The isotropic Landau equation

Maria Gualdani

George Washington University

April 19, 2017

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction

- One of the most interesting physical cases in gas and plasma physics is collisions of particles under the influence of Coulomb potential 1/r.
- For this potential the Boltzmann equation in not a valid model anymore. The reason is that the momentum exchanged among particles during a collision is divergent as θ → 0.
- The physical explanation is that grazing collisions cannot be neglected when the potential is of Coulomb type.
- This problem was known by Landau, who in 1936 derived a kinetic equation that describes collisions of particles in plasma where grazing collisions are predominant. This equation was later named the Landau equation.

The Landau Equation

The time evolution of the particle density is described by

$$\partial_t f + x \cdot \nabla_v f + \nabla_x \phi \cdot \nabla_x f = Q(f, f)$$

with

$$Q(f,f) = \operatorname{div}_{v} \int_{\mathbb{R}^{3}} |v-y|^{\gamma+2} \Pi(v-y) [f(y) \nabla_{v} f(v) - f(v) \nabla_{y} f(y)] \, dy$$

and

$$\Pi(\mathbf{v}) := Id - rac{\mathbf{v} \otimes \mathbf{v}}{|\mathbf{v}|^2}, \qquad -3 \leq \gamma \leq 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Coulomb case corresponds to $\gamma = -3$.

Relevant literature (far from complete!)

The mathematical analysis heavily depends on the value of γ . We refer to hard potentials when $\gamma \geq 0$ and to soft potentials when $\gamma < 0$. The level of difficulty increases as $\gamma \to -3$.

- ▶ for γ > 0 global well-posedness was proven by Desvillettes and Villani in 2002.
- for -2 < γ < 0 Wu, Fournier-Guerin, Alexandre-Liao-Lin, Alexandre-Villani showed existence, uniqueness of solution and propagation of L^p estimates.

(日) (伊) (日) (日) (日) (0) (0)

Literature (continued)

For $\gamma < -2$ much less is known:

- Arsenev-Peskov '77 showed existence of weak solutions, uniqueness by Fournier '10.
- ▶ Villani in '98 proved existence of the so called *H*-solutions.
- Guo in 2002 proved existence of smooth solutions when initial data are close to equilibrium.
- Alexander, Liao and Lin '13 gave a proof of existence of weak solutions in weighted L² -space under smallness assumption on initial data.
- Desvillettes '15 showed that the Villani's H-solutions are indeed weak-solutions.
- Carrapatoso, Desvillettes and He '16 proved time convergence to equilibrium.

More literature: higher regularity

$$\partial_t f + x \cdot \nabla_v f = Q(f, f)$$

with

$$Q(f,f) = \operatorname{div}_{v} \int_{\mathbb{R}^{3}} |v-y|^{\gamma+2} \Pi(v-y) [f(y)\nabla_{v}f(v) - f(v)\nabla_{y}f(y)] \, dy$$

Higher regularity $L^2(Q) o C^{lpha}(Q_{1/2})$

- Using De Giorgi-Nash and Moser's method: Golse, Imbert, Mouhot, Vasseur '16 (inhomogeneous equation, γ = -3)
- ► Using Krylov-Safonov method: Silvestre '15 (homogeneous): Global L[∞] - bounds for γ > -2

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

► Cameron, Silvestre and Nelson ('17) for γ > -2 (inhomogeneous).

Higher regularity

Let f be a solution to the homogeneous Landau equation with bounded local mass, energy and entropy. Then (Golse-Imbert-Mouhot-Vasseur '16) showed that

$$\|f\|_{C^{\alpha}(Q_{1/2})} \leq C(\|f\|_{L^{\infty}(Q_{1})}^{1-\gamma/d} + \|f\|_{L^{2}(Q_{1})}).$$

This result has been proven by applying Hoelder regularity theory for kinetic equations with rough coefficients to the solution to the Landau equation.

On the other hand, starting from the $L^2 \rightarrow L^{\infty}$ result on the linear equation by Golse-Imbert-Mouhot-Vasseur, with a rescaling argument and a change of variable Cameron-Silvestre-Snelson ('17) show that globally

$$f(x, v, t) \le C(1 + t^{-3/2}) \frac{1}{1 + |v|}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Coulomb Potential $\gamma = -3$

For $\gamma = -3$ global well-posedness theory is still missing!

- The issue of regularity (i.e. no finite time break down occurs) for all times has remained open.
- A blow-up configuration would become realistic if at some point the diffusion is not sufficient to prevent the instability caused by the quadratic nonlinearity.

The homogeneous Landau equation (with $\gamma = -3$) exhibits a quadratic nonlinearity:

$$\partial_t f = \operatorname{div}_v \int_{\mathbb{R}^3} \frac{1}{|v-y|} \Pi(v-y) (f(y) \nabla_v f(v) - f(v) \nabla_y f(y)) \, dy$$

$$= \operatorname{div}_{v} \left(A[f] \nabla f - f \nabla a[f] \right) = Tr(A[f] D^{2} f) + f^{2}$$

with

$$A[f] = \frac{1}{8\pi} \int_{\mathbb{R}^3} \frac{1}{|v-y|} \Pi(v-y) f(y) \, dy, \qquad a[f] = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{f(y)}{|v-y|} \, dy$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\partial_t f = Tr(A[f]D^2f) + f^2$$

Difficulties:

- Quadratic non-linearity,
- Degeneracy and unboundness of the diffusion coefficient

$$\frac{C(\|f\|_{L^1})}{(1+v)^3} < A[f] < ?$$

Non-locality of the diffusion coefficients A[f] prevents comparison principle:

$$f(v,t) < g(v,t), \text{ and } f(v_0,t_0) = g(v_0,t_0)$$

 $\Rightarrow \Delta f \leq \Delta g \quad \text{and} \quad A[f] \leq A[g]$

 $\Rightarrow A[f]\Delta f \leq A[g]\Delta g$

The isotropic Landau equation

Consider a modification of the Landau equation; isotropic Landau equation

$$\partial_t f = \operatorname{div}\left(\operatorname{Tr} A[f] \nabla f - f \nabla a[f]\right) = \operatorname{div}\left(a[f] \nabla f - f \nabla a[f]\right)$$

 Previously Gressmann-Krieger-Strain in '12 showed that any solution to

$$\partial_t f = div (a[f] \nabla f - f \nabla a[f]) - \alpha f^2 \qquad \alpha \gg 0$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

stays bounded for all time.

Theorem (G., Guillen, '16) The isotropic Landau equation

$$\begin{cases} \partial_t f = div(a[f]\nabla f - f\nabla a[f]) = a[f]\Delta f + f^2 \\ f|_{t=0} = f_{in}, \end{cases}$$

with radially symmetric and decreasing (but not small!) initial condition f_{in} has bounded smooth solutions for all times t > 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

New idea: Find partial barriers. Since we deal with radially symmetric decreasing functions, we direct our attention to a neighborhood of v = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Barrier to get higher integrability

Lemma: Let f(v, t) be a solution to

$$\partial_t f = \operatorname{div}(a[g]\nabla f - f\nabla a[g]) = Q(g, f)$$

Assume

$$\frac{|v|^2 g(v,t)}{a[g](v,t)} \leq \alpha(1-\alpha), \quad 0 < \alpha < 1,$$

then

$$f(\mathbf{v},t)\leq rac{C}{|\mathbf{v}|^{lpha}}.$$

Proof: Rewrite the equation in spherical coordinates and get

$$Q(g,|v|^{-lpha})=|v|^{-lpha}(g-lpha(1-lpha)\mathsf{a}[g]|v|^{-2})<\mathsf{0}$$

Maximum principle implies

$$f\leq rac{C}{|v|^{lpha}}$$
 $v\in B_R.$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

From $L^2 \rightarrow L^\infty$

Lemma: Any solution f(v, t) to

$$\partial_t f = \operatorname{div}(a[g]\nabla f - f\nabla a[g])$$

such that

$$f\leq rac{C}{|v|^{lpha}}, \quad v\in B_R,$$

satisfies

$$\sup_{t>0,\mathbb{R}^3}f(v,t)<+\infty.$$

Proof: The barrier $f \leq \frac{C}{|v|^{\alpha}}$ implies

► $f \in L^2$

•
$$a[f], \nabla a[f] \in L^{\infty}$$

 Use Stampacchia's theorem to get the bound: given λ < B < Λ, any weak solutions to

$$\partial_t u \leq \operatorname{div}(B\nabla u + ub)$$

satisfies

$$\|u\|_{L^{\infty}(Q_{1/2})} \leq C(\lambda, \Lambda)(\|b\|_{L^{\infty}(Q)} + \|u\|_{L^{2}(Q)}).$$

The sufficient condition for preventing blow-up

All what remains to see is whether the condition

$$rac{|m{v}|^2 f(m{v},t)}{m{a}[f](m{v}.t)} \leq lpha (1-lpha) \quad 0$$

is true. We first observe that

$$rac{|v|^2 f(v,t)}{a[f](v,t)} \leq c rac{1}{|v|} \int_{B(0,|v|)} f(y,t) \ dy.$$

 \Longrightarrow Sufficient condition for our assumption to hold is

$$\int_{B(0,|v|)} f(y,t) \, dy =: M(|v|,t) \le |v|^{1+\beta}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A barrier argument argument for the mass function

The function $M(r, t) := \int_{B_r} f(y, t) dy$ satisfies the following non-linear equation

$$\partial_t M = a[f]\partial_{rr}M + \frac{2}{r}(\frac{M}{8\pi r} - a[f])\partial_r M$$

A simple barrier argument shows that

$$M(r,t) \leq r^m$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

for $m \leq 2$.

Why do energy estimates not work?

Recall the Landau equation for any potentials $-3 \le \gamma \le 0$:

$$\partial_t f = \operatorname{div}_v \left(A[f] \nabla f - f \nabla a[f] \right)$$

with

$$\Delta a[f] = -h, \quad h = \int_{\mathbb{R}^3} \frac{f(y)}{|v-y|^{-\gamma}} dy, \quad \gamma > -3$$

and

$$h = f$$
 if $\gamma = -3$.

Multiply by f^{p-1} and integrate by parts; one obtains

$$\frac{p}{(p-1)}\partial_t \int f^p \, dv = -4 \int \langle A[f] \nabla f^{p/2}, \nabla f^{p/2} \rangle \, dv + p \int f^p h \, dv$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Energy estimates (continued)

Goal is to control the higher order term with the coercive term:

$$\int f^p h \, dv \leq C \int \langle A[f]
abla f^{p/2},
abla f^{p/2}
angle \, dv$$

with C small enough. But this is impossible! unless one can prove that (Gualdani-Guillen '17)

$$\int f^p h \, dv \leq \varepsilon \int \langle A[f] \nabla f^{p/2}, \nabla f^{p/2} \rangle \, dv + C_{\varepsilon} \int f^p \, dv$$

with ε small as one wishes. This brings us back to the theory of weighted Sobolev's and Poincare's inequalities (Chanillo-Sewer-Wheeden '80).

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Weighted Poincare's and Sobolev inequality

Let 1 and <math>w(x)and v(x) two measurable functions. If $|Q_r|^{2/3} \frac{\int_{Q_r} v(x) dx}{\int_{Q_r} w(x) dx} \le c, \quad \forall Q_r \subset Q$

then

$$\int_{Q} |f - f(Q)|^q v(x) \ dx \leq c (\int_{Q} |\nabla f|^p w(x) \ dx)^{q/p}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

A weighted Poincare's for Landau

If one can show that there exists a modulus of continuity $\eta(r)$ such that

$$|Q_r|^{2/3}rac{\int_{Q_r}h(v)\ dv}{\int_{Q_r}a^*(v)\ dv}\leq \eta(r),\quad orall Q_r\subset Q$$

where a^* is the smallest eigenvalue of the Landau diffusion matrix

$$A[f](v) = \int |v-y|^{\gamma+2} \Pi(v-y) f(y) \, dy$$

then any smooth function satisfies the ε -Poincare inequality

$$\int_{Q} f^{p} h \, dv \leq \varepsilon \int_{Q} a^{*} |\nabla f^{p/2}|^{2} \, dv + C_{\varepsilon} \int_{Q} f^{p} \, dv$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Weighted Poincare's for moderately soft potentials

When $\gamma > -2$ one can show that

$$|Q_r|^{2/3} \frac{\int_{Q_r} h(v) \, dv}{\int_{Q_r} a^*(v) \, dv} \leq c |Q_r|^{2+\gamma}, \quad \forall Q_r \subset Q$$

For $\gamma \leq -2$ so far we are only able to show that

$$|Q_r|^{2/3} \frac{\int_{Q_r} h(v) \, dv}{\int_{Q_r} a^*(v) \, dv} \leq C, \quad \forall Q_r \subset Q$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Long time behavior

Theorem

(G. Guillen, '17) Any solution to the Landau equation with $\gamma > -2$ stays bounded for all times and

$$\|f\|_{L^{\infty}}\leq C+\frac{1}{t^{\frac{d}{2}}}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Idea of the Proof

Energy Estimates with cut-off test function \(\chi_Q f^{q-1}\)

$$\begin{aligned} \frac{q}{q-1}\partial_t \int_Q f^q \, dv &\leq -4 \int_Q a^* |\nabla f^{q/2}|^2 \, dv + \int_Q f^q h \, dv + l.o.t. \\ &\leq -(4-\varepsilon) \int_Q a^* |\nabla f^{q/2}|^2 \, dv + \frac{1}{\varepsilon} \int_Q f^q \, dv + l.o.t \end{aligned}$$

• Moser's iteration: let $p_k = (q/2)^k$ and show that

$$\int_{T/2}^T \int_Q a[f] f^{p_k} dv \leq C \quad \text{for all } k > 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thank you!

◆□ > < 個 > < E > < E > E 9 < 0</p>