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Introduction

I One of the most interesting physical cases in gas and plasma
physics is collisions of particles under the influence of Coulomb
potential 1/r .

I For this potential the Boltzmann equation in not a valid model
anymore. The reason is that the momentum exchanged
among particles during a collision is divergent as θ → 0.

I The physical explanation is that grazing collisions cannot be
neglected when the potential is of Coulomb type.

I This problem was known by Landau, who in 1936 derived a
kinetic equation that describes collisions of particles in plasma
where grazing collisions are predominant. This equation was
later named the Landau equation.



The Landau Equation

The time evolution of the particle density is described by

∂t f + x · ∇v f +∇xφ · ∇x f = Q(f , f )

with

Q(f , f ) = divv
∫
R3
|v − y |γ+2Π(v − y)[f (y)∇v f (v)− f (v)∇y f (y)] dy

and

Π(v) := Id − v ⊗ v

|v |2
, − 3 ≤ γ ≤ 1.

The Coulomb case corresponds to γ = −3.



Relevant literature (far from complete!)

The mathematical analysis heavily depends on the value of γ. We
refer to hard potentials when γ ≥ 0 and to soft potentials when
γ < 0 . The level of difficulty increases as γ → −3.

I for γ > 0 global well-posedness was proven by Desvillettes and
Villani in 2002.

I for −2 < γ < 0 Wu, Fournier-Guerin, Alexandre-Liao-Lin,
Alexandre-Villani showed existence, uniqueness of solution and
propagation of Lp estimates.



Literature (continued)

For γ < −2 much less is known:

I Arsenev-Peskov ’77 showed existence of weak solutions,
uniqueness by Fournier ’10.

I Villani in ’98 proved existence of the so called H-solutions.
I Guo in 2002 proved existence of smooth solutions when initial

data are close to equilibrium.
I Alexander, Liao and Lin ’13 gave a proof of existence of weak

solutions in weighted L2 -space under smallness assumption on
initial data.

I Desvillettes ’15 showed that the Villani’s H-solutions are
indeed weak-solutions.

I Carrapatoso, Desvillettes and He ’16 proved time
convergence to equilibrium.



More literature: higher regularity

∂t f + x · ∇v f = Q(f , f )

with

Q(f , f ) = divv
∫
R3
|v−y |γ+2Π(v−y)[f (y)∇v f (v)−f (v)∇y f (y)] dy

Higher regularity L2(Q)→ Cα(Q1/2)

I Using De Giorgi-Nash and Moser’s method: Golse, Imbert,
Mouhot, Vasseur ’16 (inhomogeneous equation, γ = −3)

I Using Krylov-Safonov method: Silvestre ’15 (homogeneous):
Global L∞ - bounds for γ > −2

I Cameron, Silvestre and Nelson (’17) for γ > −2
(inhomogeneous).



Higher regularity

Let f be a solution to the homogeneous Landau equation with
bounded local mass, energy and entropy. Then
(Golse-Imbert-Mouhot-Vasseur ’16) showed that

‖f ‖Cα(Q1/2) ≤ C (‖f ‖1−γ/dL∞(Q1)
+ ‖f ‖L2(Q1)).

This result has been proven by applying Hoelder regularity theory
for kinetic equations with rough coefficients to the solution to the
Landau equation.
On the other hand, starting from the L2 → L∞ result on the linear
equation by Golse-Imbert-Mouhot-Vasseur, with a rescaling
argument and a change of variable Cameron-Silvestre-Snelson (’17)
show that globally

f (x , v , t) ≤ C (1 + t−3/2)
1

1 + |v |
.



The Coulomb Potential γ = −3

For γ = −3 global well-posedness theory is still missing!

I The issue of regularity (i.e. no finite time break down occurs)
for all times has remained open.

I A blow-up configuration would become realistic if at some
point the diffusion is not sufficient to prevent the instability
caused by the quadratic nonlinearity.



The homogeneous Landau equation (with γ = −3) exhibits a
quadratic nonlinearity:

∂t f = divv
∫
R3

1
|v − y |

Π(v − y)(f (y)∇v f (v)− f (v)∇y f (y)) dy

= divv (A[f ]∇f − f∇a[f ]) = Tr(A[f ]D2f ) + f 2

with

A[f ] =
1
8π

∫
R3

1
|v − y |

Π(v−y)f (y) dy , a[f ] =
1
4π

∫
R3

f (y)

|v − y |
dy



∂t f = Tr(A[f ]D2f ) + f 2

Difficulties:
I Quadratic non-linearity,
I Degeneracy and unboundness of the diffusion coefficient

C (‖f ‖L1)

(1 + v)3 < A[f ] <?

I Non-locality of the diffusion coefficients A[f ] prevents
comparison principle:

f (v , t) < g(v , t), and f (v0,t0) = g(v0, t0)

⇒ ∆f ≤ ∆g and A[f ] ≤ A[g ]

; A[f ]∆f ≤ A[g ]∆g



The isotropic Landau equation

Consider a modification of the Landau equation; isotropic Landau
equation

∂t f = div (TrA[f ]∇f − f∇a[f ]) = div (a[f ]∇f − f∇a[f ])

I Previously Gressmann-Krieger-Strain in ’12 showed that any
solution to

∂t f = div (a[f ]∇f − f∇a[f ])− αf 2 α� 0

stays bounded for all time.



Theorem
(G., Guillen, ’16) The isotropic Landau equation{

∂t f = div(a[f ]∇f − f∇a[f ]) = a[f ]∆f + f 2

f |t=0 = fin,

with radially symmetric and decreasing (but not small!) initial
condition fin has bounded smooth solutions for all times t > 0.



New idea: Find partial barriers. Since we deal with radially
symmetric decreasing functions, we direct our attention to a
neighborhood of v = 0.



Barrier to get higher integrability
Lemma: Let f (v , t) be a solution to

∂t f = div(a[g ]∇f − f∇a[g ]) = Q(g , f )

Assume
|v |2g(v , t)

a[g ](v , t)
≤ α(1− α), 0 < α < 1,

then
f (v , t) ≤ C

|v |α
.

Proof: Rewrite the equation in spherical coordinates and get

Q(g , |v |−α) = |v |−α(g − α(1− α)a[g ]|v |−2) < 0

Maximum principle implies

f ≤ C

|v |α
v ∈ BR .



From L2 → L∞

Lemma: Any solution f (v , t) to

∂t f = div(a[g ]∇f − f∇a[g ])

such that
f ≤ C

|v |α
, v ∈ BR ,

satisfies
supt>0,R3f (v , t) < +∞.

Proof: The barrier f ≤ C
|v |α implies

I f ∈ L2

I a[f ], ∇a[f ] ∈ L∞

I Use Stampacchia’s theorem to get the bound: given
λ < B < Λ, any weak solutions to

∂tu ≤ div(B∇u + ub)

satisfies

‖u‖L∞(Q1/2) ≤ C (λ,Λ)(‖b‖L∞(Q) + ‖u‖L2(Q)).



The sufficient condition for preventing blow-up

All what remains to see is whether the condition

|v |2f (v , t)

a[f ](v .t)
≤ α(1− α) 0 < α < 1,

is true. We first observe that

|v |2f (v , t)

a[f ](v , t)
≤ c

1
|v |

∫
B(0,|v |)

f (y , t) dy .

=⇒ Sufficient condition for our assumption to hold is∫
B(0,|v |)

f (y , t) dy =: M(|v |, t) ≤ |v |1+β.



A barrier argument argument for the mass function

The function M(r , t) :=
∫
Br

f (y , t) dy satisfies the following
non-linear equation

∂tM = a[f ]∂rrM +
2
r

(
M

8πr
− a[f ])∂rM

A simple barrier argument shows that

M(r , t) ≤ rm

for m ≤ 2.



Why do energy estimates not work?

Recall the Landau equation for any potentials −3 ≤ γ ≤ 0:

∂t f = divv (A[f ]∇f − f∇a[f ])

with
∆a[f ] = −h, h =

∫
R3

f (y)

|v − y |−γ
dy , γ > −3

and
h = f if γ=− 3.

Multiply by f p−1and integrate by parts; one obtains

p

(p − 1)
∂t

∫
f p dv = −4

∫
〈A[f ]∇f p/2,∇f p/2〉 dv + p

∫
f ph dv



Energy estimates (continued)

Goal is to control the higher order term with the coercive term:∫
f ph dv ≤ C

∫
〈A[f ]∇f p/2,∇f p/2〉 dv

with C small enough. But this is impossible!
.... unless one can prove that (Gualdani-Guillen ’17)∫

f ph dv ≤ ε
∫
〈A[f ]∇f p/2,∇f p/2〉 dv + Cε

∫
f p dv

with ε small as one wishes. This brings us back to the theory of
weighted Sobolev’s and Poincare’s inequalities
(Chanillo-Sewer-Wheeden ’80).



Weighted Poincare’s and Sobolev inequality

Let 1 < p ≤ q < +∞ and w(x)and v(x) two measurable functions.
If

|Qr |2/3
∫
Qr

v(x) dx∫
Qr

w(x) dx
≤ c , ∀Qr ⊂ Q

then ∫
Q
|f − f (Q)|qv(x) dx ≤ c(

∫
Q
|∇f |pw(x) dx)q/p



A weighted Poincare’s for Landau

If one can show that there exists a modulus of continuity η(r) such
that

|Qr |2/3
∫
Qr

h(v) dv∫
Qr

a∗(v) dv
≤ η(r), ∀Qr ⊂ Q

where a∗ is the smallest eigenvalue of the Landau diffusion matrix

A[f ](v) =

∫
|v − y |γ+2Π(v − y)f (y) dy

then any smooth function satisfies the ε-Poincare inequality∫
Q
f ph dv ≤ ε

∫
Q
a∗|∇f p/2|2 dv + Cε

∫
Q
f p dv



Weighted Poincare’s for moderately soft potentials

When γ > −2 one can show that

|Qr |2/3
∫
Qr

h(v) dv∫
Qr

a∗(v) dv
≤ c |Qr |2+γ , ∀Qr ⊂ Q

For γ ≤ −2 so far we are only able to show that

|Qr |2/3
∫
Qr

h(v) dv∫
Qr

a∗(v) dv
≤ C , ∀Qr ⊂ Q



Long time behavior

Theorem
(G. Guillen, ’17) Any solution to the Landau equation with γ > −2
stays bounded for all times and

‖f ‖L∞ ≤ C +
1

t
d
2
.



Idea of the Proof

I Energy Estimates with cut-off test function χQ f
q−1

q

q − 1
∂t

∫
Q
f q dv ≤ −4

∫
Q
a∗|∇f q/2|2 dv +

∫
Q
f qh dv + l .o.t.

≤ −(4− ε)

∫
Q
a∗|∇f q/2|2 dv +

1
ε

∫
Q
f q dv + l .o.t

I Moser’s iteration: let pk = (q/2)kand show that∫ T

T/2

∫
Q
a[f ]f pk dv ≤ C for all k > 0.



Thank you!


