Villani's program on constructive rate of convergence to the equilibrium : Part I - Coercivity estimates

S. Mischler

(Université Paris-Dauphine - PSL University)

PDE/probability interactions: kinetic equations, large time and propagation of chaos conference CIRM, april 18-22, 2017

Outline of the talk

- Introduction and main result
 - Villani's program
 - Boltzmann and Landau equation
 - Quantitative trend to the equilibrium
 - First step: quantitative coercivity estimates
- Coercivity estimates for the Landau operator
 - Linearized Landau operator
 - Proof for the Maxwell molecules case $\gamma = 0$
 - Proof in the other cases $(\gamma \neq 0)$
- Coercivity estimates for the Boltzmann operator
 - Linearized Boltzmann operator
 - Proof for $\gamma \in [0, \gamma^*), \gamma^* > 0$
 - Proof for $\gamma \notin [0, \gamma^*)$

Outline of the talk

- Introduction and main result
 - Villani's program
 - Boltzmann and Landau equation
 - Quantitative trend to the equilibrium
 - First step: quantitative coercivity estimates
- 2 Coercivity estimates for the Landau operator
 - Linearized Landau operator
 - ullet Proof for the Maxwell molecules case $\gamma=0$
 - Proof in the other cases $(\gamma \neq 0)$
- 3 Coercivity estimates for the Boltzmann operator
 - Linearized Boltzmann operator
 - Proof for $\gamma \in [0, \gamma^*), \gamma^* > 0$
 - Proof for $\gamma \notin [0, \gamma^*)$

Here is the program (Villani's Notes on 2001 IHP course, Section 8. Toward exponential convergence)

- 1. Find a constructive method for bounding below the spectral gap in $L^2(M^{-1})$, the space of self-adjointness, say for the Boltzmann operator with hard spheres.
- ▷ CIRM, April 2017 : coercivity estimates
- 3. Find a constructive argument to overcome the degeneracy in the space variable, to get an exponential decay for the linear semigroup associated with the linearized spatially inhomogeneous Boltzmann equation; something similar to hypo-ellipticity techniques.
- 2. Find a constructive argument to go from a spectral gap in $L^2(M^{-1})$ to a spectral gap in L^1 , with all the subtleties associated with spectral theory of non-self-adjoint operators in infinite dimension ...
- 4. Combine the whole things with a perturbative and linearization analysis to get the exponential decay for the nonlinear equation close to equilibrium.
- ⊳ Granada, June 2017 : extension of spectral analysis and nonlinear problem

A general picture :

- Ukai (1974), Arkeryd, Esposito, Pulvirenti (1987), Wennberg (1995): non-constructive method for HS Boltzmann equation in the torus
- Desvillettes, Villani (2001 & 2005) if-theorem by entropy method
- Villani, 2001 IHP lectures on "Entropy production and convergence to equilibrium" (2008)
- Guo and Guo' school (issues 1,2,3,4)
 2002–2008: high energy (still non-constructive) method for various models
 2010–...: Villani's program for various models and geometries
- Mouhot and collaborators (issues 1,2,3,4)
 2005–2007: coercivity estimates with Baranger and Strain
 2006–2015: hypocoercivity estimates with Neumann, Dolbeault and Schmeiser
 2006–2013: L^p(m) estimates with Gualdani and M.
- Carrapatoso, M., Landau equation for Coulomb potentials, 2017

The results presented in this talk are taken from

• M., Semigroups in Banach spaces - factorization approach for spectral analysis and asymptotic estimates, book in preparation

Boltzmann and Landau equation

Consider the Boltzmann/Landau equation

$$\partial_t F + v \cdot \nabla_x F = Q(F, F)$$

 $F(0, .) = F_0$

on the density of the particle $F = F(t, x, v) \ge 0$, time $t \ge 0$, velocity $v \in \mathbb{R}^3$, position $x \in \Omega$

 $\Omega = \mathbb{T}^3$ (torus);

 $\Omega \subset \mathbb{R}^3$ + boundary conditions;

 $\Omega = \mathbb{R}^3$ + force field confinement (open problem?).

Q = nonlinear (quadratic) Boltzmann or Landau collisions operator : conservation of mass, momentum and energy

Around the H-theorem

We recall that $\varphi=1, \nu, |\nu|^2$ are collision invariants, meaning

$$\int_{\mathbb{R}^3} Q(F,F)\varphi \, dv = 0, \quad \forall \, F.$$

⇒ laws of conservation

$$\int_{\mathbb{R}^6} F\left(\begin{array}{c}1\\v\\|v|^2\end{array}\right) = \int_{\mathbb{R}^6} F_0\left(\begin{array}{c}1\\v\\|v|^2\end{array}\right) = \left(\begin{array}{c}1\\0\\3\end{array}\right)$$

We also have the H-theorem, namely

$$\int_{\mathbb{R}^3} Q(F,F) \log F \; \left\{ egin{array}{l} \leq 0 \ = 0 \; \Rightarrow \; F = {\sf Maxwellian} \end{array}
ight.$$

From both pieces of information, we expect

$$F(t,x,v) \underset{t\to\infty}{\longrightarrow} M(v) := \frac{1}{(2\pi)^{3/2}} e^{-|v|^2/2}.$$

Existence, uniqueness and stability in small perturbation regime in large space and with constructive rate

Theorem 1. (Gualdani-M.-Mouhot; Carrapatoso-M.; Briant-Guo)

Take an "admissible" weight function m such that

$$\langle v \rangle^{2+3/2} \prec m \prec e^{|v|^2}$$
.

There exist some Lebesgue or Sobolev space $\mathcal E$ associated with the weight m and some $\varepsilon_0>0$ such that if

$$||F_0 - M||_{\mathcal{E}(m)} < \varepsilon_0,$$

there exists a unique global solution ${\it F}$ to the Boltzmann/Landau equation and

$$||F(t) - M||_{\mathcal{E}(m)} \leq \Theta_m(t),$$

with optimal rate

$$\Theta_m(t) \simeq e^{-\lambda t^{\sigma}} \text{ or } t^{-K}$$

with $\lambda > 0$, $\sigma \in (0,1]$, K > 0 depending on m and whether the interactions are "hard" or "soft".

coercivity estimates

Conditionally (up to time uniform strong estimate) exponential H-Theorem

• $(F_t)_{t\geq 0}$ solution to the inhomogeneous Boltzmann equation for <u>hard</u> spheres interactions in the torus with strong estimate

$$\sup_{t\geq 0} (\|F_t\|_{H^k} + \|F_t\|_{L^1(1+|v|^s)}) \leq C_{s,k} < \infty.$$

ullet Desvillettes, Villani proved [Invent. Math. 2005]: for any $s \geq s_0$, $k \geq k_0$

$$\forall \ t \geq 0$$

$$\int_{\Omega \times \mathbb{R}^3} F_t \log \frac{F_t}{M(v)} \, dv dx \leq C_{s,k} \, (1+t)^{-\tau_{s,k}}$$

with $C_{s,k} < \infty$, $\tau_{s,k} \to \infty$ when $s,k \to \infty$

Corollary. (Gualdani-M.-Mouhot; Briant-Guo)

 $\exists s_1, k_1 \text{ s.t. for any } a > \lambda_2 \text{ exists } C_a$

$$\forall t \geq 0 \qquad \int_{\Omega \times \mathbb{D}^3} F_t \log \frac{F_t}{M(v)} dv dx \leq C_a e^{\frac{a}{2}t},$$

with $\lambda_2 < 0$ (2nd eigenvalue of the linearized Boltzmann eq. in $L^2(M^{-1})$).

First step in Villani's program: quantitative coercivity estimates

We define the linearized Boltzmann / Landau operator in the space homogeneous framework

$$\mathcal{L}h := \frac{1}{2}\Big\{Q(h,M) + Q(M,h)\Big\}$$

and the orthogonal projection π in $L^2(M^{-1})$ on the eigenspace

Span
$$\{(1, v, |v|^2)M\}$$
.

Theorem 2. (..., Guo, Mouhot, Strain)

There exist two Hilbert spaces $\mathfrak{h} = L^2(M^{-1})$ and \mathfrak{h}_* and <u>constructive</u> <u>constants</u> $\lambda, K > 0$ such that

$$(-\mathcal{L}h,g)_{\mathfrak{h}}=(-\mathcal{L}g,h)_{\mathfrak{h}}\leq K\|g\|_{\mathfrak{h}_*}\|h\|_{\mathfrak{h}_*}$$

and

$$(-\mathcal{L}h, h)_{h} \geq \lambda \|\pi^{\perp}h\|_{h}^{2}, \quad \pi^{\perp} = I - \pi$$

Comments on Theorem 2

- Takes roots in Hilbert, Weyl, Carleman and Grad (non constructive) spectral analysis for the linearized Boltzmann operator
- Degond-Lemou (non constructive) spectral analysis for the linearized Landau operator
- \bullet Constructive by Wang Chang et al & Bobylev for Boltzmann operator ($\gamma=0$) through Hilbert basis decomposition
- \bullet Constructive by Desvillettes-Villani for Landau operator ($\gamma=0$) through log-Sobolev inequality and linearization of the entropy-dissipation of entropy inequality.
- ullet Proved by Mouhot and collaborators (Baranger, Strain) in any cases $\gamma \in [-3,1]$
- Our aim is to present a new and comprehensive proof :
 - Integration by part for Landau operator when $\gamma=0$
- Integration along the Ornstein-Uhlenbeck flow when $\gamma\sim$ 0 (a trick already used by Toscani & Villani in a nonlinear context)
 - strictly positive (but not sharp) estimates
 - sharp (but not strictly positive) estimates

Comments on Theorem 2 - Previous proof

- Linearized Boltzmann operator (first)
- [1] Wang Chang et al 70, Bobylev 88, $\gamma = 0$, L^2 estimate (direct Fourier analysis).
- [2] Baranger-Mouhot 05, $\gamma >$ 0, L^2 estimate (from [1] intermediate collisions).
- [3] Mouhot 06, $\gamma \in (-3,1]$, L^2_{γ} estimate (from [1] for $\gamma < 0$ and [2] for $\gamma > 0$).
- Linearized Landau operator (next)
- [4] Desvillettes-Villani 01, $\gamma=0$, $H^1_{*,0}$ estimate (directly by linearization of nonlinear log-Sobolev inequality).
- [5] Baranger-Mouhot 05, $\gamma \geq$ 0, L^2 estimate (from [2] grazing collisions).
- [6] Mouhot 06, $\gamma \in (-3,1]$, H^1_{γ} estimate (from [4,5] for $\gamma < 0$ and [5] for $\gamma > 0$).
- [7] Mouhot-Strain 07, $\gamma \in (-3,1]$, $H^1_{\gamma,*}$ estimate (from [6]).

Comments on Theorem 2 - scheme of our proof

- Linearized Landau operator (first)
- (1) $\gamma = 0$, identity
- (2) $\gamma >$ 0, from (1) and splitting argument
- (3) γ < 0, from (1) and splitting argument
- Linearized Boltzmann operator (next)
- (4) $\gamma \in [0, \gamma^*]$, $\gamma^* > 0$, from (3) associated to $\gamma 2$ by integration along the flow of the Ornstein-Uhlenbeck semigroup
- (5) $\gamma > \gamma^*$, from (4) and splitting argument
- (6) γ < 0, from (4) and splitting argument

Outline of the talk

- Introduction and main result
 - Villani's program
 - Boltzmann and Landau equation
 - Quantitative trend to the equilibrium
 - First step: quantitative coercivity estimates
- Coercivity estimates for the Landau operator
 - Linearized Landau operator
 - ullet Proof for the Maxwell molecules case $\gamma=0$
 - Proof in the other cases $(\gamma \neq 0)$
- 3 Coercivity estimates for the Boltzmann operator
 - Linearized Boltzmann operator
 - Proof for $\gamma \in [0, \gamma^*), \gamma^* > 0$
 - Proof for $\gamma \notin [0, \gamma^*)$

Nonlinear Landau operator

The nonlinear Landau operator is defined by

$$Q_L(F,F) := \operatorname{div} \Bigl(\int_{\mathbb{R}^d} \mathsf{a}(\mathsf{v} - \mathsf{v}_*) [F_* \, \nabla F - F \, \nabla_* F_*] \, \mathsf{d} \mathsf{v}_* \Bigr),$$

with the shorthand F = F(v), $F_* = F(v_*)$. The matrix a is given by

$$a(z) = |z|^{2+\gamma} \, \Pi(z), \quad \Pi_{ij}(z) = \delta_{ij} - \hat{z}_i \hat{z}_j, \quad \forall \, z \in \mathbb{R}^d \setminus \{0\}$$

with

$$\hat{z} = \frac{z}{|z|}$$
 and $\gamma \in [-3, 1]$.

Observe that $\Pi(z)$ is the orthogonal projection on the plan z^{\perp} , implies $\Pi(z)z=0$. Introducing the functions

$$b_i(z) = \partial_j a_{ij}(z) = -2 |z|^{\gamma} z_i,$$

$$c(z) = \partial_{ij} a_{ij}(z) = -2(\gamma + 3) |z|^{\gamma} \quad \text{if } \gamma > -3,$$

$$c(z) = \partial_{ij} a_{ij}(z) = -8\pi \delta_0 \quad \text{if } \gamma = -3,$$

we get

$$Q_L(F,F) = \nabla \cdot [a^F \nabla F - b^F F] = a_{ij}^F \partial_{ij} F - c^F F,$$

with $\alpha^F := \alpha * F$.

Linearized Landau operator

The linearized Landau operator on a variation f := F - M writes

$$\mathcal{L} f := \text{div} \Big(\int_{\mathbb{R}^d} a(v-v_*) [M_* \, \nabla f + f_* \, \nabla M - M \, \nabla_* f_* - f \, \nabla_* M_*] \, dv_* \Big),$$

or equivalently

$$\mathcal{L}f = \bar{a}_{ij}\partial_{ij}f - \bar{c}\,f + a^f_{ij}\partial_{ij}M - c^fM,$$

Observing that

$$\Pi(u)\left[M_* \nabla f + f_* \nabla M - M \nabla_* f_* - f \nabla_* M_*\right] = \Pi(u)MM_* \left[\nabla(f/M) - \nabla_* (f_*/M_*)\right],$$

we deduce

$$\int (\mathcal{L}f)\,\varphi = -\frac{1}{2} \int\!\!\int a\, \big[\nabla (f/M) - \nabla_* (f_*/M_*)\big] \big[\nabla \varphi - \nabla_* \varphi_*\big]\, MM_* dv dv_*.$$

First consequence, we recover the same collisional invariants as for the nonlinear operator

$$\int (\mathcal{L}f)\varphi\,dv=0,\quad\forall\,\varphi=1,v_i,|v|^2.$$

Positivity and symmetry of the Linearized Landau operator

Second consequence, with the choice $\varphi = g/M$, we obtain

$$(\mathcal{L}f, g)_{L^{2}(M^{-1})} = \int (\mathcal{L}f) g M^{-1} dv$$

$$= -\frac{1}{2} \int \int a \left[\nabla (f/M) - \nabla_{*}(f_{*}/M_{*}) \right] \left[\nabla (g/M) - \nabla_{*}(g_{*}/M_{*}) \right] MM_{*} dv dv_{*}.$$

Because of the symmetry of the RHS expression, we see that

$$(\mathcal{L}f,g)_{L^2(M^{-1})}=(f,\mathcal{L}g)_{L^2(M^{-1})},$$

and the linearized Landau operator \mathcal{L} is a self-adjoint operator in $L^2(M^{-1})$. Finally, with the choice g = f and the notation h := f/M, we get the positivity property of the associated Dirichlet form

$$\begin{split} D_{\gamma}^{L}(h) &:= (-\mathcal{L}f, f)_{L^{2}(M^{-1})} \\ &= \frac{1}{2} \iint a \left[\nabla h - \nabla_{*} h_{*} \right] \left[\nabla h - \nabla_{*} h_{*} \right] MM_{*} dv dv_{*} \geq 0. \end{split}$$

Toward coercivity estimates for the linearized Landau

Our purpose is now to quantify the positivity property.

For $z \in \mathbb{R}^d \backslash \{0\}$, we define the projection $P = P_z$ on the straight line $\mathbb{R}z$ by

$$P_z \xi := \hat{z} (\hat{z} \cdot \xi), \quad \forall \xi \in \mathbb{R}^d, \quad \hat{z} := z/|z|.$$

In particular, $\Pi(z) = I - P_z$. We also define the anisotropic gradient

$$\widetilde{\nabla}_{v}f = P_{v}\nabla_{v}f + \langle v\rangle(I - P_{v})\nabla_{v}f$$

and the related Sobolev norm

$$\|h\|_{*,\gamma}^2 := \|\langle v \rangle^{\gamma} \widetilde{\nabla} h\|_{L^2(M)}^2 + \|\langle v \rangle^{2+\gamma} h\|_{L^2(M)}^2.$$

We finally define

$$L_0^2(M) := \{ h \in L^2(M); \ \langle h, \varphi \rangle_{L^2(M)} = 0, \ \forall \varphi = 1, \ v_j, \ |v|^2 \}$$

$$S_0 := \{ h \in S(\mathbb{R}^d); \langle h, \varphi \rangle_{L^2(M)} = 0, \forall \varphi = 1, v_i, |v|^2 \}.$$

Coercivity estimate for the linearized Landau in the Maxwell molecules case

Lemma 1. (M.)

There holds

$$\frac{1}{2}D_0^L(h) = \|h\|_{**}^2 + \sum_{ij} T_{ij}(h)^2, \quad \forall h \in \mathcal{S}_0,$$

with

$$||h||_{**}^2 := \int \Big\{ (d-1)|\nabla h|^2 + |v|^2 |(I-P_v)\nabla h|^2 \Big\} M$$

and

$$T_{ij}(h) := \int h \, v_i \, v_j \, M \, dv.$$

In particular, thanks to the (strong) Poincaré inequality, there holds

$$||h||_{**}^{2} \geq \max\{||\widetilde{\nabla}h||_{L^{2}(M)}^{2}, ||\nabla h||_{L^{2}(M)}^{2}, ||h||_{L^{2}(M)}^{2}, \lambda_{SP}||h\langle v\rangle||_{L^{2}(M)}^{2}\}$$

$$\geq \lambda ||h||_{*,0}^{2}$$

for some constants λ_{SP} , $\lambda > 0$.

Observe $h \in L^2$ (resp $h \in S$) implies $\pi^{\perp} h \in L_0^2$ (resp. $\pi^{\perp} h \in S_0$)

Proof for the linearized Landau operator when $\gamma=\mathbf{0}$

We fix $h \in L_0^2(M)$ and we write

$$D_0^L(h) := \frac{1}{2} \int_{\mathbb{R}^{2d}} Y^T[|u|^2 I - u \otimes u] Y MM_* dv dv_*,$$

with the notations

$$Y := \nabla h - \nabla_* h_*, \quad u = v - v_*.$$

We observe that

$$Y^{T}[|u|^{2}I - u \otimes u]Y = \sum_{i,j} [u_{i}Y_{j} - u_{j}Y_{i}]^{2} = 2\sum_{i,j} (u_{i}^{2}Y_{j}^{2} - u_{i}u_{j}Y_{i}Y_{j}).$$

Using a symmetry argument and the notation $h_i = \partial_i h$, $h_i^* = (\partial_i h)^*$, we have

$$A_{ij} := \int [(v_i - v_i^*)^2 (h_j - h_j^*)^2 - (v_j - v_j^*) (v_i - v_i^*) (h_i - h_i^*) (h_j - h_j^*)] M M_*$$

$$= 2 \int [(v_i - v_i^*)^2 (h_j^2 - h_j h_j^*) - (v_i - v_i^*) (v_j - v_j^*) (h_i h_j - h_i h_j^*)] M M_*$$

$$= B_{ij} + C_{ij}.$$

The term B_{ii}

On the one hand, we have

$$\frac{1}{2}B_{ij} := \int [v_i^2 h_j^2 - 2v_i v_i^* h_j^2 + v_i^{*2} h_j^2] M M_*
- \int [v_i^2 h_j h_j^* - 2v_i v_i^* h_j h_j^* + v_i^{*2} h_j h_j^*] M M_*
= \int [v_i^2 + 1] h_j^2 M + 2 T_{ij}^2,$$

where we have used that $\langle vM \rangle = 0$ and two integrations by parts in order to deduce

$$\int v_i v_i^* h_j h_j^* M M_* = \int h \partial_j (v_i M) \int h_* \partial_{*j} (v_i^* M_*) = T_{ij}^2.$$

The term C_{ij}

On the other hand and with the same tricks, we have

$$\frac{1}{2}C_{ij} := -\int [v_{j}v_{i}h_{i}h_{j} - v_{j}v_{i}^{*}h_{i}h_{j} - v_{j}^{*}v_{i}h_{i}h_{j} + v_{j}^{*}v_{i}^{*}h_{i}h_{j}]MM_{*}
+ \int [v_{j}v_{i}h_{i}h_{j}^{*} - v_{j}v_{i}^{*}h_{i}h_{j}^{*} - v_{j}^{*}v_{i}h_{i}h_{j}^{*} + v_{j}^{*}v_{i}^{*}h_{i}h_{j}^{*}]MM_{*}
:= -\int [v_{j}v_{i}h_{i}h_{j} + \delta_{ij}h_{i}^{2}]M - T_{ij}^{2} - T_{ii}T_{jj}.$$

We deduce

$$\frac{1}{2} \sum_{ij} A_{ij} = (d-1) \int |\nabla h|^2 M + \int \sum_{ij} (v_i^2 h_j^2 - v_j v_i h_i h_j) M + \sum_{ij} T_{ij}^2 - \left(\sum_i T_{ii}\right)^2.$$

The term C_{ij} (continuation)

We observe that the last term vanish because

$$\sum_{i} T_{ii} = \int |v|^2 h M = 0$$

and we compute

$$\sum_{ij} (v_j^2 h_i^2 - v_j v_i h_i h_j) = |v|^2 \sum_i \left\{ h_i^2 - 2\hat{v}_i h_i \sum_j \hat{v}_j h_j + \hat{v}_i^2 \left(\sum_j \hat{v}_j h_j \right)^2 \right\}$$

$$= |v|^2 \sum_i \left(h_i - \hat{v}_i \sum_j \hat{v}_j h_j \right)^2$$

$$= |v|^2 |(I - P_v) \nabla h|^2.$$

We conclude by putting all the terms together.

Sharp but not positive estimate (useful when $\gamma \neq 0$)

Lemma 2.

There exist $K_1, K_2 > 0$, such that

$$-(\mathcal{L}f, f)_{L^2(M^{-1})} \geq K_1 \|f/M\|_{*,\gamma}^2 - K_2 \|f\|_{L^2}^2, \quad \forall f \in \mathcal{S}.$$

Idea of the proof:

$$Lh := M^{-1}\mathcal{L}(Mh) \simeq \bar{a}_{ii}\partial_{ii}^2 h + ...$$

with leader term

$$\bar{a}_{ij}\xi_i\xi_j \approx \langle v\rangle^{\gamma}|P_v\xi|^2 + \langle v\rangle^{\gamma+2}|(I-P_v)\xi|^2, \quad -\partial_i\bar{a}_{ij}\ v_j \approx \langle v\rangle^{\gamma+2}.$$

Strictly positive (but not sharp) estimates for $\gamma \neq 0$

Lemma 3.

There exist $K_3 > 0$, such that

$$\mathcal{D}_{\gamma}^L(h):=-(\mathcal{L}f,f)_{L^2(\pmb{M}^{-1})}\ \geq\ K_3\|f\|_{\underline{L}^2}^2,\quad\forall\, f\in\mathcal{S}_0.$$

Both estimates together give

Theorem 2 holds for the Landau operator for any $\gamma \in [-3, 1]$ with

$$||f||_{\mathfrak{h}_*} := ||f/M||_{*,\gamma}^2$$

Proof of Lemma 3 in the case $\gamma > 0$

We fix $h \in S_0$ and for any $r \in (0,1)$, we write

$$D_{\gamma}^{L}(h) \geq r^{\gamma} \iint \mathbf{1}_{|u| \geq r} Y^{T}[|u|^{2}I - u \otimes u]YMM_{*} dvdv_{*}$$

= $r^{\gamma}D_{0}^{L}(h) - \varepsilon_{r}(h),$

with

$$\varepsilon_{r}(h) := \frac{r^{\gamma}}{2} \int_{\mathbb{R}^{2d}} \mathbf{1}_{|u| \leq r} Y^{T} [|u|^{2}I - u \otimes u] Y MM_{*} dv dv_{*}$$

$$\leq 2 r^{\gamma+2} \int_{\mathbb{R}^{2d}} |\nabla h|^{2} MM_{*} dv dv_{*}$$

$$= 2 r^{\gamma+2} ||\nabla h||_{L^{2}(M)}^{2}$$

Using the estimate for the Maxwell molecules case $\gamma=0$, we have in particular

$$D_0^L(h) \geq 2(d-1)\|\nabla h\|_{L^2(M)}^2.$$

Continuation of the proof of Lemma 3 and conclusion of Theorem 2 (when $\gamma>0$)

Gathering the above three inequalities, we deduce

$$D_{\gamma}^{L}(h) \geq 2\|\nabla h\|_{L^{2}(M)}^{2}((d-1)r^{\gamma}-r^{\gamma+2}) \geq K\|\nabla h\|_{L^{2}(M)}^{2},$$

with K > 0 and r > 0 small enough.

Using finally Poincaré inequality, we obtain our first inequality

$$D_{\gamma}^{L}(h) \geq K' \|h\|_{L^{2}(M)}^{2}.$$

We also recall that from Lemma 2, we have

$$D_{\gamma}^{L}(h) \geq C_{1} \|h\|_{*,\gamma}^{2} - C_{2} \|h\|_{L^{2}}^{2}.$$

The two last inequalities together, we deduce that

$$D_{\gamma}^{L}(h) \geq \lambda C_1 \|h\|_{*,\gamma}^2 + [(1-\lambda)K - \lambda C_2] \|h\|_{L^2}^2,$$

from what we conclude by choosing $\lambda > 0$ small enough.

Proof of Lemma 3 in the case $\gamma < 0$

We fix $h \in \mathcal{S}_0$ and we write

$$D_{\gamma}^{L}(h) = \int \int |u|^{\gamma+2} \Delta_{h} M M_{*} dv dv_{*},$$

with the notation

$$\Delta_h = \Delta_h(v, v_*) = |\Pi(u) (\nabla_v h - \nabla_{v_*} h_*)|^2.$$

Introducing the change of variables

$$x = \frac{1}{\sqrt{2}}(v - v_*), \quad y = \frac{1}{\sqrt{2}}(v + v_*),$$

and using $|x|^{\gamma}M(x)\gtrsim M(\eta x)$ and $M(y)\gtrsim M(\eta y)$ for any $\eta>1$, we have

$$\begin{split} D_{\gamma}^L(h) &= C_1 \iint |x|^{\gamma+2} \, \Delta_h M(x) M(y) \, dx dy \\ &\geq C_{2,\eta} \iint |x|^2 \, \Delta_h \, M(\eta \, x) M(\eta \, y) \, dx dy \\ &= C_{3,\eta} \iint |u|^2 \, \Delta_h (v/\eta, v_*/\eta) \, M M_* \, dv dv_*, \end{split}$$

for some constants $C_1, C_{i,\eta} \in (0,\infty)$.

$\gamma < 0$ (continuation)

Observing that

$$\Delta_h(v/\eta,v_*/\eta) = \Delta_{h_{n-1}}(v,v_*)$$

with $h_{\eta}(w) := h(w/\eta)$, we get

$$D_{\gamma}^{L}(h) \geq C_{3,\eta}D_{0}^{L}(h_{\eta^{-1}}).$$

Introducing the function $\phi(v) := a_n + b_n \cdot v + c_n |v|^2$, where

$$(a_{\eta},b_{\eta},c_{\eta}):=\eta^{2+d}\int_{\mathbb{R}^d}h\left(rac{d+2}{2\eta^2}-|v|^2,v,rac{\eta^2}{2d}|v|^2-rac{1}{2}
ight)M_{\eta}\;dv,$$

we have

$$h_{\eta^{-1}} - \phi_{\eta^{-1}} \in L_0^2(M).$$

As a consequence of the positivity of the Dirichlet form in the case $\gamma=$ 0, we get

$$\begin{split} D_{\gamma}^{L}(h) & \geq C_{3,\eta} \|h_{\eta^{-1}} - \phi_{\eta^{-1}}\|_{L^{2}(M)}^{2} \\ & \geq C_{4,\eta} (\|h\|_{L^{2}(M_{\eta})} - \|\phi\|_{L^{2}(M_{\eta})})^{2} \\ & \geq C_{5,\eta} \Big\{ \|h\|_{L^{2}(M_{\eta})} - K (a_{\eta}^{2} + |b_{\eta}|^{2} + c_{\eta}^{2}) \Big\}, \end{split}$$

for a numerical constant $K \in (0, \infty)$ in the range $\eta \in (1, \sqrt{2})$.

$$\gamma < 0$$
 (continuation again)

Using the vanishing moment conditions on h, we easily estimate

$$a_{\eta}^2 + |b_{\eta}|^2 + c_{\eta}^2 \lesssim \varepsilon(\eta) \|h\|_{L^2(M_{\eta})}^2,$$

with $\varepsilon(\eta) o 0$ when $\eta o 1$

We may then fix $\eta \in (1, \sqrt{2}]$ small enough, such that

$$D_{\gamma}^{L}(h) \geq C_{6,\eta} \|h\|_{L^{2}(M_{\sqrt{2}})}^{2} = C_{7,\eta} \|h\|_{L^{2}(M^{2})}^{2}.$$

On the other hand, from Lemma 2, for any $h \in \mathcal{S}(\mathbb{R}^3)$, we have

$$D_{\gamma}^{L}(h) \geq K_{1} \|h\|_{*,\gamma}^{2} - K_{2} \|h\|_{L^{2}(M^{2})}^{2}.$$

Putting together the above two estimates, we easily end the proof of Lemma 3.

Outline of the talk

- Introduction and main result
 - Villani's program
 - Boltzmann and Landau equation
 - Quantitative trend to the equilibrium
 - First step: quantitative coercivity estimates
- 2 Coercivity estimates for the Landau operator
 - Linearized Landau operator
 - ullet Proof for the Maxwell molecules case $\gamma=0$
 - Proof in the other cases $(\gamma \neq 0)$
- Coercivity estimates for the Boltzmann operator
 - Linearized Boltzmann operator
 - Proof for $\gamma \in [0, \gamma^*), \gamma^* > 0$
 - Proof for $\gamma \notin [0, \gamma^*)$

Nonlinear Boltzmann operator

The nonlinear collision Boltzmann operator Q_B is defined by

$$Q_B(F,F) := \int_{\mathbb{R}^3} \int_{S^2} \Gamma(v-v_*) b(\cos\theta) (F'F'_* - FF_*) d\sigma dv_*,$$

and we use the shorthands F = F(v), F' = F(v'), $F_* = F(v_*)$ and $F'_* = F(v'_*)$. Moreover, v' and v'_* are parametrized by

$$v' = \frac{v+v_*}{2} + \frac{|v-v_*|}{2} \sigma, \qquad v'_* = \frac{v+v_*}{2} - \frac{|v-v_*|}{2} \sigma, \qquad \sigma \in \mathbb{S}^2.$$

Finally, $\theta \in [0,\pi]$ is the deviation angle between $v'-v'_*$ and $v-v_*$ defined by

$$\cos \theta = \sigma \cdot \hat{u}, \quad u = v - v_*, \quad \hat{u} = \frac{u}{|u|},$$

and Γ *b* is the *collision kernel* determined by the physical context of the problem. We consider

$$\Gamma(z) = |z|^{\gamma}, \ \gamma \in (-3,1], \quad b \in L^1$$
 (Grad's cut-off).

Linearized Boltzmann operator

The linearized Boltzmann operator on a variation f := F - M writes

$$\mathcal{L}f:=\int_{\mathbb{R}^3}\int_{S^2}\Gamma b\left(f'M_*'+M'f_*'-fM_*-Mf_*\right)d\sigma dv_*.$$

Observing that $M'M'_* = MM_*$, denoting h := f/M and using changes of variables

$$\int (\mathcal{L}f)\,\varphi = -\frac{1}{4}\int_{\mathbb{R}^3}\!\int_{\mathbb{R}^3}\!\int_{S^2}\!\Gamma b\,(h'+h'_*-h-h_*)(\varphi'+\varphi'_*-\varphi-\varphi_*)\,MM_*d\sigma dv dv_*,$$

for any nice function $\varphi: \mathbb{R}^3 \to \mathbb{R}$.

As for the linearized Landau equation, we deduce that the collisional invariants are the mass, momentum and energy, that the operator is self-adjoint in $L^2(M^{-1})$ and the non-negativity of the Dirichlet form

$$\begin{split} D_{\gamma}^{B}(h) &:= -(\mathcal{L}f, f)_{L^{2}(M^{-1})} \\ &= \frac{1}{4} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \int_{\mathbb{S}^{2}} \Gamma b (h' + h'_{*} - h - h_{*})^{2} M M_{*} d\sigma dv dv_{*} \geq 0, \end{split}$$

which is nothing but the linearized version of the H-Theorem for the Boltzmann equation.

Coercivity estimate for the linearized Boltzmann operator

We aim now to establish an optimal lower bound on $D^B_\gamma(h)$ in the space $L^2_0(M)$.

Theorem 2 holds for the Boltzmann operator for any $\gamma \in (-3,1]$ with

$$||f||_{\mathfrak{h}_*} := ||f/M||_{L^2(M\langle v\rangle^{\gamma})}^2 = ||f||_{L^2(M^{-1}\langle v\rangle^{\gamma})}^2$$

It is a consequence of the sharp (but not positive) estimate

Lemma 4.

There exist $K_1, K_2 \in (0, \infty)$ such that

$$D_{\gamma}^{B}(h) \geq K_{1} \|h\|_{L^{2}(\langle \nu \rangle^{\gamma}M)}^{2} - K_{2} \|h\|_{L^{2}(M^{2})}^{2}, \quad \forall h \in \mathcal{S}(\mathbb{R}^{3}),$$

together with the next strictly positive (but not sharp) estimates

Not sharp coercivity estimate for the linearized Boltzmann operator near $\gamma=0$

Lemma 5.

There exist $\gamma^* \in (0,1)$ and $\lambda > 0$ such that for any $\gamma \in [0,\gamma^*]$

$$D_{\gamma}^{B}(h) \geq \lambda \|h\|_{L^{2}(\langle v \rangle^{\gamma-2}M)}^{2}, \quad \forall h \in \mathcal{S}_{0}.$$

For the proof, we mainly follow Villani's paper "Cercignani's conjecture is sometimes true and always almost true" (03) (as suggested to us by Mouhot).

We take $b_0=1$, $\gamma\in[0,1)$ to be fixed later and $h\in\mathcal{S}_0.$

Thanks to the Jensen inequality, we have

$$4D_{\gamma}^{B}(h) \geq \int \int |u|^{\gamma} q^{2} MM_{*} dv dv_{*} := \bar{D}_{\gamma}(h),$$

with

$$q := H - G, \quad H = h + h_*, \quad G = \frac{1}{|S^2|} \int_{S^2} (h' + h'_*) d\sigma.$$

Proof for the linearized Boltzmann operator near $\gamma=0$

We define the Ornstein-Uhlenbeck operator

$$Ch := \Delta_w h - w \cdot \nabla_w h,$$

either on $w=v\in\mathbb{R}^d$ or $w=(v,v_*)\in\mathbb{R}^{2d}$ and the corresponding semigroup U_t . We recall that $U_th=\mathcal{O}(e^{at})$ in $L^2(\langle v\rangle M)$ as $t\to\infty$ with a<0. As a consequence $U_tq=\mathcal{O}(e^{at})$ in the product space $L^2(\langle v\rangle M\langle v_*\rangle M_*)$ and

$$ar{\mathcal{D}}_{\gamma}(\mathit{U}_t \mathit{h}) = \mathcal{O}(e^{2\mathit{at}}) ext{ as } t o \infty.$$

With the notation $\mathcal{A}=\nabla:=(\nabla_{\nu},\nabla_{\nu_*})$, we have $\mathcal{C}=-\mathcal{A}^*\mathcal{A}$ on $L^2(MM_*)$ and we compute

$$2q\,\mathcal{C}q = -2|\nabla q|^2 + \mathcal{C}q^2,$$

from what we deduce

$$\begin{split} -\frac{d}{dt}\bar{D}_{\gamma}(U_{t}h) &= -2\iint |u|^{\gamma}(U_{t}q)\,\mathcal{C}(U_{t}q)\,MM_{*} \\ &= 2\iint |u|^{\gamma}|\nabla(U_{t}q)|^{2}\,MM_{*} + \iint \mathcal{A}|u|^{\gamma}\cdot\mathcal{A}\big((U_{t}q)^{2}\big)\,MM_{*}. \end{split}$$

Lower bound on the first term

We introduce the linear operator from \mathbb{R}^{2d} to $\mathcal{B}(\mathbb{R}^{2d},\mathbb{R}^d)$ defined by

$$\mathcal{P}:(A,B)\mapsto \Pi_{v-v_*}(A-B),$$

where A and B stand for the component in \mathbb{R}^d_v and $\mathbb{R}^d_{v_*}$.

We estimate

$$2|\nabla(U_tq)|^2 \geq |\mathcal{P}\nabla(U_tH) - \mathcal{P}\nabla(U_tG)|^2$$

=
$$|\mathcal{P}\nabla(U_tH)|^2 = |\Pi_{v-v_*}(\nabla U_th - \nabla_*U_th_*)|^2,$$

where we have used $\|\mathcal{P}\|_{L^{\infty}(\mathbb{R}^{2d},\mathcal{B}(\mathbb{R}^{2d},\mathbb{R}^d))} \leq \sqrt{2}$ and the fact that G only depends on $|v-v_*|$ thanks to the parallelogram identity, so does U_tG .

Using the coercivity estimate for the Dirichlet form $D_{\gamma-2}^L$, we get

$$\begin{split} 2 \iint \frac{|\textbf{\textit{u}}|^{\gamma} |\nabla (\textbf{\textit{U}}_{t}q)|^{2} \, \textit{MM}_{*} \, \textit{dvdv}_{*}}{} & \geq \quad \iint \frac{|\textbf{\textit{u}}|^{\gamma} |\Pi_{\textbf{\textit{u}}} (\nabla \textbf{\textit{U}}_{t}h - \nabla_{*} \textbf{\textit{U}}_{t}h_{*})|^{2} \, \textit{MM}_{*} \, \textit{dvdv}_{*}}{} \\ & = \quad D_{\gamma-2}^{L} (\textbf{\textit{U}}_{t}h) \\ & \geq \quad \lambda_{L} \int |\nabla_{\textbf{\textit{v}}} (\textbf{\textit{U}}_{t}h)|^{2} \langle \textbf{\textit{v}} \rangle^{\gamma-2} \textit{M} \, \textit{dv}, \end{split}$$

for a constant λ_L which is uniform with respect to $\gamma \in [0,1]$.

Bound of the second term

On the other hand, we have

$$\left|\mathcal{A}|u|^{\gamma}\cdot\mathcal{A}\big((U_tq)^2\big)\right|\lesssim \frac{\gamma}{\gamma}|u|^{\gamma-1}|U_tq|^2|\nabla U_tq|).$$

Observing that for any $h_t^{\dagger}, h_t^{\dagger} \in \{U_t h, U_t h_*, U_t h', U_t h'_*\}$, we have

$$\begin{split} \left| \int \int |u|^{\gamma-1} |h_t^{\dagger}| \left| \nabla h_t^{\ddagger} \right| M M_* \, dv dv_* \right| & \lesssim \left(\int \int |u|^{\gamma} |h_t^{\dagger}|^2 \, M M_* \, dv dv_* \right)^{1/2} \\ & \left(\int \int |u|^{\gamma-2} \left| \nabla h_t^{\ddagger} \right|^2 M M_* \, dv dv_* \right)^{1/2}, \end{split}$$

we deduce

$$\begin{split} & \left| \int \int \mathcal{A} |u|^{\gamma} \cdot \mathcal{A} \big((U_t q)^2 \big) M M_* \, dv dv_* \right| \\ & \lesssim \gamma \, \|U_t h\|_{L^2(\langle \mathbf{v} \rangle^{\gamma} M)} \|\nabla U_t h\|_{L^2(\langle \mathbf{v} \rangle^{\gamma-2} M)}. \end{split}$$

The two terms together

Uniformly in $0 \le \gamma \le \gamma^*$, $\gamma^* \in (0,1)$ small enough, we obtain

$$-\frac{d}{dt}\bar{D}_{\gamma}(U_{t}h) \geq \frac{\lambda_{L}}{2}\|\nabla U_{t}h\|_{L^{2}(M\langle v\rangle^{\gamma-2})}^{2} - \gamma^{*}C\|U_{t}h\|_{L^{2}(M\langle v\rangle^{\gamma})}^{2}
\geq \frac{\lambda_{L}}{4}\|\nabla U_{t}h\|_{L^{2}(M\langle v\rangle^{\gamma-2})}^{2},$$

by using the strong Poincaré inequality for the probability measure $cM \langle v \rangle^{\gamma-2}$. We recall here that for the Ornstein-Uhlenbeck semigroup, there holds

$$-\frac{d}{dt}\|U_t h\|_{L^2(M\langle v\rangle^{\gamma-2})}^2 \lesssim K\|\nabla U_t h\|_{L^2(M\langle v\rangle^{\gamma-2})}^2 + \|U_t h\|_{L^2(M\langle v\rangle^{\gamma})}^2$$

$$\leq K\|\nabla U_t h\|_{L^2(M\langle v\rangle^{\gamma-2})}^2,$$

by using again the strong Poincaré inequality for the measure $M \langle v \rangle^{\gamma-2}$ and the constraint $\langle U_t h M \rangle = 0$. The two last differential inequalities yields

$$-\frac{d}{dt}\bar{D}_{\gamma}(U_th)\geq -\frac{\lambda_L}{4K}\frac{d}{dt}\|U_th\|_{L^2(M\langle v\rangle^{\gamma-2})}^2.$$

We conclude by integrating in time that differential inequation.

Not sharp coercivity estimate for the linearized Boltzmann operator when $\gamma>\gamma^*$

Lemma 6. For any $\gamma \in (\gamma^*, 1]$, there exists $\lambda > 0$ such that

$$D_{\gamma}^{B}(h) \geq \lambda \|h\|_{L^{2}(M)}^{2}, \quad \forall h \in \mathcal{S}_{0}.$$

We proceed as for the Landau operator. Denoting

$$\Delta_h:=\int_{S^2}[h+h_*-h'-h'_*]^2\,b\,d\sigma,$$

for any $r \in (0,1)$, we write

$$D_{\gamma}^{B}(h) \geq r^{\gamma-\gamma^{*}} \int \mathbf{1}_{|u| \geq r} |u|^{\gamma^{*}} \Delta_{h} MM_{*} dv dv_{*}$$
$$= r^{\gamma-\gamma^{*}} D_{\gamma^{*}}^{B}(h) - \varepsilon_{r}(h),$$

with

$$\varepsilon_r(h) := r^{\gamma - \gamma^*} \int \mathbf{1}_{|u| \le r} |u|^{\gamma^*} \, \Delta_h \, MM_* \, dv dv_* \le {\color{red} r^{\gamma}} \, C \, \|h\|_{L^2(M)}^2.$$

Using Theorem 2 for $D_{\gamma^*}^B(h)$, we deduce

$$D_{\gamma}^{B}(h) \geq r^{\gamma-\gamma^{*}} (\lambda - C r^{\gamma^{*}}) \|h\|_{L^{2}(M)}^{2}.$$

Not sharp coercivity estimate for the linearized Boltzmann operator when $\gamma < 0$

Lemma 7. For any $\gamma \in (-3,0)$, there exists $\lambda > 0$ such that

$$D_{\gamma}^{B}(h) \geq \lambda \|h\|_{L^{2}(M^{2})}^{2}, \quad \forall h \in \mathcal{S}_{0}.$$

For any $\eta > 1$, there exist some constants $C_1, C_{i,\eta} \in (0,\infty)$, such that

$$D_{\gamma}^{B}(h) = C_{1} \iint |x|^{\gamma} \Delta_{h} M(x) M(y) dxdy$$

$$\geq C_{3,\eta} \iint \Delta_{h}^{\eta} MM_{*} dvdv_{*} = C_{3,\eta} D_{0}^{B}(h_{\eta^{-1}}),$$

where

$$x = \frac{1}{\sqrt{2}}(v - v_*), \quad y = \frac{1}{\sqrt{2}}(v + v_*), \quad h_{\eta}(w) := h(w/\eta)$$

$$\Delta_h^{\eta} := \int_{\mathbb{S}^3} \left\{ h(v'(v/\eta, v_*/\eta, \sigma)) + h(v'_*(v/\eta, v_*/\eta, \sigma)) - h(v/\eta) - h(v_*/\eta) \right\}^2 d\sigma.$$

From the positivity estimate of the Dirichlet form D_0^B , we have

$$D_{\gamma}^{B}(h) \geq C_{4,\eta} \|h_{\eta^{-1}} - \phi_{\eta^{-1}}\|_{L^{2}(M)}^{2},$$

where ϕ is defined as for the Landau operator and we conclude in the same way.