Propagation of chaos for Hölder continuous interaction kernels via Glivenko-Cantelli

Thomas Holding

University of Warwick

19th April 2017

Thomas Holding (University of Warwick) Propagation of chaos for Hölder kernels

Outline

Propagation of chaos

2 Main result

- 3 A new coupling method
- Glivenko-Cantelli result
- 5 2nd order systems, and hypoellipticity

Consider *N* diffusing particles $X^i \in \mathbb{R}^d$ interacting with kernel *W*.

$$\begin{cases} dX_t^{i,N} = b_t^N(X_t^{i,N})dt + dB_t^{i,N}, & i = 1, \dots, N, \\ b_t^N(x) = \frac{1}{N} \sum_{j=1}^N W(x - X_t^{j,N}), \\ (X_0^{i,N})_{i=1}^N \text{ i.i.d. with law } f_0. \end{cases}$$

We expect that, for large N, the probability density of one of the particles is well approximated by the solution to the non-linear *mean-field* equation

$$\begin{cases} \partial_t f_t + \nabla \cdot (b_t^{\infty} f_t) - \frac{1}{2} \Delta f_t = 0, \qquad (t, x) \in (0, T) \times \mathbb{R}^d, \\ b_t^{\infty}(x) = \int f_t(y) W(x - y) \, dy, \\ f_0(x) \text{ initial condition.} \end{cases}$$

Assumptions on the interaction kernel W will be made later in the talk.

Why might one expect this? Heuristic:

• Imagine $b^N = b$ were fixed and given. Then by Itô's Lemma the law of $X_t^{1,N}$ solves

$$\begin{cases} \partial_t f_t + \nabla \cdot (b_t f_t) - \frac{1}{2} \Delta f_t = 0, \qquad (t, x) \in (0, T) \times \mathbb{R}^d, \\ f_0(x) \text{ initial condition.} \end{cases}$$

Idea: Make the assumption that the particles are i.i.d. (chaos), so we can compute the force field b^N_t(x) by

$$b_t^N(x) = \frac{1}{N} \sum_{j=1}^N W(x - X_t^{j,N}) \underset{LLN}{\approx} \mathbb{E}W(x - X_t^{1,N})$$
$$= \int W(x - y) f_t(y) \, dy = b_t^\infty(x)$$

where we have used the law of large numbers to approximate the actual field b^N by the mean field b^{∞} .

• The assumption of *chaos* is only true for *t* = 0. We must assume *propagation of chaos*, that particles remain (approximately) independent at later times if they are independent at the start.

Let *d* be a metric on the space of probability measures on \mathbb{R}^d , e.g. Bounded-Lipschitz metric.

Definition (Chaotic particle system (Sznitman))

A family of symmetric particle distributions $(X^{i,N})_{i=1}^N$ for N = 1, 2, ..., is *chaotic* if the empirical measure μ^N given by

$$\mu^N := rac{1}{N} \sum_{j=1}^N \delta_{X^{i,N}}, \qquad ext{satisfies} \qquad d(\mu^N, f) o 0 ext{ weakly as } N o \infty$$

for some deterministic probability measure f.

Note that there is no mention of time in this definition. We are interested in *quantitative* estimates of chaoticity. We want bounds on $d(\mu^N, f)$ that are *polynomial* in N, i.e.

$$\mathbb{E}d(\mu^N, f) \leq CN^{-\gamma}, \quad \text{for some explicit } \gamma > 0.$$

伺 ト イ ヨ ト イ ヨ ト

Why is propagation of chaos important?

Establishing propagation of chaos is a central part of rigorously deriving *macroscopic* and *mesoscopic* continuum models from the *microscopic* laws governing the motion of particles. It is used in:

- The Vlasov-Poisson equation in kinetic theory, which models galaxies and plasmas.
- The vortex dynamics formulation of the 2D Euler equation.
- Swarming models for fish, birds, ...
- In the derivation of the homogeneous Boltzmann equation from Kac's model of randomly colliding particles.
- In the particles method in numerical integration of PDE.
- In the theory of particle filters in statistics.
- In mean-field models of biological neural networks.
- Many more ...

くほう イヨン イヨン 二日

Prior (quantitative) work (locally Lipschitz interactions)

• Dobrushin '79 (also Braun-Hepp independently), proved propagation of chaos in the noiseless case (ODEs instead of SDEs) for *Lipschitz* interaction kernels *W*.

Key observation: empirical measure is weak solution to limit PDE.

- Sznitman '91, did the same for SDEs (explained later in talk).
- Since then the main quantitative results have assumed that *W* is smooth except for a singularity at the origin, and work by estimating the distance between particles: Jabin, Hauray, Mischler, Fournier ... in the last decade.
- In these works the noise is a hindrance. It makes it harder to control the minimum distance between particles.

(Non-quantitative results using compactness are a whole other game.)

くぼう くほう くほう しゅ

The result

$$dX_t^{i,N} = b_t^N(X_t^{i,N})dt + dB_t^{i,N},$$

 $b_t^N(x) = rac{1}{N}\sum_{j=1}^N W(x - X_t^{j,N}).$

$$\begin{aligned} \partial_t f_t + \nabla \cdot (b_t^\infty f_t) - \frac{1}{2} \Delta f_t &= 0, \\ b_t^\infty(x) &= \int f_t(y) W(x-y) \, dy. \end{aligned}$$

Theorem (H. 2016)

Let W be α -Hölder continuous for some $\alpha \in (0, 1)$. Then there exists an explicit $\gamma > 0$ depending only on α , such that

$$\mathbb{E}\sup_{t\in[0,T]}d(\mu_t^N,f_t)\leq CN^{-\gamma}.$$

In particular, this holds for interaction kernels W that are nowhere Lipschitz.

This result implies the result of Sznitman (which requires W Lipschitz, i.e. $\alpha = 1$), but the exponent γ obtained is worse.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Coupling methods

$$dX_t^{i,N} = b_t^N(X_t^{i,N})dt + dB_t^{i,N},$$

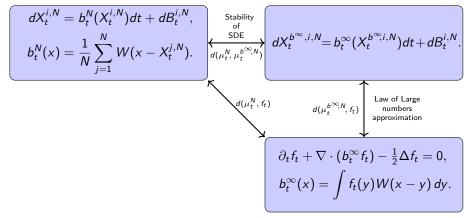
$$b_t^N(x) = \frac{1}{N} \sum_{j=1}^N W(x - X_t^{j,N}).$$

$$d(\mu_t^N, f_t)$$

$$\partial_t f_t + \nabla \cdot (b_t^\infty f_t) - \frac{1}{2}\Delta f_t = 0,$$

$$b_t^\infty(x) = \int f_t(y)W(x - y) \, dy.$$

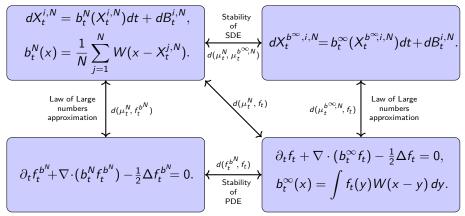
Coupling methods



$$d(\mu_t^N, f_t) \le d(\mu_t^N, \mu_t^{b^{\infty,N}}) + d(\mu_t^{b^{\infty,N}}, f_t)$$
 (Sznitman)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへの

Coupling methods



$$\begin{aligned} d(\mu_t^N, f_t) &\leq d(\mu_t^N, \mu_t^{b^{\infty,N}}) + d(\mu_t^{b^{\infty,N}}, f_t) \qquad (\mathsf{Sznitman}) \\ & \mathsf{OR} \\ d(\mu_t^N, f_t) &\leq d(\mu_t^N, f_t^{b^N}) + d(f_t^{b^N}, f_t) \end{aligned}$$

• • = • • = •

$$\begin{array}{c} \begin{array}{c} \text{Law of} \\ \hline dX_t^{i,N} = b_t^N(X_t^{i,N})dt + dB_t^{i,N}, \\ b_t^N(x) = \frac{1}{N}\sum_{j=1}^N W(x - X_t^{j,N}). \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{Law of} \\ \text{Large} \\ \hline d(\mu_t^N, f_t^{b^N}) \end{array} \\ \hline \partial_t f_t^{b^N} + \nabla \cdot (b_t^N f_t^{b^N}) - \frac{1}{2}\Delta f_t^{b^N} = 0. \end{array} \end{array}$$

- If b^N were deterministic this would be an easy application of the law of large numbers.
- But b^N depends on all the particles.
- What do we know about b^N ?

$$\begin{array}{c}
 Law of \\
 Large \\
 numbers? \\
 b_t^N(x) = \frac{1}{N} \sum_{j=1}^N W(x - X_t^{j,N}). \\
 d(\mu_t^N, f_t^{b^N}) \\
 d$$

- If b^N were deterministic this would be an easy application of the law of large numbers.
- But b^N depends on all the particles.
- What *do* we know about *b*^{*N*}?
- As W is α -Hölder continuous, b^N is α -Hölder in x, and $(\alpha/2 \varepsilon)$ -Hölder in t almost surely.
- We will estimate $\mathbb{E} \sup_{t \in [0,T]} d(\mu_t^N, f_t^{b^N})$ using *only* this information.

• When you don't know something, bound with the worst case!

• As,
$$\mu^{N} = \mu^{b^{N},N}$$
 by definition, we have

$$\mathbb{E} \sup_{t \in [0,T]} d(\mu_{t}^{N}, f_{t}^{b^{N}}) \leq \mathbb{E} \sup_{b \in \mathcal{C}} \sup_{t \in [0,T]} d(\mu_{t}^{b,N}, f_{t}^{b}).$$
Uniform Law
of Large
numbers

$$\frac{\partial_{t} f_{t}^{b} + \nabla \cdot (b_{t} f_{t}^{b}) - \frac{1}{2} \Delta f_{t}^{b} = 0.$$

$$\mathcal{C} = \{b: \|b\|_{C^{0,\alpha}([0,T]\times\mathbb{R}^d)} \leq C\}.$$

• When you don't know something, bound with the worst case!

• As,
$$\mu^{N} = \mu^{b^{N},N}$$
 by definition, we have

$$\mathbb{E} \sup_{t\in[0,T]} d(\mu_t^N, f_t^{b^N}) \leq \mathbb{E} \sup_{b\in\mathcal{C}} \sup_{t\in[0,T]} d(\mu_t^{b,N}, f_t^b).$$

$$\underbrace{dX_t^{b,i,N} = b_t(X_t^{b,i,N})dt + dB_t^{i,N}}_{b \in \mathcal{C}}, \underbrace{dX_t^{b,i,N} = b_t(X_t^{b,i,N})dt + dB_t^{i,N}}_{b \in \mathcal{C}}, \underbrace{d(\mu_t^{b,N}, f_t^b)}_{b \in \mathcal{C}} \underbrace{\partial_t f_t^b + \nabla \cdot (b_t f_t^b) - \frac{1}{2}\Delta f_t^b = 0.}_{dt = 0}$$

$$\mathcal{C} = \{b: \|b\|_{C^{0,\alpha}([0,T]\times\mathbb{R}^d)} \leq C\}.$$

Theorem (Glivenko-Cantelli result for SDEs (H. 2016)) There exists explicit γ depending only on α such that

$$\mathbb{E} \sup_{b \in \mathcal{C}} \sup_{t \in [0,T]} d(\mu_t^{b,N}, f_t^b) \leq C N^{-\gamma}.$$

Proving the Glivenko-Cantelli result

Want to prove: $\mathbb{E} \sup_{b \in \mathcal{C}} \sup_{t \in [0,T]} d(\mu_t^{b,N}, f_t^b) \leq CN^{-\gamma}.$

- \bullet Uniform law of large numbers of a large set $\mathcal{C}.$
- Study one-particle stochastic process $(X_t^b)_{b \in \mathcal{C}}$.
- First step: Continuity with respect to $b \in C$.
- C is too large to apply the Kolmogorov continuity theorem (or the chaining method in general!).

Proving the Glivenko-Cantelli result

 $\text{Want to prove:} \quad \mathbb{E}\sup_{b\in\mathcal{C}}\sup_{t\in[0,T]}d(\mu^{b,N}_t,f^b_t)\leq CN^{-\gamma}.$

- \bullet Uniform law of large numbers of a large set $\mathcal{C}.$
- Study one-particle stochastic process $(X_t^b)_{b \in \mathcal{C}}$.
- First step: Continuity with respect to $b \in C$.
- C is too large to apply the Kolmogorov continuity theorem (or the chaining method in general!).
- Fortunately, we have a very strong continuity property:

Lemma

For each $b \in C$, then there exists a random variable J (different for each b) in L^p such that for all $\tilde{b} \in C$, we have,

$$\sup_{\in[0,T]}|X_t^b-X_t^{\tilde{b}}|\leq J\int_0^T \left\|b_t-\tilde{b}_t\right\|_{L^{\infty}}\,dt.$$

With this lemma we can prove the Glivenko-Cantelli theorem using standard tools from *empirical process theory*:

Definition (Covering Number)

 \mathcal{A} a set, d a metric on \mathcal{A} :

 $N(\varepsilon, \mathcal{A}, d) =$ Size of smallest ε -cover of \mathcal{A}

where an ε -cover (ε -net) is a finite set $(a_k)_{k=1}^m \subset \mathcal{A}$ such that for each $a \in \mathcal{A}$ there is a k with $d(a, a_k) \leq \varepsilon$.

Then $N(\varepsilon, C, \|\cdot\|_{L^{\infty}}) \leq \exp(C\varepsilon^{-(d+2)/\alpha})$ which is sharp (and huge!), but:

Lemma (Orlicz maximal inequality for sub-Gaussian r.v.s)

Let Z_1, \ldots, Z_m be real-valued sub-Gaussian r.v.s (not necessarily independent), and $\|\cdot\|_{\psi_2}$ be the sub-Gaussian Orlicz norm, then

$$\left\|\max_{k=1}^{m} |Z_k|\right\|_{\psi_2} \leq C \sqrt{\log(1+m)} \max_{k=1}^{m} \|Z_k\|_{\psi_2}.$$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Proving the lemma

Lemma

For each $b \in C$, then there exists a random variable J (different for each b) in L^p such that for all $\tilde{b} \in C$, the following holds almost surely,

$$\sup_{\in[0,T]}|X_t^b-X_t^{\tilde{b}}|\leq J\int_0^T \left\|b_t-\tilde{b}_t\right\|_{L^{\infty}}\,dt.$$

• $\frac{d}{dt}|X_t^b - X_t^{\tilde{b}}| \le |b(X_t^b) - \tilde{b}(X_t^{\tilde{b}})|$, but *b* not Lipschitz, so can't close estimate!

Proving the lemma

Lemma

For each $b \in C$, then there exists a random variable J (different for each b) in L^p such that for all $\tilde{b} \in C$, the following holds almost surely,

$$\sup_{\in[0,T]}|X_t^b-X_t^{\tilde{b}}|\leq J\int_0^T\left\|b_t-\tilde{b}_t\right\|_{L^{\infty}}\,dt.$$

- $\frac{d}{dt}|X_t^b X_t^{\tilde{b}}| \le |b(X_t^b) \tilde{b}(X_t^{\tilde{b}})|$, but *b* not Lipschitz, so can't close estimate!
- But noise is regularising!

Theorem (Stochastic flow. (Flandoli, Gubinelli, Priola '10))

The solution map $\phi : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d$, $X_0 \mapsto X_t$ of the SDE $dX_t = b_t(X_t)dt + dB_t$ where $b \in C$ (i.e. α -Hölder), is $C^{1,\beta}$ in x almost surely.

• Use this to replace the (absent) Lipschitz property of *b* in the above estimate.

Thomas Holding (University of Warwick) Propagation of chaos for Hölder kernels

Second order SDEs and hypoellipticity

Can do the same for second order particle system, but the degeneracy of the noise means we need 2/3-Hölder continuity.

$$dX_t^{i,N} = V_t^{i,N} dt$$

$$dV_t^{i,N} = b_t^N(X_t^{i,N}) dt - V_t^{i,N} dt + dB_t^{i,N}$$

$$b_t^N(x) = \frac{1}{N} \sum_{j=1}^N W(x - X_t^{j,N})$$

(f_t solves a non-linear kinetic Fokker-Planck equation (omitted for space)).

Theorem (H. 2016)

Let W be α -Hölder continuous for some $\alpha \in (2/3, 1)$. Then there exists an explicit $\gamma > 0$ depending only on α , such that

$$\mathbb{E}\sup_{t\in[0,T]}d(\mu_t^N,f_t)\leq CN^{-\gamma}.$$

This holds for interaction kernels W that are nowhere Lipschitz.

Related work and conclusions

- The coupling method can also be used to prove propagation of chaos for networks of *leaky integrate and fire neurons*, which is a commonly used model in computational neuroscience. (Article still in preparation).
- The dynamics of a LIF neuron are not even well-posed in the sense of Hadamard: no continuous dependence on initial data! (and no regularisation by noise!)