Enlargement argument = exponential decay of Sp(t) in the
larger space L1((v)k) with k > 2.

There exists a neighborhood of 1/ in which the linear part of
the equation is dominant.

Thanks to Villani’s result, we know that a solution of the
equation is going to reach this stability neighborhood.

Then, we use our result of exponential convergence in this
neighborhood.
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Main result in the non homogeneous case

f +v-Vef = Q. f), (txv)eRY xT> xR’

Theorem (Hérau-Tonon-T. ’17)

If fo is close enough to the equilibrium p, then there exists a unique
global solution f € L;°(X) to the Boltzmann equation.
Moreover, for any 0 < A < A, there exists C > 0 such that

—At
Viz0, |lfi—ullx=Ce™ IIfy - ullx.

— X is a Sobolev space of type H L5 (¢ v)k) with k large enough.

= A, > 0 is the optimal rate given by the semigroup decay of
the associated linearized operator.

14/17



Main result in the non homogeneous case

f +v-Vif = Q. f), (tx,v)eR" xT> xR,

Theorem (Hérau-Tonon-T. ’17)

If fo is close enough to the equilibrium p, then there exists a unique
global solution f € L;°(X) to the Boltzmann equation.
Moreover, for any 0 < A < A, there exists C > 0 such that

—At
Viz0, [Ifi—ully<Ce IIfo - plly.

— Perturbative Cauchy theory in spaces of type Hf:T(y_”z):
Gressman-Strain "11, Alexandre-Morimoto-Ukai-Xu-Yang ’11

= Improvement in the weight.
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Strategy of the proof - |

Steps of the proof:

- Study of the linearized problem around equilibrium (based on
Mouhot-Neumann ’06 result) // homogeneous case.

— Nonlinear estimates in weighted non homogeneous spaces.

— Construction of solutions thanks to a priori estimates:
If.ft =p+ ht’

1d 2 2 2
5 g Mhelllx = = Kolllhelll’x — (K = ClllAelllx) 1 Aelly

where [[| - [|[x ~ [| - [[x and ¥ C X.

15/17



Strategy of the proof - I

Main difficulties:

- Adapt the computations in L' from the homogeneous case to
2 .
the L” framework in the non homogeneous case.

- Regularization properties in x? Hypoellipticity of the equa-
tion? Lyapunov functional (see Hérau 07 and Villani "09 for
the kinetic Fokker-Planck equation) for the linearized equa-
tion (see the Boltzmann operator as a pseudo-differential op-
erator).

— Estimates on the nonlinear term in a non homogeneous frame-
work with polynomial weight.
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Regularization properties of the linearized operator

Theorem (Hérau-Tonon-T. ’17)
Let r € N. We have for k large enough and k' > k large enough:

~
|
|
- ‘

||5/\(t)h0||H;'j((v)k)5 1/2||h0|| w0 (VK'Y Vite(0,1],

and

C,
”5/\(t)h0||H;’4;/Sr5(< v)k) = 1/2+S|| 0” "0 " (v )k')r Vte(0,1].

— Key point to develop our perturbative Cauchy theory.
< In the spirit of Alexandre-Hérau-Li "15.
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Thanks for your attention!
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